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Introduction
• Identifying the “phase” of a generic many-body system is an 

important but, in general, difficult problem

• Quite often, symmetries play an essential role in such a problem

• Various classes of phases of matter:
ØConventional Landau-Ginzburg-Wilson symm-breaking paradigm

ØTopological phases: Symm-protected top. (SPT) phases, etc
[Hasan-Kane 10; Qi-Zhang 11; Chiu-Teo-Schnyder-Ryu 16; Witten 16]
(all are Rev. Mod. Phys.)



Today’s focus
• Phases associated with “symmetry-protected in-gap(p)-ability”

trivial  ó gappable nontrivial ó ingappable

Symmetry protected critical phase classification of SU(N) spin chains in rectangular
Young tableaux representations, and global axial anomaly in 1+1 dimensions

We derive the low-energy properties of SU(N) spin systems in the presence of spin rotation and
translation symmetries. Based on mixed PSU(N)-Z anomaly, the spin system cannot be gapped
with a unique ground state if the number of Young-tableaux boxes per unit cell is not divisible by
N . The SU(N) WZW model are classified into N symmetry-protected critical classes and each
spin system can only realize one of them at criticality. It implies a no-go theorem that an RG flow
is possible between two critical points only if they belong to the same symmetry-protected critical
class, as long as the underlying lattice spin models respect the imposed symmetries.

Introduction.—

Hom(⌦̃spin
c

3
(BZ), U(1)) ⇠= U(1) ⇠= R/Z (1)

LSM index I = (total charges per unit cell) mod 1.
(2)

H3(PSU(N)⇥ Z, U(1))/H3(PSU(N), U(1)) ⇠= ZN (3)

LSM index IN = (# of YT boxes per unit cell) mod N.
(4)

I2 = 2s mod 2. (5)

IN 6= 0 mod N. (6)

GSD 2 N
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Z(AU(1))
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Zn(trans) : g ! e2⇡im/Ng, m 2 {0, 1, ..., N � 1} (10)
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N ⇥integerZ(APSU(N)) (12)

IN · N 0
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2 /
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A=1

TA
i TA

i+1

(14)

N = 2 : � = {2s} (15)

N > 2 : � = {4, 2, 1} (16)

H0 + ↵Hpert (17)

The classification of quantum phases is a central
issue in condensed matter physics, where consider-
able recent progresses were initiated in strongly in-
teracting many-body systems. In particular, vari-
ous topological phases with unbroken symmetries, e.g.
symmetry-protected trivial (SPT) ordered phases [? ?
] and topological ordered phases enrich the phase
diagram beyond conventional Landau-Ginzburg-Wilson
spontaneously-symmetry-breaking paradigm. Therefore,
the constraints in the appearance of symmetries on phase
diagrams play essential roles since they rule out the ex-
istence of a large class of forbidden gapped or gapless
phases when the certain symmetry is respected. For
gapped phases, the restriction on the ground-state degen-
eracy allows a unified understanding on the low-energy
spectral properties. For example, Lieb-Schultz-Mattis
(LSM) theorem [? ] and its generalization LSMOH the-
orem by Oshikawa and Hastings [? ? ] states that the
ground states cannot be trivially gapped with a unique
ground state if the particle number per unit cell is frac-
tional and both the translation symmetry and charge
U(1) conservation are preserved. As a part of gapless

Ø Defined regarding “whether a system with symm has or can be 
gapped into a trivial – unique and symmetric – gapped ground 
state”

symmetry-respecting



• Phases associated with “symmetry-protected in-gap(p)-ability”
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Symmetry d

AZ ⇥ ⌅ ⇧ 1 2 3 4 5 6 7 8

A 0 0 0 0 Z 0 Z 0 Z 0 Z
AIII 0 0 1 Z 0 Z 0 Z 0 Z 0

AI 1 0 0 0 0 0 Z 0 Z2 Z2 Z
BDI 1 1 1 Z 0 0 0 Z 0 Z2 Z2

D 0 1 0 Z2 Z 0 0 0 Z 0 Z2

DIII �1 1 1 Z2 Z2 Z 0 0 0 Z 0

AII �1 0 0 0 Z2 Z2 Z 0 0 0 Z
CII �1 �1 1 Z 0 Z2 Z2 Z 0 0 0

C 0 �1 0 0 Z 0 Z2 Z2 Z 0 0

CI 1 �1 1 0 0 Z 0 Z2 Z2 Z 0

TABLE I Periodic table of topological insulators and super-
conductors. The 10 symmetry classes are labeled using the
notation of Altland and Zirnbauer (1997) (AZ) and are spec-
ified by presence or absence of T symmetry ⇥, particle-hole
symmetry ⌅ and chiral symmetry ⇧ = ⌅⇥. ±1 and 0 denotes
the presence and absence of symmetry, with ±1 specifying
the value of ⇥2 and ⌅2. As a function of symmetry and space
dimensionality, d, the topological classifications (Z, Z2 and 0)
show a regular pattern that repeats when d ! d+ 8.

3. Periodic table

Topological insulators and superconductors fit to-
gether into a rich and elegant mathematical structure
that generalizes the notions of topological band theory
described above (Schnyder, et al., 2008; Kitaev, 2009;
Schnyder, et al., 2009; Ryu, et al., 2010). The classes
of equivalent Hamiltonians are determined by specifying
the symmetry class and the dimensionality. The symme-
try class depends on the presence or absence of T sym-
metry (8) with ⇥2 = ±1 and/or particle-hole symmetry
(15) with ⌅2 = ±1. There are 10 distinct classes, which
are closely related to the Altland and Zirnbauer (1997)
classification of random matrices. The topological clas-
sifications, given by Z, Z2 or 0, show a regular pattern
as a function of symmetry class and dimensionality and
can be arranged into the periodic table of topological in-
sulators and superconductors shown in Table I.

The quantum Hall state (Class A, no symmetry; d =
2), the Z2 topological insulators (Class AII, ⇥2 = �1;
d = 2, 3) and the Z2 and Z topological superconductors
(Class D, ⌅2 = 1; d = 1, 2) described above are each
entries in the periodic table. There are also other non
trivial entries describing di↵erent topological supercon-
ducting and superfluid phases. Each non trivial phase is
predicted, via the bulk-boundary correspondence to have
gapless boundary states. One notable example is super-
fluid 3He B (Volovik, 2003; Roy, 2008; Schnyder, et al.,
2008; Nagato, Higashitani and Nagai, 2009; Qi, et al.,
2009; Volovik, 2009), in (Class DIII, ⇥2 = �1, ⌅2 = +1;
d = 3) which has a Z classification, along with gapless 2D
Majorana fermion modes on its surface. A generalization
of the quantum Hall state introduced by Zhang and Hu

E
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Quantum spin 
Hall insulator ν=1

Conventional 
Insulator ν=0

(a) (b)

k0/a−π /a−π

FIG. 5 Edge states in the quantum spin Hall insulator. (a)
shows the interface between a QSHI and an ordinary insula-
tor, and (b) shows the edge state dispersion in the graphene
model, in which up and down spins propagate in opposite
directions.

(2001) corresponds to the d = 4 entry in class A or AII.
There are also other entries in physical dimensions that
have yet to be filled by realistic systems. The search is
on to discover such phases.

III. QUANTUM SPIN HALL INSULATOR

The 2D topological insulator is known as a quantum
spin Hall insulator. This state was originally theorized
to exist in graphene (Kane and Mele, 2005a) and in 2D
semiconductor systems with a uniform strain gradient
(Bernevig and Zhang, 2006). It was subsequently pre-
dicted to exist (Bernevig, Hughes and Zhang, 2006), and
was then observed (König, et al., 2007), in HgCdTe quan-
tum well structures. In section III.A we will introduce
the physics of this state in the model graphene system
and describe its novel edge states. Section III.B will re-
view the experiments, which have also been the subject
of the review article by König, et al. (2008).

A. Model system: graphene

In section II.B.2 we argued that the degeneracy at the
Dirac point in graphene is protected by inversion and
T symmetry. That argument ignored the spin of the
electrons. The spin orbit interaction allows a new mass
term in (3) that respects all of graphene’s symmetries. In
the simplest picture, the intrinsic spin orbit interaction
commutes with the electron spin Sz, so the Hamiltonian
decouples into two independent Hamiltonians for the up
and down spins. The resulting theory is simply two copies
the Haldane (1988) model with opposite signs of the Hall
conductivity for up and down spins. This does not violate
T symmetry because time reversal flips both the spin and
�xy. In an applied electric field, the up and down spins
have Hall currents that flow in opposite directions. The
Hall conductivity is thus zero, but there is a quantized
spin Hall conductivity, defined by J

"
x � J

#
x = �

s
xyEy with

�
s
xy = e/2⇡ – a quantum spin Hall e↵ect. Related ideas

were mentioned in earlier work on the planar state of
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Psi(x) = ( R(x), L(x))
T (26)

The classification of quantum phases is a central is-
sue in condensed matter physics, where considerable
recent progresses were initiated in strongly interacting
many-body systems. In particular, various topologi-
cal phases with unbroken symmetries, e.g. symmetry-
protected trivial (SPT) ordered phases [1, 2] and topo-
logical ordered phases enrich the phase diagram beyond
conventional Landau-Ginzburg-Wilson spontaneously-
symmetry-breaking paradigm. Therefore, the constraints
in the appearance of symmetries on phase diagrams play
essential roles since they rule out the existence of a large
class of forbidden gapped or gapless phases when the cer-
tain symmetry is respected. For gapped phases, the re-
striction on the ground-state degeneracy allows a unified
understanding on the low-energy spectral properties. For
example, Lieb-Schultz-Mattis (LSM) theorem [3] and its
generalization LSMOH theorem by Oshikawa and Hast-
ings [4, 5] states that the ground states cannot be trivially
gapped with a unique ground state if the particle number
per unit cell is fractional and both the translation sym-
metry and charge U(1) conservation are preserved. As
a part of gapless phases, critical phase classifications is
a key ingredient in the understanding of universal criti-
cal behaviors of various phase transitions. However, the
classification of critical phases still remains open and the
related proposal is only given in SU(2) spin chains [6].
Furthermore, many stable critical phases have been found
experimentally and numerically [7, 8], and the reason of
such stability is not completely understood.

