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Introduction

- Identifying the “phase” of a generic many-body system 1s an
important but, in general, difficult problem

- Quite often, symmetries play an essential role in such a problem

- Various classes of phases of matter:

»Conventional Landau-Ginzburg-Wilson symm-breaking paradigm

»Topological phases: Symm-protected top. (SPT) phases, etc
[Hasan-Kane 10; Qi-Zhang 11; Chiu-Teo-Schnyder-Ryu 16; Witten 16]
(all are Rev. Mod. Phys.)



Today's focus

- Phases associated with “symmetry-protected in-gap(p)-ability”

» Defined regarding “whether a system with symm Aas or can be
gapped into a trivial — unique and symmetric — gapped ground
state”

symmetry-respecting

/1
HO - aHpert

trivial < gappable nontrivial <> ingappable



- Phases associated with “symmetry-protected in-gap(p)-ability”

» Ingappability (stability) of edge states of 2d SPT phases has been well
studied, e.g. helical edge states of 2d QSHE
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- Phases associated with “symmetry-protected in-gap(p)-ability”

» Ingappability (stability) of edge states of 2d SPT phases has been well

studied, e.g. helical edge states of 2d QSHE "Wu-Bernevig-Zhang 06; Xu-Moore
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- Phases associated with “symmetry-protected in-gap(p)-ability”

Z trans

» Another example: purely 1d (lattice) spin systems w/ SO(3) X

Hizk =) Si-Siy1  “Haldane’s
gapped conjecture”

spin-1:

F. Duncan M. Haldane
(The Nobel Prize in Physics
2016)



- Phases associated with “symmetry-protected in-gap(p)-ability”

» Another example: purely 1d (lattice) spin systems w/ SO(3)x Z!4ns
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17)



- Phases associated with “symmetry-protected in-gap(p)-ability”
» Another example: purely 1d (lattice) spin systems w/ SO(3)x Z!4ns
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- Phases associated with “symmetry-protected in-gap(p)-ability”
» Another example: purely 1d (lattice) spin systems w/ SO(3)x Z!4ns

Hiap = ) Si- Sita

Hs:1/2 . Z Sz ) S@'—|—1
gapped

ga%fe%s N p

s= 1 3
HMGVZ = Z (SZ - Sit1 + 551 - Sito + g)
dimerized

spin-1/2: (seems) ingappable

H%ZBl = Z [COS Q(Sz . Si_|_1) + sin H(SZ . Si+1)2}

spin-1: gappable

m » Implied by the Lieb-Schultz-Mattis (LSM) theorem



- The LSM theorem for 1d SU(2) spin chains:
[Lieb-Schultz-Mattis (61); Affleck-Lieb (86); etc]

A 1d SU(2) antiferromagnetic spin chain cannot have a unique
gapped GS if the spin per site is half-integral and if the lattice-transl
and spin-rotation symm are strictly imposed.



- Q1: Given any 1d lattice model w/ both translation and some
on-site symm (G 5t€ x ZT9S), e.g. Hubbard or Heisenberg
models, could we determine, basing on the symm and
microscopic d.o.f. of the model, whether the system is
ingappable?

- Q2: If so, could we have further constraints on the (possible)
low-energy phases of this model?

»In this talk, we will answer these questions from a field-theory
aspect, focusing on the cases of 1d electron/spin systems



Outline

- Example 1: 1d charged fermion systems



« The LSM theorem for 1d electron systems:
[Oshikawa-Yamanaka-Affleck (96, 97); Oshikawa (00); etc]

A 1d electron-lattice system cannot be a trivial insulator if the
filling per unit cell is fractional and if the lattice-transl symm
and charge conservation are strictly imposed.



1d electron system with translation symmetry

- A simple model: tight-binding model of 1d spinless fermions

L L
H=—t» (che,yy +he)—p) ce, o™
x Z i

Ulg: ¢z — e'®c,.

Ztrans : Cy — C:c—|—1-

Ne kF -3 -2 -1 1 2 3
filling v = —% = -~
R \/




1d electron system with translation symmetry

- The continuum IR limit of the theory:
v~ YRr(x)e P 4 (x)e T
H = /dm Ut (2)(—ivpdy)o, ¥ (x) U(z) = (Yr(z),Yr(x))"
Symmetry in the low-energy theory:

Ul)g: ¥(z)— e*VU(x),

Lirans :  Y(xr) — eikF"Z\I!(x)
Transl becomes (discrete) chiral symm!
RN kp .
» Taking v=1/2, we have U(1), x Z,. T\ /2
> For generic v, we have U(1)q x Z




Anomalies in the low-energy theory

- There is a ”discrete” chiral/axial anomaly in the Dirac theory

T U(1): ¥ — ¥ vector
H = /dCE v (x)(—zvpé’m)az\lf(x) 7 U — e'ikFO'z\Ij — eim/dz\p axial

- That is, the part. func. in the presence of a U(1) field 1s in
general not invariant under the axial transf [Cho-Hsieh-Ryu 17]

2mxinteger

Z(Auy) = /D[‘I’T7 ] S Av] B8 ¢ S Fa 7 (A )

/

=> discrete chiral anomaly is characterized by v, the filling per unit cell!



