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• Symmetry in nature can be broken in at least three different
ways: explicitly, spontaneously, and anomalously

• Spontaneous symmetry breaking (SSB) is a key ingredient for
the Landau-Ginzburg-Wilson paradigm describing phases of
matter and phase transitions.

• Symmetry can be also broken by quantum effects – quantum
anomalies. They play a key role in describing topological
phases – phases of matter which defy the description by the
symmetry breaking paradigm.
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Ordered v.s. disordered

Today, I am interested in disordered phases (phases without any
order parameter).
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Gapless v.s. gapped, topological order

• For this talk, I will be interested in gapped phases of matter.

• Furthermore, I will not consider topologically ordered phases.

Energy

Ground state Degenerate ground states

Gap

(a) (b) (c)
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Symmetry-protected topological phases (SPT phases)

• In the absence of symmetry, SPT phases are adiabatically
connected to a trivial phase

• Trivial phase = product states |Ψ〉 = |φ〉|φ〉 · · · |φ〉
• Unique ground state on any manifold

• Nevertheless, if we impose symmetry, SPT phases are
topologically distinct



Symmetry-protected topological phases (SPT phases)

• Examples: time-reversal symmetric topological insulators; the
Haldane phase in 1d spin chains [Haldane, 2016 Nobel Prize]

• No local order parameter: symmetry-breaking paradigm
cannot be applied:



Topological phases and anomalies

• Questions:
• How do we classify SPT phases?

• How do we characterize/detect/diagnose SPT phase?
Effects of interactions?

• Main “tools/concepts”:
• Response theory (topological quantum field theories)

• Quantum anomalies

• Bulk-boundary correspondence



Response theory

• When ∃ global symmetry G (unitary, on-site),

Z(M,A) =
∫
D[φ] exp[−S(φ,M,A)]

A : background G-gauge field, φ : “matter field”

• Even when no global symmetry,

Z(M) =
∫
D[φ] exp[−S(φ,M)]

M : closed spacetime manifold

• (More data maybe needed for other situations.)



Response theory for SPT phases

• For topological (SPT) phases,
• (i) Z(M,A) is expected to have a pure imaginary part:

Z(M,A) = exp[iItop(M,A)]

• (ii) Itop(M,A) is expected to be topological (metric
independent).

• (iii) Itop(M,A) is not gauge invariant in the presence of
boundary.

• Itop serves as a “non-local order parameter”.

• Generic approach, but very powerful for SPT phases because
of unique ground states. [Kapustin et al. (14), Freed (14-16), Witten
(15)]



Example: Quantum Hall effect



Example: QHE

• U(1) particle number conservation; can couple the system
with an external (probe) gauge field Aexµ .

• Response of the system is encoded in the effective action:

Z(Aex) =
∫
D[ψ†, ψ]e−S(Aex ,ψ†,ψ) = e−Ieff (Aex)

• In the QHE, Ieff has a topological contribution; the
Chern-Simons term, which is imaginary:

Ieff (A) = ik

4π

∫
dτdxdy εµνλAµ∂νAλ, k = integer

Independent of the metric.



Bulk-boundary correspondence

• In the presence of boundary, the Chern-Simons term is not
gauge invariant.

• Necessary to have boundary degrees of freedom which cancel
the non-invariance.

• Boundary theory is anomalous.
• They cannot be gapped trivially while preserving symmetry;

Gapless or topologically ordered

• More generally: Bulk (d+ 1)-dim G SPT supports d-dim
boundary theory, which has G ’t Hooft anomaly.



Example: QHE

• Chiral edge theory:

L = 1
2πψ

†i(∂t + ∂x)ψ

Twisted boundary conditions:

ψ(t, x+ L) = e2πiaψ(t, x), ψ(t+ β, x) = e2πibψ(t, x)



Example: QHE

• Classical system (Lagrangian + b.c.) is invariant under
a→ a+ 1 and b→ b+ 1 (large gauge transformation)

• Quantum mechanics:

Z([a, b]) =
∫
D[ψ†, ψ]e−S = Tra

[
e−βHe2πi

(
b+ 1

2

)
N
]

• Tra: Spatial b.c. twisted by the phase e2πia

• e2πi
(
b+ 1

2

)
Q: Temporal b.c. is twisted by the phase e2πib:

• Large gauge anomaly:

Z([a, b]) 6= Z([a, b+ 1]) or Z([a, b]) 6= Z([a+ 1, b]).



Other symmetries?

• Discrete on-site unitary symmetry [“group cohomology approach”:
Dijkgraaf-Witten Chen-Liu-Gu-Wen (11)]

• Anti unitary on-site unitary symmetry, e.g., Time-reversal,
reflection, etc.

• Crystalline symmetries

Today: Orientation-reversing symmetry:
• Time-reversal, spatial reflection,



Example: Topological insulator



Example: Topological insulator



Example:CP symmetry topological insulator

• System charge U(1) and CP symmetry: P (x, y)→ (−x, y).

• “CPT”-dual of (2+1)d topological insulator

• Edge theory (for CP symmetric edge)

H =
∫
dx
[
ψ†Li∂xψL − ψ

†
Ri∂xψR

]

• Under CP symmetry

UCPψL(x)U−1
CP = ψ†R(−x), UCPψR(x)U−1

CP = ψ†L(−x),

no mass terms are allowed.