In reality, the constraints on phase diagrams with more
general symmetries than U(1) and SU(2) are within
intense interest. For example, SU(N) “spin” systems
with N > 2 are realized in ultracold atoms on op-
tical lattices [9–16] and also in some spin-orbital sys-
tems [? ], although SU(N) systems was initially intro-
duced as theoretical toy models to understand “physical”
SU(2) spins. Thus the study related with the phase di-
agrams of SU(N) spin systems is of realistic interest in
its own. Furthermore, although spin-rotation and trans-
lation symmetries are imposed, symmetry enhancements
cannot be excluded, e.g. phases with emergent symme-
tries. The symmetry can be enhanced on the lattice such
as that the spin-1 chain has an explicit SU(3) symmetry
in the Uimin-Lai-Sutherland model [17–19]. In addition,

higher symmetries can also emerge at the thermodynam-
ical limit, e.g. the emergent SU(3) symmetry of critical
spin-2 chain [20]. Therefore, the generalized SU(N) spin
models are necessary in understanding the symmetry en-
hancement.
In this Letter, we focus on the fundamental constraints

on the phase diagrams of SU(N) spin chains in gen-
eral representations with SU(N) spin rotation symmetry
and lattice translation symmetry respected. More specif-
ically, we obtain the restriction of ground-state degener-
acy of gapped phases generalizing Lieb-Schultz-Mattis-
A✏eck (LSMA) theorem [21], and the classification of
critical phases, when the required symmetries are im-
posed. The compulsory degenerate ground states can
be understood by the concept of “ingappability” simi-
larly to the boundary states of nontrivial SPT phase,
which cannot be gapped with a specified symmetry un-
broken and bulk gap unclosed [1, 2]. On the SPT side,
the ingappability results from the quantum symmetry
anomaly of e↵ective boundary theory forbidding its lat-
tice realization [22]. CH: Should add more references
here. I will also do it later. Although the SU(N)
spin chain in our interest can be realized in its own di-
mension, the non-on-site nature of translation symme-
try enables us to understand its ingappability by consid-
ering the quantum anomaly of its e↵ective field theory
in the thermodynamical limit [23]. In a similar spirit,
the classification of critical phases can be done accord-
ing to their quantum anomaly. Such symmetry-protected
critical (SPC) classification has been proposed in SU(2)-
symmetric and translation-symmetric spin chains, where
the critical points are classified into two classes, one of
which can only take place in half-integer spin chains
while the other one can be realized only by integer spin
chains [6]. We generalize the SPC classification to SU(N)
symmetric critical phases of SU(N) spin chains with-
out emergent symmetries. Moreover, we also obtain a
constraint on the candidates of emergent higher SU(N 0)
symmetry with N 0 > N by matching their symmetry
anomaly. As a special example, such restriction can ex-
plain that SU(3) symmetry enhancements have not (ac-
tually cannot) been found in SU(2) and translation sym-
metric half-integer spin chains.
Based on.... anomaly, we come to the conclusion

that.... End of intro(?)
Translationally invariant SU(N) spin system in 1 + 1

dimensions and the LSM index — We consider a generic
(1 + 1)d SU(N) spin system described by a Hamilto-
nian HSU(N) with the lattice translation symmetry and
a global spin-rotation symmetry specified by the projec-
tive special unitary group PSU(N). Here the system is
subject to periodic boundary condition and the trans-
lation, for generality, defines the unit cell consisting of
multiple sites and forms a discrete group Ztrans in the
thermodynamic limit. A typical example of such a sys-
tem is the SU(N) Heisenberg antiferromagnetic (HAF)
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The classification of quantum phases is a central is-
sue in condensed matter physics, where considerable
recent progresses were initiated in strongly interacting
many-body systems. In particular, various topologi-
cal phases with unbroken symmetries, e.g. symmetry-
protected trivial (SPT) ordered phases [1, 2] and topo-
logical ordered phases enrich the phase diagram beyond
conventional Landau-Ginzburg-Wilson spontaneously-
symmetry-breaking paradigm. Therefore, the constraints
in the appearance of symmetries on phase diagrams play
essential roles since they rule out the existence of a large
class of forbidden gapped or gapless phases when the cer-
tain symmetry is respected. For gapped phases, the re-
striction on the ground-state degeneracy allows a unified
understanding on the low-energy spectral properties. For
example, Lieb-Schultz-Mattis (LSM) theorem [3] and its
generalization LSMOH theorem by Oshikawa and Hast-
ings [4, 5] states that the ground states cannot be trivially
gapped with a unique ground state if the particle number
per unit cell is fractional and both the translation sym-
metry and charge U(1) conservation are preserved. As
a part of gapless phases, critical phase classifications is
a key ingredient in the understanding of universal criti-
cal behaviors of various phase transitions. However, the
classification of critical phases still remains open and the
related proposal is only given in SU(2) spin chains [6].
Furthermore, many stable critical phases have been found
experimentally and numerically [7, 8], and the reason of
such stability is not completely understood.

In reality, the constraints on phase diagrams with more
general symmetries than U(1) and SU(2) are within
intense interest. For example, SU(N) “spin” systems
with N > 2 are realized in ultracold atoms on op-
tical lattices [9–16] and also in some spin-orbital sys-
tems [? ], although SU(N) systems was initially intro-
duced as theoretical toy models to understand “physical”
SU(2) spins. Thus the study related with the phase di-
agrams of SU(N) spin systems is of realistic interest in
its own. Furthermore, although spin-rotation and trans-
lation symmetries are imposed, symmetry enhancements
cannot be excluded, e.g. phases with emergent symme-
tries. The symmetry can be enhanced on the lattice such
as that the spin-1 chain has an explicit SU(3) symmetry
in the Uimin-Lai-Sutherland model [17–19]. In addition,

higher symmetries can also emerge at the thermodynam-
ical limit, e.g. the emergent SU(3) symmetry of critical
spin-2 chain [20]. Therefore, the generalized SU(N) spin
models are necessary in understanding the symmetry en-
hancement.
In this Letter, we focus on the fundamental constraints

on the phase diagrams of SU(N) spin chains in gen-
eral representations with SU(N) spin rotation symmetry
and lattice translation symmetry respected. More specif-
ically, we obtain the restriction of ground-state degener-
acy of gapped phases generalizing Lieb-Schultz-Mattis-
A✏eck (LSMA) theorem [21], and the classification of
critical phases, when the required symmetries are im-
posed. The compulsory degenerate ground states can
be understood by the concept of “ingappability” simi-
larly to the boundary states of nontrivial SPT phase,
which cannot be gapped with a specified symmetry un-
broken and bulk gap unclosed [1, 2]. On the SPT side,
the ingappability results from the quantum symmetry
anomaly of e↵ective boundary theory forbidding its lat-
tice realization [22]. CH: Should add more references
here. I will also do it later. Although the SU(N)
spin chain in our interest can be realized in its own di-
mension, the non-on-site nature of translation symme-
try enables us to understand its ingappability by consid-
ering the quantum anomaly of its e↵ective field theory
in the thermodynamical limit [23]. In a similar spirit,
the classification of critical phases can be done accord-
ing to their quantum anomaly. Such symmetry-protected
critical (SPC) classification has been proposed in SU(2)-
symmetric and translation-symmetric spin chains, where
the critical points are classified into two classes, one of
which can only take place in half-integer spin chains
while the other one can be realized only by integer spin
chains [6]. We generalize the SPC classification to SU(N)
symmetric critical phases of SU(N) spin chains with-
out emergent symmetries. Moreover, we also obtain a
constraint on the candidates of emergent higher SU(N 0)
symmetry with N 0 > N by matching their symmetry
anomaly. As a special example, such restriction can ex-
plain that SU(3) symmetry enhancements have not (ac-
tually cannot) been found in SU(2) and translation sym-
metric half-integer spin chains.
Based on.... anomaly, we come to the conclusion

that.... End of intro(?)
Translationally invariant SU(N) spin system in 1 + 1

dimensions and the LSM index — We consider a generic
(1 + 1)d SU(N) spin system described by a Hamilto-
nian HSU(N) with the lattice translation symmetry and
a global spin-rotation symmetry specified by the projec-
tive special unitary group PSU(N). Here the system is
subject to periodic boundary condition and the trans-
lation, for generality, defines the unit cell consisting of
multiple sites and forms a discrete group Ztrans in the
thermodynamic limit. A typical example of such a sys-
tem is the SU(N) Heisenberg antiferromagnetic (HAF)