Implication of the anomaly

- IR: If v # integer, the low-energy theory i1s anomalous; it must
be either gapless or, when perturbed by (symmetric)
interactions, gapped with spontaneous symm breaking.

- UV (lattice): If the filling per unit cell is not integral, the system
does not allow a unique gapped ground state; it must be in a
gapless phase or a gapped phase breaking the transl symm.

» This is nothing but the LSM theorem for an electron system!



Implication of the anomaly

- For example, a half-filled spinless ferm (v = %) is ingappable
e.g. —t Y (clear1 +hc)+V D nang
(V/t>>1, t;e system is gapped w/ xSSB of transl)
while two half-filled (spinful) ferm (v, = 1) 1s gappable
eg. —tY (dcraritcl clar)+UY i+ he

(U/t >>1, the system 1is trivially gapped)



Generality

- Our approach is based on the idea of ("t Hooft) anomaly
matching [t Hooft et al. 80], which enables us to obtain some
fundamental constraints on the phase diagrams.

l G. ’t Hooft
IR (Nobel Prize in Physics 1999)

QFT, (EFT)
GIR




Generality

- Our approach is based on the idea of ("t Hooft) anomaly
matching [t Hooft et al. 80], which enables us to obtain some
fundamental constraints on the phase diagrams.

we 1dentify a top. index, the
LSM index, for any lattice
system to characterize its phase

It can be traced back to
the non-on-site nature of
(part of) the lattice symm

Hlattice
site trans
Gsite x 7.

By “matching” the IR anomaly

IR

HEFT
Gvector X Zaxial

Such an anomaly can diagnose

the ingappability of the system!
[Hsieh et al. 14]

There 1s a potential disc
chiral anomaly at IR




» The chiral anomaly — and thus the LSM index — 1s a topological
quantity indep. of inter-particle interactions (at either UV or IR).

» Because anomaly is “preserved” under RG (’t Hooft anomaly
matching condition).

»(1) Anomalous (IR) = nontrivial LSM index (UV) = ingappable
(2) Anomaly-free (IR) = trivial LSM index (UV) = gappable

- At the lattice scale, the LSM index only depends on a quantity
associated with G5'*¢ of the d.o.f. within a unit cell.

- Let’s examine this approach with a more complicated example
in the following discussion.



Outline

- Example 2: 1d SU(N) spin systems



1d spin chain with translation symmetry

- The LSM theorem for 1d SU(2) spin chains:
[Lieb-Schultz-Mattis (61); Affleck-Lieb (86); etc]

A 1d SU(2) antiferromagnetic spin chain cannot have a unique
gapped GS if the spin per site is half-integral and if the lattice
transl symm and SO(3) symm are strictly imposed.



1d spin chain with translation symmetry

- A generalization to the case of SU(2k) spin chain, the LSMA
theorem, was also known: [Affleck-Lieb (86)]

A 1d SU(2k) antiferromagnetic spin chain cannot have a
unique gapped GS if the Young tableau rep per site has an odd

number of boxes and if the lattice transl symm and PSU(2k)
symm are strictly imposed.



1d spin chain with translation symmetry

- How about for an SU(N) chain with a generic Young-tableau
(YT) rep A per site and with both PSU(N) and trans] ZTans
symm? For N=2, PSU(2) =

SO(3)



1d spin chain with translation symmetry

- How about for an SU(N) chain with a generic Young-tableau
(YT) rep A per site and with both PSU(N) and trans] ZTans

symm?,
»° A typical example is the (generalized) HAF model
ONONCN NN

909090
P

Har = Y JSES0., T >0 poA A

525,875 | = 045 (95575 — 035%%)

N>2:A={4,21}

(for
example)

- We will answer this question, again, by the anomaly matching
argument



LSM indices of 1d SU(N) spin systems with
translational symmetry

- Let’s identify the LSM index for a 1d SU(N) lattice model from
the disc chiral anomaly at low-energy

[ Yao-Hsieh-Oshikawa 18]