• Topological phases with (protected by) time-reversal;
⇒

• Is there any anomaly associate to time-reversal symmetry?

• How can we develop response theory? Or how can we “gauge”
time-reversal?



Anomaly on unoriented surface
[Hsieh-Sule-Cho-SR-Leigh (14)]

• Twisting by parity symmetry:

• C.f. Twisting by on-site symmetry:





[Hsieh-Sule-Cho-SR-Leigh (14)]

• Klein bottle partition function: twisting by CP and U(1):

ψL(t+ T, x) = ψ†R(L− x, t), ψR(t+ T, x) = ψ†L(L− x, t)
ψL(t, x+ L) = e2πiaψL(x, t), ψR(t, x+ L) = e2πiaψR(x, t)

• Klein bottle (KB) partition func (CP twisted partition func)

Z(KB, a) = Tra
[
UCPe

−βH
]

• Large gauge anomaly under a→ a+ 1:

Z(KB, a+ 1) = (−1)Z(KB, a).

• C.f. Old work by [Brunner-Hori (03)]



How about the bulk?

• The partition function on Klein bottle× S1 with flux:

Z(KB × S1, A) = (−1)

• This Z2 response is the fundamental response characterizing
topological insulators, even in the presence of interactions.



Many-body Z2 topological invariant for (2+1)d topological
insulators

[Shiozaki-Shapourian-SR (17)]

• Setup:

• Formula: (T1 = fermionic partial transpose)

Z = TrR1∪R3

[
ρ+
R1∪R3

CI1
T [ρ−R1∪R3

]T1 [CI1
T ]†

]
,

ρ±R1∪R3
= TrR1∪R3

[
e
±
∑

r∈R2
2πiy
Ly

n(r)︸ ︷︷ ︸
partial U(1) twist

|GS〉〈GS|
]

CT ∼ spin flip unitary



Many-body Z2 topological invariant for (2+1)d topological
insulators

• Z is the partition function on Klein bottle× S1 with flux.

• Phase of Z computed numerically on a lattice:



3D example: 3He B
• B-phase of 3

• BdG hamiltonian:

H =
∫
d3k Ψ†(k)H(k)Ψ(k), H(k) =

[
k2

2m − µ ∆σ · k
∆σ · k − k2

2m + µ

]
Ψ(k) = (ψ↑k, ψ↓k, ψ

†
↓,−k,−ψ

†
↑,−k)T

• SPT phase protected by TRS or spatial inversion

Iψ†σ(r)I−1 = iψ†σ(−r)
• When non-interaction, characterized by an integer topological

invariant ν.



Surface Majorna states
• By bulk-boundary correspondence;surface Majorna cones

• Detected by surface acoustic impedance measurement
[Murakawa et al (09)]:



Z16 classification

• The non-interacting classification breaks down to Z16 by
interaction. Surface topological order, etc. [Fidkowski et al (13),
Metlitski et al (14), Wang-Senthil (14), Morimoto-Furusaki-Mudry (15), ..]

• Initial calculation of surface anomaly on T 3 with parity twist
reveals Z8 [Hsieh-Cho-SR (15)]



Many-body topological invariant
• (3+1)d DIII topological superconductors are expected to be

detected by RP 4. [Kapustin et al (14-15), Freed-Hopkins (14-15),
Witten (15), ...]

• We consider partial inversion Ipart on a ball D:

Z = 〈Ψ|Ipart|Ψ〉 = TrD(IpartρD)

• The spacetime is effectively four-dimensional projective plane,
RP 4.



Bulk calculations

• Numerics on a lattice:

−4 −2 0 2 4
µ/t

−1.0

−0.5

0.0

0.5

6
Z
/(

π/
4)

Top. II TrivialTrivial Top. I Top. I

• Z(RP 4) = exp[2πiν/16] with ν = 0, . . . , 15 is the
fundamental response of (3+1) topological superconductors
protected by orientation-reversing symmetry.



Boundary calculations

• The topological invariant can be computed from the Majorana
surface theory [Shiozaki-Shapourian-SR(16)]

Z = TrD (IpartρD) = Tr∂D(Iparte
−Hsurf )

Tr∂D(e−Hsurf )

where Hsurf is the entanglement Hamiltonian ' physical
surface Hamiltonian

• Result when ν = 1:

Z = exp
[
− iπ8 + 1

12 ln(2)− 21
16ζ(3)

(
R

ξ

)2
+ · · ·

]



Boundary calculations

• With interactions, TSC surface can be gapped topologically
ordered. [Senthil-Vishwanath, Fidkowski-Chen-Vishwanath (13),
Wang-Senthil (15), Metlitski-Fidkowski-Chen-Vishwanath (14), ...]

• When surface is topologically ordered: [Wang-Levin,
Tachikawa-Yonekura, Barkeshli et al (16)]

Z = Tr∂D(Iparte
−Hsurf )

Tr∂D(e−Hsurf )

=
∑
p

e−2πihpηpdp = exp
[2πiν

16

]

where sum is over symmetric anyons with topological spin hp,
quantum dimension dp, and eigenvalues of T 2.



Summary

• Topological insulators and topological superconductors
protected by orientation reversing symmetry can be
detected/defined by their coupling to unoriented spacetime.

• Constructed explicit many-body topological invariants.

• Essentially the same construction of many-body topological
invariants for other cases, e.g., the Kitaev Majorana chain, etc.

• Numerically useful?