Figure from Hasan-Kane 10

ØIngappability (stability) of edge states of 2d SPT phases has been well 
studied, e.g. helical edge states of 2d QSHE

Symmetry protected critical phase classification of SU(N) spin chains in rectangular
Young tableaux representations, and global axial anomaly in 1+1 dimensions

We derive the low-energy properties of SU(N) spin systems in the presence of spin rotation and
translation symmetries. Based on mixed PSU(N)-Z anomaly, the spin system cannot be gapped
with a unique ground state if the number of Young-tableaux boxes per unit cell is not divisible by
N . The SU(N) WZW model are classified into N symmetry-protected critical classes and each
spin system can only realize one of them at criticality. It implies a no-go theorem that an RG flow
is possible between two critical points only if they belong to the same symmetry-protected critical
class, as long as the underlying lattice spin models respect the imposed symmetries.
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The classification of quantum phases is a central is-
sue in condensed matter physics, where considerable
recent progresses were initiated in strongly interacting
many-body systems. In particular, various topologi-
cal phases with unbroken symmetries, e.g. symmetry-
protected trivial (SPT) ordered phases [1, 2] and topo-
logical ordered phases enrich the phase diagram beyond
conventional Landau-Ginzburg-Wilson spontaneously-
symmetry-breaking paradigm. Therefore, the constraints
in the appearance of symmetries on phase diagrams play

mass (magnetic impurity)
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Symmetry d

AZ ⇥ ⌅ ⇧ 1 2 3 4 5 6 7 8

A 0 0 0 0 Z 0 Z 0 Z 0 Z
AIII 0 0 1 Z 0 Z 0 Z 0 Z 0

AI 1 0 0 0 0 0 Z 0 Z2 Z2 Z
BDI 1 1 1 Z 0 0 0 Z 0 Z2 Z2

D 0 1 0 Z2 Z 0 0 0 Z 0 Z2

DIII �1 1 1 Z2 Z2 Z 0 0 0 Z 0

AII �1 0 0 0 Z2 Z2 Z 0 0 0 Z
CII �1 �1 1 Z 0 Z2 Z2 Z 0 0 0

C 0 �1 0 0 Z 0 Z2 Z2 Z 0 0

CI 1 �1 1 0 0 Z 0 Z2 Z2 Z 0

TABLE I Periodic table of topological insulators and super-
conductors. The 10 symmetry classes are labeled using the
notation of Altland and Zirnbauer (1997) (AZ) and are spec-
ified by presence or absence of T symmetry ⇥, particle-hole
symmetry ⌅ and chiral symmetry ⇧ = ⌅⇥. ±1 and 0 denotes
the presence and absence of symmetry, with ±1 specifying
the value of ⇥2 and ⌅2. As a function of symmetry and space
dimensionality, d, the topological classifications (Z, Z2 and 0)
show a regular pattern that repeats when d ! d+ 8.

3. Periodic table

Topological insulators and superconductors fit to-
gether into a rich and elegant mathematical structure
that generalizes the notions of topological band theory
described above (Schnyder, et al., 2008; Kitaev, 2009;
Schnyder, et al., 2009; Ryu, et al., 2010). The classes
of equivalent Hamiltonians are determined by specifying
the symmetry class and the dimensionality. The symme-
try class depends on the presence or absence of T sym-
metry (8) with ⇥2 = ±1 and/or particle-hole symmetry
(15) with ⌅2 = ±1. There are 10 distinct classes, which
are closely related to the Altland and Zirnbauer (1997)
classification of random matrices. The topological clas-
sifications, given by Z, Z2 or 0, show a regular pattern
as a function of symmetry class and dimensionality and
can be arranged into the periodic table of topological in-
sulators and superconductors shown in Table I.

The quantum Hall state (Class A, no symmetry; d =
2), the Z2 topological insulators (Class AII, ⇥2 = �1;
d = 2, 3) and the Z2 and Z topological superconductors
(Class D, ⌅2 = 1; d = 1, 2) described above are each
entries in the periodic table. There are also other non
trivial entries describing di↵erent topological supercon-
ducting and superfluid phases. Each non trivial phase is
predicted, via the bulk-boundary correspondence to have
gapless boundary states. One notable example is super-
fluid 3He B (Volovik, 2003; Roy, 2008; Schnyder, et al.,
2008; Nagato, Higashitani and Nagai, 2009; Qi, et al.,
2009; Volovik, 2009), in (Class DIII, ⇥2 = �1, ⌅2 = +1;
d = 3) which has a Z classification, along with gapless 2D
Majorana fermion modes on its surface. A generalization
of the quantum Hall state introduced by Zhang and Hu
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FIG. 5 Edge states in the quantum spin Hall insulator. (a)
shows the interface between a QSHI and an ordinary insula-
tor, and (b) shows the edge state dispersion in the graphene
model, in which up and down spins propagate in opposite
directions.

(2001) corresponds to the d = 4 entry in class A or AII.
There are also other entries in physical dimensions that
have yet to be filled by realistic systems. The search is
on to discover such phases.

III. QUANTUM SPIN HALL INSULATOR

The 2D topological insulator is known as a quantum
spin Hall insulator. This state was originally theorized
to exist in graphene (Kane and Mele, 2005a) and in 2D
semiconductor systems with a uniform strain gradient
(Bernevig and Zhang, 2006). It was subsequently pre-
dicted to exist (Bernevig, Hughes and Zhang, 2006), and
was then observed (König, et al., 2007), in HgCdTe quan-
tum well structures. In section III.A we will introduce
the physics of this state in the model graphene system
and describe its novel edge states. Section III.B will re-
view the experiments, which have also been the subject
of the review article by König, et al. (2008).

A. Model system: graphene

In section II.B.2 we argued that the degeneracy at the
Dirac point in graphene is protected by inversion and
T symmetry. That argument ignored the spin of the
electrons. The spin orbit interaction allows a new mass
term in (3) that respects all of graphene’s symmetries. In
the simplest picture, the intrinsic spin orbit interaction
commutes with the electron spin Sz, so the Hamiltonian
decouples into two independent Hamiltonians for the up
and down spins. The resulting theory is simply two copies
the Haldane (1988) model with opposite signs of the Hall
conductivity for up and down spins. This does not violate
T symmetry because time reversal flips both the spin and
�xy. In an applied electric field, the up and down spins
have Hall currents that flow in opposite directions. The
Hall conductivity is thus zero, but there is a quantized
spin Hall conductivity, defined by J
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The classification of quantum phases is a central is-
sue in condensed matter physics, where considerable
recent progresses were initiated in strongly interacting
many-body systems. In particular, various topologi-
cal phases with unbroken symmetries, e.g. symmetry-
protected trivial (SPT) ordered phases [1, 2] and topo-
logical ordered phases enrich the phase diagram beyond
conventional Landau-Ginzburg-Wilson spontaneously-
symmetry-breaking paradigm. Therefore, the constraints
in the appearance of symmetries on phase diagrams play
essential roles since they rule out the existence of a large
class of forbidden gapped or gapless phases when the cer-
tain symmetry is respected. For gapped phases, the re-
striction on the ground-state degeneracy allows a unified
understanding on the low-energy spectral properties. For
example, Lieb-Schultz-Mattis (LSM) theorem [3] and its
generalization LSMOH theorem by Oshikawa and Hast-
ings [4, 5] states that the ground states cannot be trivially
gapped with a unique ground state if the particle number
per unit cell is fractional and both the translation sym-
metry and charge U(1) conservation are preserved. As
a part of gapless phases, critical phase classifications is
a key ingredient in the understanding of universal criti-
cal behaviors of various phase transitions. However, the
classification of critical phases still remains open and the
related proposal is only given in SU(2) spin chains [6].
Furthermore, many stable critical phases have been found
experimentally and numerically [7, 8], and the reason of
such stability is not completely understood.

In reality, the constraints on phase diagrams with more
general symmetries than U(1) and SU(2) are within
intense interest. For example, SU(N) “spin” systems
with N > 2 are realized in ultracold atoms on op-
tical lattices [9–16] and also in some spin-orbital sys-
tems [? ], although SU(N) systems was initially intro-
duced as theoretical toy models to understand “physical”
SU(2) spins. Thus the study related with the phase di-
agrams of SU(N) spin systems is of realistic interest in
its own. Furthermore, although spin-rotation and trans-
lation symmetries are imposed, symmetry enhancements
cannot be excluded, e.g. phases with emergent symme-
tries. The symmetry can be enhanced on the lattice such
as that the spin-1 chain has an explicit SU(3) symmetry
in the Uimin-Lai-Sutherland model [17–19]. In addition,

higher symmetries can also emerge at the thermodynam-
ical limit, e.g. the emergent SU(3) symmetry of critical
spin-2 chain [20]. Therefore, the generalized SU(N) spin
models are necessary in understanding the symmetry en-
hancement.
In this Letter, we focus on the fundamental constraints