UV

quttice
P SU( site X Ztrans

LSM index Zn = (# of YT boxes per unit cell) mod N

IR

HEFT .
P SU(N)wector X Zaxml

The chiral anomaly is represented by a mod N integer € Z

Math fact (cohomology theory):
H?*(PSU(N) x Z,U(1))/H?*(PSU(N),U(1)) = Zx



Check with simple examples:
- N =2: For a system w/ spin s per unit cell we have

To = 2s mod 2
N——

o o 2s YT boxes
s € Z + 1/2 : nontrivial s € 7 : trivial

- N =even: For a system w/ SU(N) spin A w/ an odd # of boxes

» Agree with the LSMA theorem!



- Q1: Given any 1d lattice model w/ both translation and some
on-site symm (G 5t€ x ZT9S), e.g. Hubbard or Heisenberg
models, could we determine, basing on the symm and
microscopic d.o.f. of the model, whether the system i1s
ingappable?



- Q2: If so, could we have further constraints on the (possible)
low-energy phases of this model?



Constraints on the low-energy phases

- The value of the LSM index I can be used to further constrain
the GSD or the possible universality class when the system 1is in
a gapped or a critical phase, respectively:

»GSD of a gapped phase: GSD e N N (1)

ng(IN, N)

»SU(N), WZW CFET with transl symm g — ¢*™"/Ng .

Iny =km mod N (2)

=> For N = 2, (2) agrees with Furuya-Oshikawa (PRL,
17)



L
Anomalies in SU(N) WZW theories

- The most natural univ classes of a critical SU(N) spin model is

the SU(N) WZW theories
k _
ol - kl(g) = 8_7T /M2 dtdx'Tr (5’Mg 18’“9) -+ kFWZ

vector PSU(N) :g — wgw™ ', w e SU(N)
axial Z,(trans): g — ™™/ Ng me {0,1,...,N — 1}
n = N/gcd(m, N)

symm:

- Mixed anomaly of the PSU(N) x Z,, symm [Yao-Hsieh-Oshikawa 18]:

axial 27 Em xinteger
Z(Apsu(ny) = €77 N MBS Z( A psrr ()

characterized by km/N, or km mod N



- Our prediction agrees with known examples in previous studies

of SU(N) models.
Model YT In GSD IR CFT; m  Mixed anomaly
SU(3) trimer model [43] [] 1 mod3 3€3N - -
I 1.

Greteretal. 07 /o) 10.-VBS model [43] [T ] Omod3 1€ 1N : :

Greiter-Rachel 07 SU(6) 70-VBS model [44] | 3mod6 2e€2N - -
Takhtajan; Babujian 82 S-3/2 TB model[45, 46] [ [ ] ] 1mod2 - SU(2)3s WZW;1 1 mod 2

Andrei-Johannesson 84

132 AT model[47, 48 2 mod 3 - SU(3)2 WZW;1 2 mod 3

Johanness 86 model| | L1 e (3): e
Rachel et al. 09 SU(3) 1x2YT HAF[49,50] [ [ ] 2mod3 - SU(3)1 WZW;2 2 mod 3
Dufour et al. 15 SU(9) 2x1YT HAF[51] B 2 mod 9 - SU(9); WZW;2 2 mod 9
Lecheminant 15 SU(3) 2-leg ladder [52] [ J®[ ] 2mod3 - SU(3)1 WZW;2 2 mod 3

Y. Yao, C.-T. Hsieh, and M. Oshikawa, arXiv:1805.06885



In summary, 1f a spin model with an exact SU(N) spin-rotation
and transl symm has a nontrivial LSM index, 1.e., the total
umber of Young-tableau boxes per unit cell 1s not divisible by N,
the system must have either

- degenerate gapped ground states, with the multiplicity (1), or

- gapless excitations / symm-protected critical states (SPC). If the
low-energy SPC is given by an SU(N) WZW theory, its level 1s
constrained by (2).



Outline

- Conclusion



Conclusion

- We apply the idea of ("t Hooft) anomaly matching to study 1d
condensed matter systems — many-body systems in general — in
the presence of both lattice transl and some on-site symm.

we 1dentify a top. index, the
LSM index, for any lattice
system to characterize its phase

It can be traced back to
the non-on-site nature of
(part of) the lattice symm

Hlattice
site trans
Gsite x 7.

By “matching” the IR anomaly

IR

HEFT
Gvector X Zaxial

Such an anomaly can diagnose

the ingappability of the system!
[Hsieh et al. 14]

There 1s a potential disc
chiral anomaly at IR




Thank You!