on the phase diagrams of SU(N) spin chains in gen-
eral representations with SU(N) spin rotation symmetry
and lattice translation symmetry respected. More specif-
ically, we obtain the restriction of ground-state degener-
acy of gapped phases generalizing Lieb-Schultz-Mattis-
A✏eck (LSMA) theorem [21], and the classification of
critical phases, when the required symmetries are im-
posed. The compulsory degenerate ground states can
be understood by the concept of “ingappability” simi-
larly to the boundary states of nontrivial SPT phase,
which cannot be gapped with a specified symmetry un-
broken and bulk gap unclosed [1, 2]. On the SPT side,
the ingappability results from the quantum symmetry
anomaly of e↵ective boundary theory forbidding its lat-
tice realization [22]. CH: Should add more references
here. I will also do it later. Although the SU(N)
spin chain in our interest can be realized in its own di-
mension, the non-on-site nature of translation symme-
try enables us to understand its ingappability by consid-
ering the quantum anomaly of its e↵ective field theory
in the thermodynamical limit [23]. In a similar spirit,
the classification of critical phases can be done accord-
ing to their quantum anomaly. Such symmetry-protected
critical (SPC) classification has been proposed in SU(2)-
symmetric and translation-symmetric spin chains, where
the critical points are classified into two classes, one of
which can only take place in half-integer spin chains
while the other one can be realized only by integer spin
chains [6]. We generalize the SPC classification to SU(N)
symmetric critical phases of SU(N) spin chains with-
out emergent symmetries. Moreover, we also obtain a
constraint on the candidates of emergent higher SU(N 0)
symmetry with N 0 > N by matching their symmetry
anomaly. As a special example, such restriction can ex-
plain that SU(3) symmetry enhancements have not (ac-
tually cannot) been found in SU(2) and translation sym-
metric half-integer spin chains.
Based on.... anomaly, we come to the conclusion

that.... End of intro(?)
Translationally invariant SU(N) spin system in 1 + 1

dimensions and the LSM index — We consider a generic
(1 + 1)d SU(N) spin system described by a Hamilto-
nian HSU(N) with the lattice translation symmetry and
a global spin-rotation symmetry specified by the projec-
tive special unitary group PSU(N). Here the system is
subject to periodic boundary condition and the trans-
lation, for generality, defines the unit cell consisting of
multiple sites and forms a discrete group Ztrans in the
thermodynamic limit. A typical example of such a sys-
tem is the SU(N) Heisenberg antiferromagnetic (HAF)

2

Hs=1/2
MG

=
X

i

✓
Si · Si+1 +

1

2
Si · Si+2 +

3

8

◆
(24)

Hedge =

Z
dx †(x)(�ivF@x)�z (x) (25)

 (x) = ( R(x), L(x))
T (26)
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sue in condensed matter physics, where considerable
recent progresses were initiated in strongly interacting
many-body systems. In particular, various topologi-
cal phases with unbroken symmetries, e.g. symmetry-
protected trivial (SPT) ordered phases [1, 2] and topo-
logical ordered phases enrich the phase diagram beyond
conventional Landau-Ginzburg-Wilson spontaneously-
symmetry-breaking paradigm. Therefore, the constraints
in the appearance of symmetries on phase diagrams play
essential roles since they rule out the existence of a large
class of forbidden gapped or gapless phases when the cer-
tain symmetry is respected. For gapped phases, the re-
striction on the ground-state degeneracy allows a unified
understanding on the low-energy spectral properties. For
example, Lieb-Schultz-Mattis (LSM) theorem [3] and its
generalization LSMOH theorem by Oshikawa and Hast-
ings [4, 5] states that the ground states cannot be trivially
gapped with a unique ground state if the particle number
per unit cell is fractional and both the translation sym-
metry and charge U(1) conservation are preserved. As
a part of gapless phases, critical phase classifications is
a key ingredient in the understanding of universal criti-
cal behaviors of various phase transitions. However, the
classification of critical phases still remains open and the
related proposal is only given in SU(2) spin chains [6].
Furthermore, many stable critical phases have been found
experimentally and numerically [7, 8], and the reason of
such stability is not completely understood.

In reality, the constraints on phase diagrams with more
general symmetries than U(1) and SU(2) are within
intense interest. For example, SU(N) “spin” systems
with N > 2 are realized in ultracold atoms on op-
tical lattices [9–16] and also in some spin-orbital sys-
tems [? ], although SU(N) systems was initially intro-
duced as theoretical toy models to understand “physical”
SU(2) spins. Thus the study related with the phase di-
agrams of SU(N) spin systems is of realistic interest in
its own. Furthermore, although spin-rotation and trans-
lation symmetries are imposed, symmetry enhancements
cannot be excluded, e.g. phases with emergent symme-
tries. The symmetry can be enhanced on the lattice such
as that the spin-1 chain has an explicit SU(3) symmetry
in the Uimin-Lai-Sutherland model [17–19]. In addition,

higher symmetries can also emerge at the thermodynam-
ical limit, e.g. the emergent SU(3) symmetry of critical
spin-2 chain [20]. Therefore, the generalized SU(N) spin
models are necessary in understanding the symmetry en-
hancement.
In this Letter, we focus on the fundamental constraints

on the phase diagrams of SU(N) spin chains in gen-
eral representations with SU(N) spin rotation symmetry
and lattice translation symmetry respected. More specif-
ically, we obtain the restriction of ground-state degener-
acy of gapped phases generalizing Lieb-Schultz-Mattis-
A✏eck (LSMA) theorem [21], and the classification of
critical phases, when the required symmetries are im-
posed. The compulsory degenerate ground states can
be understood by the concept of “ingappability” simi-
larly to the boundary states of nontrivial SPT phase,
which cannot be gapped with a specified symmetry un-
broken and bulk gap unclosed [1, 2]. On the SPT side,
the ingappability results from the quantum symmetry
anomaly of e↵ective boundary theory forbidding its lat-
tice realization [22]. CH: Should add more references
here. I will also do it later. Although the SU(N)
spin chain in our interest can be realized in its own di-
mension, the non-on-site nature of translation symme-
try enables us to understand its ingappability by consid-
ering the quantum anomaly of its e↵ective field theory
in the thermodynamical limit [23]. In a similar spirit,
the classification of critical phases can be done accord-
ing to their quantum anomaly. Such symmetry-protected
critical (SPC) classification has been proposed in SU(2)-
symmetric and translation-symmetric spin chains, where
the critical points are classified into two classes, one of
which can only take place in half-integer spin chains
while the other one can be realized only by integer spin
chains [6]. We generalize the SPC classification to SU(N)
symmetric critical phases of SU(N) spin chains with-
out emergent symmetries. Moreover, we also obtain a
constraint on the candidates of emergent higher SU(N 0)
symmetry with N 0 > N by matching their symmetry
anomaly. As a special example, such restriction can ex-
plain that SU(3) symmetry enhancements have not (ac-
tually cannot) been found in SU(2) and translation sym-
metric half-integer spin chains.
Based on.... anomaly, we come to the conclusion
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dimensions and the LSM index — We consider a generic
(1 + 1)d SU(N) spin system described by a Hamilto-
nian HSU(N) with the lattice translation symmetry and
a global spin-rotation symmetry specified by the projec-
tive special unitary group PSU(N). Here the system is
subject to periodic boundary condition and the trans-
lation, for generality, defines the unit cell consisting of
multiple sites and forms a discrete group Ztrans in the
thermodynamic limit. A typical example of such a sys-
tem is the SU(N) Heisenberg antiferromagnetic (HAF)
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ØIngappability (stability) of edge states of 2d SPT phases has been well 
studied, e.g. helical edge states of 2d QSHE

Symmetry protected critical phase classification of SU(N) spin chains in rectangular
Young tableaux representations, and global axial anomaly in 1+1 dimensions

We derive the low-energy properties of SU(N) spin systems in the presence of spin rotation and
translation symmetries. Based on mixed PSU(N)-Z anomaly, the spin system cannot be gapped
with a unique ground state if the number of Young-tableaux boxes per unit cell is not divisible by
N . The SU(N) WZW model are classified into N symmetry-protected critical classes and each
spin system can only realize one of them at criticality. It implies a no-go theorem that an RG flow
is possible between two critical points only if they belong to the same symmetry-protected critical
class, as long as the underlying lattice spin models respect the imposed symmetries.
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The classification of quantum phases is a central is-
sue in condensed matter physics, where considerable
recent progresses were initiated in strongly interacting
many-body systems. In particular, various topologi-
cal phases with unbroken symmetries, e.g. symmetry-
protected trivial (SPT) ordered phases [1, 2] and topo-
logical ordered phases enrich the phase diagram beyond
conventional Landau-Ginzburg-Wilson spontaneously-
symmetry-breaking paradigm. Therefore, the constraints
in the appearance of symmetries on phase diagrams play
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Symmetry d

AZ ⇥ ⌅ ⇧ 1 2 3 4 5 6 7 8

A 0 0 0 0 Z 0 Z 0 Z 0 Z
AIII 0 0 1 Z 0 Z 0 Z 0 Z 0

AI 1 0 0 0 0 0 Z 0 Z2 Z2 Z
BDI 1 1 1 Z 0 0 0 Z 0 Z2 Z2

D 0 1 0 Z2 Z 0 0 0 Z 0 Z2

DIII �1 1 1 Z2 Z2 Z 0 0 0 Z 0

AII �1 0 0 0 Z2 Z2 Z 0 0 0 Z
CII �1 �1 1 Z 0 Z2 Z2 Z 0 0 0

C 0 �1 0 0 Z 0 Z2 Z2 Z 0 0

CI 1 �1 1 0 0 Z 0 Z2 Z2 Z 0

TABLE I Periodic table of topological insulators and super-
conductors. The 10 symmetry classes are labeled using the
notation of Altland and Zirnbauer (1997) (AZ) and are spec-
ified by presence or absence of T symmetry ⇥, particle-hole
symmetry ⌅ and chiral symmetry ⇧ = ⌅⇥. ±1 and 0 denotes
the presence and absence of symmetry, with ±1 specifying
the value of ⇥2 and ⌅2. As a function of symmetry and space
dimensionality, d, the topological classifications (Z, Z2 and 0)
show a regular pattern that repeats when d ! d+ 8.

3. Periodic table

Topological insulators and superconductors fit to-
gether into a rich and elegant mathematical structure
that generalizes the notions of topological band theory
described above (Schnyder, et al., 2008; Kitaev, 2009;
Schnyder, et al., 2009; Ryu, et al., 2010). The classes
of equivalent Hamiltonians are determined by specifying
the symmetry class and the dimensionality. The symme-
try class depends on the presence or absence of T sym-
metry (8) with ⇥2 = ±1 and/or particle-hole symmetry
(15) with ⌅2 = ±1. There are 10 distinct classes, which
are closely related to the Altland and Zirnbauer (1997)
classification of random matrices. The topological clas-
sifications, given by Z, Z2 or 0, show a regular pattern
as a function of symmetry class and dimensionality and
can be arranged into the periodic table of topological in-
sulators and superconductors shown in Table I.

The quantum Hall state (Class A, no symmetry; d =
2), the Z2 topological insulators (Class AII, ⇥2 = �1;
d = 2, 3) and the Z2 and Z topological superconductors
(Class D, ⌅2 = 1; d = 1, 2) described above are each
entries in the periodic table. There are also other non
trivial entries describing di↵erent topological supercon-
ducting and superfluid phases. Each non trivial phase is
predicted, via the bulk-boundary correspondence to have
gapless boundary states. One notable example is super-
fluid 3He B (Volovik, 2003; Roy, 2008; Schnyder, et al.,
2008; Nagato, Higashitani and Nagai, 2009; Qi, et al.,
2009; Volovik, 2009), in (Class DIII, ⇥2 = �1, ⌅2 = +1;
d = 3) which has a Z classification, along with gapless 2D
Majorana fermion modes on its surface. A generalization
of the quantum Hall state introduced by Zhang and Hu
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FIG. 5 Edge states in the quantum spin Hall insulator. (a)
shows the interface between a QSHI and an ordinary insula-
tor, and (b) shows the edge state dispersion in the graphene
model, in which up and down spins propagate in opposite
directions.

(2001) corresponds to the d = 4 entry in class A or AII.
There are also other entries in physical dimensions that
have yet to be filled by realistic systems. The search is
on to discover such phases.

III. QUANTUM SPIN HALL INSULATOR

The 2D topological insulator is known as a quantum
spin Hall insulator. This state was originally theorized
to exist in graphene (Kane and Mele, 2005a) and in 2D
semiconductor systems with a uniform strain gradient
(Bernevig and Zhang, 2006). It was subsequently pre-
dicted to exist (Bernevig, Hughes and Zhang, 2006), and
was then observed (König, et al., 2007), in HgCdTe quan-
tum well structures. In section III.A we will introduce
the physics of this state in the model graphene system
and describe its novel edge states. Section III.B will re-
view the experiments, which have also been the subject
of the review article by König, et al. (2008).

A. Model system: graphene

In section II.B.2 we argued that the degeneracy at the
Dirac point in graphene is protected by inversion and
T symmetry. That argument ignored the spin of the
electrons. The spin orbit interaction allows a new mass
term in (3) that respects all of graphene’s symmetries. In
the simplest picture, the intrinsic spin orbit interaction
commutes with the electron spin Sz, so the Hamiltonian
decouples into two independent Hamiltonians for the up
and down spins. The resulting theory is simply two copies
the Haldane (1988) model with opposite signs of the Hall
conductivity for up and down spins. This does not violate
T symmetry because time reversal flips both the spin and
�xy. In an applied electric field, the up and down spins
have Hall currents that flow in opposite directions. The
Hall conductivity is thus zero, but there is a quantized
spin Hall conductivity, defined by J
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The classification of quantum phases is a central is-
sue in condensed matter physics, where considerable
recent progresses were initiated in strongly interacting
many-body systems. In particular, various topologi-
cal phases with unbroken symmetries, e.g. symmetry-
protected trivial (SPT) ordered phases [1, 2] and topo-
logical ordered phases enrich the phase diagram beyond
conventional Landau-Ginzburg-Wilson spontaneously-
symmetry-breaking paradigm. Therefore, the constraints
in the appearance of symmetries on phase diagrams play
essential roles since they rule out the existence of a large
class of forbidden gapped or gapless phases when the cer-
tain symmetry is respected. For gapped phases, the re-
striction on the ground-state degeneracy allows a unified
understanding on the low-energy spectral properties. For
example, Lieb-Schultz-Mattis (LSM) theorem [3] and its
generalization LSMOH theorem by Oshikawa and Hast-
ings [4, 5] states that the ground states cannot be trivially
gapped with a unique ground state if the particle number
per unit cell is fractional and both the translation sym-
metry and charge U(1) conservation are preserved. As
a part of gapless phases, critical phase classifications is
a key ingredient in the understanding of universal criti-
cal behaviors of various phase transitions. However, the
classification of critical phases still remains open and the
related proposal is only given in SU(2) spin chains [6].
Furthermore, many stable critical phases have been found
experimentally and numerically [7, 8], and the reason of
such stability is not completely understood.

In reality, the constraints on phase diagrams with more
general symmetries than U(1) and SU(2) are within
intense interest. For example, SU(N) “spin” systems
with N > 2 are realized in ultracold atoms on op-
tical lattices [9–16] and also in some spin-orbital sys-
tems [? ], although SU(N) systems was initially intro-
duced as theoretical toy models to understand “physical”
SU(2) spins. Thus the study related with the phase di-
agrams of SU(N) spin systems is of realistic interest in
its own. Furthermore, although spin-rotation and trans-
lation symmetries are imposed, symmetry enhancements
cannot be excluded, e.g. phases with emergent symme-
tries. The symmetry can be enhanced on the lattice such
as that the spin-1 chain has an explicit SU(3) symmetry
in the Uimin-Lai-Sutherland model [17–19]. In addition,

higher symmetries can also emerge at the thermodynam-
ical limit, e.g. the emergent SU(3) symmetry of critical
spin-2 chain [20]. Therefore, the generalized SU(N) spin
models are necessary in understanding the symmetry en-
hancement.
In this Letter, we focus on the fundamental constraints

on the phase diagrams of SU(N) spin chains in gen-
eral representations with SU(N) spin rotation symmetry
and lattice translation symmetry respected. More specif-
ically, we obtain the restriction of ground-state degener-
acy of gapped phases generalizing Lieb-Schultz-Mattis-
A✏eck (LSMA) theorem [21], and the classification of
critical phases, when the required symmetries are im-
posed. The compulsory degenerate ground states can
be understood by the concept of “ingappability” simi-
larly to the boundary states of nontrivial SPT phase,
which cannot be gapped with a specified symmetry un-
broken and bulk gap unclosed [1, 2]. On the SPT side,
the ingappability results from the quantum symmetry
anomaly of e↵ective boundary theory forbidding its lat-
tice realization [22]. CH: Should add more references
here. I will also do it later. Although the SU(N)
spin chain in our interest can be realized in its own di-
mension, the non-on-site nature of translation symme-
try enables us to understand its ingappability by consid-
ering the quantum anomaly of its e↵ective field theory
in the thermodynamical limit [23]. In a similar spirit,
the classification of critical phases can be done accord-
ing to their quantum anomaly. Such symmetry-protected
critical (SPC) classification has been proposed in SU(2)-
symmetric and translation-symmetric spin chains, where
the critical points are classified into two classes, one of
which can only take place in half-integer spin chains
while the other one can be realized only by integer spin
chains [6]. We generalize the SPC classification to SU(N)
symmetric critical phases of SU(N) spin chains with-
out emergent symmetries. Moreover, we also obtain a
constraint on the candidates of emergent higher SU(N 0)
symmetry with N 0 > N by matching their symmetry
anomaly. As a special example, such restriction can ex-
plain that SU(3) symmetry enhancements have not (ac-
tually cannot) been found in SU(2) and translation sym-
metric half-integer spin chains.
Based on.... anomaly, we come to the conclusion

that.... End of intro(?)
Translationally invariant SU(N) spin system in 1 + 1

dimensions and the LSM index — We consider a generic
(1 + 1)d SU(N) spin system described by a Hamilto-
nian HSU(N) with the lattice translation symmetry and
a global spin-rotation symmetry specified by the projec-
tive special unitary group PSU(N). Here the system is
subject to periodic boundary condition and the trans-
lation, for generality, defines the unit cell consisting of
multiple sites and forms a discrete group Ztrans in the
thermodynamic limit. A typical example of such a sys-
tem is the SU(N) Heisenberg antiferromagnetic (HAF)
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protected trivial (SPT) ordered phases [1, 2] and topo-
logical ordered phases enrich the phase diagram beyond
conventional Landau-Ginzburg-Wilson spontaneously-
symmetry-breaking paradigm. Therefore, the constraints
in the appearance of symmetries on phase diagrams play
essential roles since they rule out the existence of a large
class of forbidden gapped or gapless phases when the cer-
tain symmetry is respected. For gapped phases, the re-
striction on the ground-state degeneracy allows a unified
understanding on the low-energy spectral properties. For
example, Lieb-Schultz-Mattis (LSM) theorem [3] and its
generalization LSMOH theorem by Oshikawa and Hast-
ings [4, 5] states that the ground states cannot be trivially
gapped with a unique ground state if the particle number
per unit cell is fractional and both the translation sym-
metry and charge U(1) conservation are preserved. As
a part of gapless phases, critical phase classifications is
a key ingredient in the understanding of universal criti-
cal behaviors of various phase transitions. However, the
classification of critical phases still remains open and the
related proposal is only given in SU(2) spin chains [6].
Furthermore, many stable critical phases have been found
experimentally and numerically [7, 8], and the reason of
such stability is not completely understood.

In reality, the constraints on phase diagrams with more
general symmetries than U(1) and SU(2) are within
intense interest. For example, SU(N) “spin” systems
with N > 2 are realized in ultracold atoms on op-
tical lattices [9–16] and also in some spin-orbital sys-
tems [? ], although SU(N) systems was initially intro-
duced as theoretical toy models to understand “physical”
SU(2) spins. Thus the study related with the phase di-
agrams of SU(N) spin systems is of realistic interest in
its own. Furthermore, although spin-rotation and trans-
lation symmetries are imposed, symmetry enhancements
cannot be excluded, e.g. phases with emergent symme-
tries. The symmetry can be enhanced on the lattice such
as that the spin-1 chain has an explicit SU(3) symmetry
in the Uimin-Lai-Sutherland model [17–19]. In addition,

higher symmetries can also emerge at the thermodynam-
ical limit, e.g. the emergent SU(3) symmetry of critical
spin-2 chain [20]. Therefore, the generalized SU(N) spin
models are necessary in understanding the symmetry en-
hancement.
In this Letter, we focus on the fundamental constraints

on the phase diagrams of SU(N) spin chains in gen-
eral representations with SU(N) spin rotation symmetry
and lattice translation symmetry respected. More specif-
ically, we obtain the restriction of ground-state degener-
acy of gapped phases generalizing Lieb-Schultz-Mattis-
A✏eck (LSMA) theorem [21], and the classification of
critical phases, when the required symmetries are im-
posed. The compulsory degenerate ground states can
be understood by the concept of “ingappability” simi-
larly to the boundary states of nontrivial SPT phase,
which cannot be gapped with a specified symmetry un-
broken and bulk gap unclosed [1, 2]. On the SPT side,
the ingappability results from the quantum symmetry
anomaly of e↵ective boundary theory forbidding its lat-
tice realization [22]. CH: Should add more references
here. I will also do it later. Although the SU(N)
spin chain in our interest can be realized in its own di-
mension, the non-on-site nature of translation symme-
try enables us to understand its ingappability by consid-
ering the quantum anomaly of its e↵ective field theory
in the thermodynamical limit [23]. In a similar spirit,
the classification of critical phases can be done accord-
ing to their quantum anomaly. Such symmetry-protected
critical (SPC) classification has been proposed in SU(2)-
symmetric and translation-symmetric spin chains, where
the critical points are classified into two classes, one of
which can only take place in half-integer spin chains
while the other one can be realized only by integer spin
chains [6]. We generalize the SPC classification to SU(N)
symmetric critical phases of SU(N) spin chains with-
out emergent symmetries. Moreover, we also obtain a
constraint on the candidates of emergent higher SU(N 0)
symmetry with N 0 > N by matching their symmetry
anomaly. As a special example, such restriction can ex-
plain that SU(3) symmetry enhancements have not (ac-
tually cannot) been found in SU(2) and translation sym-
metric half-integer spin chains.
Based on.... anomaly, we come to the conclusion

that.... End of intro(?)
Translationally invariant SU(N) spin system in 1 + 1

dimensions and the LSM index — We consider a generic
(1 + 1)d SU(N) spin system described by a Hamilto-
nian HSU(N) with the lattice translation symmetry and
a global spin-rotation symmetry specified by the projec-
tive special unitary group PSU(N). Here the system is
subject to periodic boundary condition and the trans-
lation, for generality, defines the unit cell consisting of
multiple sites and forms a discrete group Ztrans in the
thermodynamic limit. A typical example of such a sys-
tem is the SU(N) Heisenberg antiferromagnetic (HAF)
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We derive the low-energy properties of SU(N) spin systems in the presence of spin rotation and
translation symmetries. Based on mixed PSU(N)-Z anomaly, the spin system cannot be gapped
with a unique ground state if the number of Young-tableaux boxes per unit cell is not divisible by
N . The SU(N) WZW model are classified into N symmetry-protected critical classes and each
spin system can only realize one of them at criticality. It implies a no-go theorem that an RG flow
is possible between two critical points only if they belong to the same symmetry-protected critical
class, as long as the underlying lattice spin models respect the imposed symmetries.

Introduction.—

Hom(⌦̃spin
c

3
(BZ), U(1)) ⇠= U(1) ⇠= R/Z (1)

LSM index I = (total charges per unit cell) mod 1.
(2)

H3(PSU(N)⇥ Z, U(1))/H3(PSU(N), U(1)) ⇠= ZN (3)

LSM index IN = (# of YT boxes per unit cell) mod N.
(4)

I2 = 2s mod 2. (5)

IN 6= 0 mod N. (6)

GSD 2 N

gcd(IN , N)
N, (7)

U(1) :  ! ei� 

Z :  ! eikF�z = ei⇡⌫�z (8)

Z(AU(1))
axial�! e2⇡i⌫⇥integerZ(AU(1)) (9)

PSU(N) : g ! wgw�1, w 2 SU(N)

Zn(trans) : g ! e2⇡im/Ng, m 2 {0, 1, ..., N � 1} (10)

n = N/ gcd(m,N) (11)

Z(APSU(N))
axial�! e2⇡i

km
N ⇥integerZ(APSU(N)) (12)

IN · N 0

gcd(N 0, k0m0)
= 0 mod N. (13)

HULM =
X

i

Si · Si+1 + (Si · Si+1)
2 /

X

i

8X

A=1

TA
i TA

i+1

(14)

N = 2 : � = {2s} (15)

N > 2 : � = {4, 2, 1} (16)

H0 + ↵Hpert (17)

M =  †
R L + h.c (18)

Ifw = g1 
†
R R 

†
L L (19)

IUmkl = g2 e�i4kF x †
R(x) 

†
R(x+ a)

⇥  L(x+ a) L(x) + h.c (20)

The classification of quantum phases is a central is-
sue in condensed matter physics, where considerable
recent progresses were initiated in strongly interacting
many-body systems. In particular, various topologi-
cal phases with unbroken symmetries, e.g. symmetry-
protected trivial (SPT) ordered phases [1, 2] and topo-
logical ordered phases enrich the phase diagram beyond
conventional Landau-Ginzburg-Wilson spontaneously-
symmetry-breaking paradigm. Therefore, the constraints
in the appearance of symmetries on phase diagrams play
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Symmetry d

AZ ⇥ ⌅ ⇧ 1 2 3 4 5 6 7 8

A 0 0 0 0 Z 0 Z 0 Z 0 Z
AIII 0 0 1 Z 0 Z 0 Z 0 Z 0

AI 1 0 0 0 0 0 Z 0 Z2 Z2 Z
BDI 1 1 1 Z 0 0 0 Z 0 Z2 Z2

D 0 1 0 Z2 Z 0 0 0 Z 0 Z2

DIII �1 1 1 Z2 Z2 Z 0 0 0 Z 0

AII �1 0 0 0 Z2 Z2 Z 0 0 0 Z
CII �1 �1 1 Z 0 Z2 Z2 Z 0 0 0

C 0 �1 0 0 Z 0 Z2 Z2 Z 0 0

CI 1 �1 1 0 0 Z 0 Z2 Z2 Z 0

TABLE I Periodic table of topological insulators and super-
conductors. The 10 symmetry classes are labeled using the
notation of Altland and Zirnbauer (1997) (AZ) and are spec-
ified by presence or absence of T symmetry ⇥, particle-hole
symmetry ⌅ and chiral symmetry ⇧ = ⌅⇥. ±1 and 0 denotes
the presence and absence of symmetry, with ±1 specifying
the value of ⇥2 and ⌅2. As a function of symmetry and space
dimensionality, d, the topological classifications (Z, Z2 and 0)
show a regular pattern that repeats when d ! d+ 8.

3. Periodic table

Topological insulators and superconductors fit to-
gether into a rich and elegant mathematical structure
that generalizes the notions of topological band theory
described above (Schnyder, et al., 2008; Kitaev, 2009;
Schnyder, et al., 2009; Ryu, et al., 2010). The classes
of equivalent Hamiltonians are determined by specifying
the symmetry class and the dimensionality. The symme-
try class depends on the presence or absence of T sym-
metry (8) with ⇥2 = ±1 and/or particle-hole symmetry
(15) with ⌅2 = ±1. There are 10 distinct classes, which
are closely related to the Altland and Zirnbauer (1997)
classification of random matrices. The topological clas-
sifications, given by Z, Z2 or 0, show a regular pattern
as a function of symmetry class and dimensionality and
can be arranged into the periodic table of topological in-
sulators and superconductors shown in Table I.

The quantum Hall state (Class A, no symmetry; d =
2), the Z2 topological insulators (Class AII, ⇥2 = �1;
d = 2, 3) and the Z2 and Z topological superconductors
(Class D, ⌅2 = 1; d = 1, 2) described above are each
entries in the periodic table. There are also other non
trivial entries describing di↵erent topological supercon-
ducting and superfluid phases. Each non trivial phase is
predicted, via the bulk-boundary correspondence to have
gapless boundary states. One notable example is super-
fluid 3He B (Volovik, 2003; Roy, 2008; Schnyder, et al.,
2008; Nagato, Higashitani and Nagai, 2009; Qi, et al.,
2009; Volovik, 2009), in (Class DIII, ⇥2 = �1, ⌅2 = +1;
d = 3) which has a Z classification, along with gapless 2D
Majorana fermion modes on its surface. A generalization
of the quantum Hall state introduced by Zhang and Hu

E

EF

Conduction Band

Valence Band
Quantum spin 
Hall insulator ν=1

Conventional 
Insulator ν=0

(a) (b)

k0/a−π /a−π

FIG. 5 Edge states in the quantum spin Hall insulator. (a)
shows the interface between a QSHI and an ordinary insula-
tor, and (b) shows the edge state dispersion in the graphene
model, in which up and down spins propagate in opposite
directions.

(2001) corresponds to the d = 4 entry in class A or AII.
There are also other entries in physical dimensions that
have yet to be filled by realistic systems. The search is
on to discover such phases.

III. QUANTUM SPIN HALL INSULATOR

The 2D topological insulator is known as a quantum
spin Hall insulator. This state was originally theorized
to exist in graphene (Kane and Mele, 2005a) and in 2D
semiconductor systems with a uniform strain gradient
(Bernevig and Zhang, 2006). It was subsequently pre-
dicted to exist (Bernevig, Hughes and Zhang, 2006), and
was then observed (König, et al., 2007), in HgCdTe quan-
tum well structures. In section III.A we will introduce
the physics of this state in the model graphene system
and describe its novel edge states. Section III.B will re-
view the experiments, which have also been the subject
of the review article by König, et al. (2008).

A. Model system: graphene

In section II.B.2 we argued that the degeneracy at the
Dirac point in graphene is protected by inversion and
T symmetry. That argument ignored the spin of the
electrons. The spin orbit interaction allows a new mass
term in (3) that respects all of graphene’s symmetries. In
the simplest picture, the intrinsic spin orbit interaction
commutes with the electron spin Sz, so the Hamiltonian
decouples into two independent Hamiltonians for the up
and down spins. The resulting theory is simply two copies
the Haldane (1988) model with opposite signs of the Hall
conductivity for up and down spins. This does not violate
T symmetry because time reversal flips both the spin and
�xy. In an applied electric field, the up and down spins
have Hall currents that flow in opposite directions. The
Hall conductivity is thus zero, but there is a quantized
spin Hall conductivity, defined by J

"
x � J

#
x = �

s
xyEy with

�
s
xy = e/2⇡ – a quantum spin Hall e↵ect. Related ideas

were mentioned in earlier work on the planar state of
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The classification of quantum phases is a central is-
sue in condensed matter physics, where considerable
recent progresses were initiated in strongly interacting
many-body systems. In particular, various topologi-
cal phases with unbroken symmetries, e.g. symmetry-
protected trivial (SPT) ordered phases [1, 2] and topo-
logical ordered phases enrich the phase diagram beyond
conventional Landau-Ginzburg-Wilson spontaneously-
symmetry-breaking paradigm. Therefore, the constraints
in the appearance of symmetries on phase diagrams play
essential roles since they rule out the existence of a large
class of forbidden gapped or gapless phases when the cer-
tain symmetry is respected. For gapped phases, the re-
striction on the ground-state degeneracy allows a unified
understanding on the low-energy spectral properties. For
example, Lieb-Schultz-Mattis (LSM) theorem [3] and its
generalization LSMOH theorem by Oshikawa and Hast-
ings [4, 5] states that the ground states cannot be trivially
gapped with a unique ground state if the particle number
per unit cell is fractional and both the translation sym-
metry and charge U(1) conservation are preserved. As
a part of gapless phases, critical phase classifications is
a key ingredient in the understanding of universal criti-
cal behaviors of various phase transitions. However, the
classification of critical phases still remains open and the
related proposal is only given in SU(2) spin chains [6].
Furthermore, many stable critical phases have been found
experimentally and numerically [7, 8], and the reason of
such stability is not completely understood.

In reality, the constraints on phase diagrams with more
general symmetries than U(1) and SU(2) are within
intense interest. For example, SU(N) “spin” systems
with N > 2 are realized in ultracold atoms on op-
tical lattices [9–16] and also in some spin-orbital sys-
tems [? ], although SU(N) systems was initially intro-
duced as theoretical toy models to understand “physical”
SU(2) spins. Thus the study related with the phase di-
agrams of SU(N) spin systems is of realistic interest in
its own. Furthermore, although spin-rotation and trans-
lation symmetries are imposed, symmetry enhancements
cannot be excluded, e.g. phases with emergent symme-
tries. The symmetry can be enhanced on the lattice such
as that the spin-1 chain has an explicit SU(3) symmetry
in the Uimin-Lai-Sutherland model [17–19]. In addition,

higher symmetries can also emerge at the thermodynam-
ical limit, e.g. the emergent SU(3) symmetry of critical
spin-2 chain [20]. Therefore, the generalized SU(N) spin
models are necessary in understanding the symmetry en-
hancement.
In this Letter, we focus on the fundamental constraints

on the phase diagrams of SU(N) spin chains in gen-
eral representations with SU(N) spin rotation symmetry
and lattice translation symmetry respected. More specif-
ically, we obtain the restriction of ground-state degener-
acy of gapped phases generalizing Lieb-Schultz-Mattis-
A✏eck (LSMA) theorem [21], and the classification of
critical phases, when the required symmetries are im-
posed. The compulsory degenerate ground states can
be understood by the concept of “ingappability” simi-
larly to the boundary states of nontrivial SPT phase,
which cannot be gapped with a specified symmetry un-
broken and bulk gap unclosed [1, 2]. On the SPT side,
the ingappability results from the quantum symmetry
anomaly of e↵ective boundary theory forbidding its lat-
tice realization [22]. CH: Should add more references
here. I will also do it later. Although the SU(N)
spin chain in our interest can be realized in its own di-
mension, the non-on-site nature of translation symme-
try enables us to understand its ingappability by consid-
ering the quantum anomaly of its e↵ective field theory
in the thermodynamical limit [23]. In a similar spirit,
the classification of critical phases can be done accord-
ing to their quantum anomaly. Such symmetry-protected
critical (SPC) classification has been proposed in SU(2)-
symmetric and translation-symmetric spin chains, where
the critical points are classified into two classes, one of
which can only take place in half-integer spin chains
while the other one can be realized only by integer spin
chains [6]. We generalize the SPC classification to SU(N)
symmetric critical phases of SU(N) spin chains with-
out emergent symmetries. Moreover, we also obtain a
constraint on the candidates of emergent higher SU(N 0)
symmetry with N 0 > N by matching their symmetry
anomaly. As a special example, such restriction can ex-
plain that SU(3) symmetry enhancements have not (ac-
tually cannot) been found in SU(2) and translation sym-
metric half-integer spin chains.
Based on.... anomaly, we come to the conclusion

that.... End of intro(?)
Translationally invariant SU(N) spin system in 1 + 1

dimensions and the LSM index — We consider a generic
(1 + 1)d SU(N) spin system described by a Hamilto-
nian HSU(N) with the lattice translation symmetry and
a global spin-rotation symmetry specified by the projec-
tive special unitary group PSU(N). Here the system is
subject to periodic boundary condition and the trans-
lation, for generality, defines the unit cell consisting of
multiple sites and forms a discrete group Ztrans in the
thermodynamic limit. A typical example of such a sys-
tem is the SU(N) Heisenberg antiferromagnetic (HAF)
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the critical points are classified into two classes, one of
which can only take place in half-integer spin chains
while the other one can be realized only by integer spin
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We derive the low-energy properties of SU(N) spin systems in the presence of spin rotation and
translation symmetries. Based on mixed PSU(N)-Z anomaly, the spin system cannot be gapped
with a unique ground state if the number of Young-tableaux boxes per unit cell is not divisible by
N . The SU(N) WZW model are classified into N symmetry-protected critical classes and each
spin system can only realize one of them at criticality. It implies a no-go theorem that an RG flow
is possible between two critical points only if they belong to the same symmetry-protected critical
class, as long as the underlying lattice spin models respect the imposed symmetries.
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The classification of quantum phases is a central is-
sue in condensed matter physics, where considerable
recent progresses were initiated in strongly interacting
many-body systems. In particular, various topologi-
cal phases with unbroken symmetries, e.g. symmetry-
protected trivial (SPT) ordered phases [1, 2] and topo-
logical ordered phases enrich the phase diagram beyond
conventional Landau-Ginzburg-Wilson spontaneously-
symmetry-breaking paradigm. Therefore, the constraints
in the appearance of symmetries on phase diagrams play
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FIG. 1. Phase diagram of the (a) BLBQ model and (b) DT
model as a function of the mixing angle θ . FM, ferromagnetic; MD,
macroscopically degenerate; SPT, symmetry-protected topological;
SQ, spin quadrupolar; TL, trimer liquid. In both phase diagrams,
the dimer phase is topologically trivial and gapped, with ground
states that break the translation symmetry. The Haldane (SPT) phase
is topologically nontrivial and translation invariant. SQ and trimer
phases are both critical and carry the central charge c = 2. The
MD phase has exponentially large ground-state degeneracy. The pure
trimer (PT) point on the right phase diagram possesses the full SU(3)
symmetry, as does the ULS model on the left.

As the exact model construction for the trimer leaned in
favor of the gapped ground state with translational symmetry
breaking, the numerics of Fáth and Sólyom has come down on
the side of the gapless phase for the π/4 < θ < π/2 region of
the BLBQ model. These days, this region is best described as
the spin quadrupolar (SQ) phase after numerical works such
as Refs. [25,26] that tried to identify the dominant correlations
in this phase.

In this paper, we propose a new class of spin-one Hamil-
tonians, motivated by the simple observation that there are
two ways in which S = 1 spins can form a singlet: one is
by dimerizing the two adjacent spins, and the other is by
trimerizing the three adjacent spins. Singlet formation over
more than three sites is neglected. We thus consider a model
that consists of dimer and trimer projection operators as

HDT = −
∑

i

[cos θ D(i) + sin θ T (i)]. (1.2)

This will be called the dimer-trimer (DT) Hamiltonian
throughout the paper. The operators D(i) and T (i) are
proportional to the dimer and trimer projection operators,
respectively, to be defined precisely in the next section.

The rest of the paper concerns the analysis of the proposed
DT Hamiltonian. Dimer and trimer projection operators are
introduced in Sec. 2. In Sec. 3, the phase diagram of the DT
model is worked out as a function of θ using the powerful
density-matrix renormalization group (DMRG) method of
identifying the ground state. Four phases are identified: dimer,
SPT, trimer liquid, and macroscopically degenerate, respec-
tively. The dimer phase is gapped and breaks the translational
symmetry of the lattice. The trimer liquid phase is critical
and shares many physical properties with the spin quadrupolar
phase of the BLBQ Hamiltonian. The SPT phase exhibits the
even-number degeneracy in the entanglement spectrum that re-
mains robust against perturbations [27]. The macroscopically
degenerate phase literally carries the ground-state degeneracy

that grows exponentially with the lattice size. Interesting
parallels with, and differences from, the phase diagram of
the BLBQ model Hamiltonian are pointed out along the way.

II. DIMER AND TRIMER PROJECTION OPERATORS

Our first task is to give proper definition to dimer and trimer
operators. Using the spin-one operator Si at each lattice site,
Sij = Si + Sj for a pair of adjacent sites (j = i + 1), and
Sijk = Si + Sj + Sk for a triplet of adjacent sites (k = i + 2),
the dimer and trimer projection operators can be expressed as

PD(i) = 1
12

(
S2

ij − 2
)(

S2
ij − 6

)
= 1

3 (Si · Sj )2 − 1
3 ,

PT (i) = − 1
144

(
S2

ijk − 2
)(

S2
ijk − 6

)(
S2

ijk − 12
)
. (2.1)

Each projection operator gives +1 for the spin singlets, and
zero for all other spin multiplets. The projectors are related to
D(i) and T (i) in the DT Hamiltonian (1.2) by

D(i) = 3PD(i), T (i) = 6PT (i). (2.2)

It is not widely appreciated in the literature, and therefore
requires some highlighting here, that the dimer projection
operator is equivalent to the pure-biquadratic (PBQ) spin
interaction up to constants. The PBQ model, corresponding to
θ = 0 in the DT Hamiltonian, is known to be exactly solvable
and possess a hidden SU(3) symmetry [16–20,34].

The trimer projection operator looks much more compli-
cated by contrast, and involves three-site spin interactions.
The trimer singlet state given by the totally antisymmetric
combination

|trimer⟩ = 1√
6

∑

a,b,c

εabc|a,b,c⟩, (2.3)

where a,b,c = +1,0,−1 refers to the Sz eigenvalue, is
invariant under the SU(3) transformation, and εabc is the
antisymmetric tensor. This observation prompted us to seek
an alternative expression in terms of Gell-Mann matrices, and
subsequently use the identity relating the inner product of
Gell-Mann matrices to the exchange operator Pij :

$i · $j = 2Pij − 2
3 , (2.4)

where $i = ($1
i , · · · ,$8

i ) is s a collection of eight Gell-Mann
operators at site i. The exchange operator Pij swaps the state at
site i with the state at site j . By using the exchange operators,
we can arrive at an interesting alternative expression of the
trimer projector:

PT (i) = 1
6

(
1 + Pijk + P −1

ijk − Pij − Pjk − Pki

)
. (2.5)

The three-site ring exchange operators [35] are introduced as

Pijk =PjkPij = PikPjk = PijPik,

P −1
ijk =PijPjk = PjkPik = PikPij . (2.6)

The trimer projector is a sum of three-spin exchange among
the three adjacent sites, minus the pairwise exchange for
adjacent and second-adjacent sites. Recalling the relation
Si · Sj + (Si · Sj )2 = Pij + 1, the dimer projection operator
can be expressed as PD(i) = 1

3 (Pij − Si · Sj ).
The DT model coincides with the BLBQ Hamiltonian

at the two points, θ = 0,π . Otherwise, the nature of the
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We derive the low-energy properties of SU(N) spin systems in the presence of spin rotation and
translation symmetries. Based on mixed PSU(N)-Z anomaly, the spin system cannot be gapped
with a unique ground state if the number of Young-tableaux boxes per unit cell is not divisible by
N . The SU(N) WZW model are classified into N symmetry-protected critical classes and each
spin system can only realize one of them at criticality. It implies a no-go theorem that an RG flow
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The classification of quantum phases is a central is-
sue in condensed matter physics, where considerable
recent progresses were initiated in strongly interacting
many-body systems. In particular, various topologi-
cal phases with unbroken symmetries, e.g. symmetry-
protected trivial (SPT) ordered phases [1, 2] and topo-
logical ordered phases enrich the phase diagram beyond
conventional Landau-Ginzburg-Wilson spontaneously-
symmetry-breaking paradigm. Therefore, the constraints
in the appearance of symmetries on phase diagrams play
essential roles since they rule out the existence of a large
class of forbidden gapped or gapless phases when the cer-
tain symmetry is respected. For gapped phases, the re-
striction on the ground-state degeneracy allows a unified
understanding on the low-energy spectral properties. For
example, Lieb-Schultz-Mattis (LSM) theorem [3] and its
generalization LSMOH theorem by Oshikawa and Hast-
ings [4, 5] states that the ground states cannot be trivially
gapped with a unique ground state if the particle number
per unit cell is fractional and both the translation sym-
metry and charge U(1) conservation are preserved. As
a part of gapless phases, critical phase classifications is
a key ingredient in the understanding of universal criti-
cal behaviors of various phase transitions. However, the
classification of critical phases still remains open and the
related proposal is only given in SU(2) spin chains [6].
Furthermore, many stable critical phases have been found
experimentally and numerically [7, 8], and the reason of
such stability is not completely understood.

In reality, the constraints on phase diagrams with more
general symmetries than U(1) and SU(2) are within
intense interest. For example, SU(N) “spin” systems
with N > 2 are realized in ultracold atoms on op-
tical lattices [9–16] and also in some spin-orbital sys-
tems [? ], although SU(N) systems was initially intro-
duced as theoretical toy models to understand “physical”
SU(2) spins. Thus the study related with the phase di-
agrams of SU(N) spin systems is of realistic interest in
its own. Furthermore, although spin-rotation and trans-
lation symmetries are imposed, symmetry enhancements
cannot be excluded, e.g. phases with emergent symme-
tries. The symmetry can be enhanced on the lattice such
as that the spin-1 chain has an explicit SU(3) symmetry
in the Uimin-Lai-Sutherland model [17–19]. In addition,
higher symmetries can also emerge at the thermodynam-
ical limit, e.g. the emergent SU(3) symmetry of critical
spin-2 chain [20]. Therefore, the generalized SU(N) spin
models are necessary in understanding the symmetry en-
hancement.

In this Letter, we focus on the fundamental constraints
on the phase diagrams of SU(N) spin chains in gen-
eral representations with SU(N) spin rotation symmetry

and lattice translation symmetry respected. More specif-
ically, we obtain the restriction of ground-state degener-
acy of gapped phases generalizing Lieb-Schultz-Mattis-
A✏eck (LSMA) theorem [21], and the classification of
critical phases, when the required symmetries are im-
posed. The compulsory degenerate ground states can
be understood by the concept of “ingappability” simi-
larly to the boundary states of nontrivial SPT phase,
which cannot be gapped with a specified symmetry un-
broken and bulk gap unclosed [1, 2]. On the SPT side,
the ingappability results from the quantum symmetry
anomaly of e↵ective boundary theory forbidding its lat-
tice realization [22]. CH: Should add more references
here. I will also do it later. Although the SU(N)
spin chain in our interest can be realized in its own di-
mension, the non-on-site nature of translation symme-
try enables us to understand its ingappability by consid-
ering the quantum anomaly of its e↵ective field theory
in the thermodynamical limit [23]. In a similar spirit,
the classification of critical phases can be done accord-
ing to their quantum anomaly. Such symmetry-protected
critical (SPC) classification has been proposed in SU(2)-
symmetric and translation-symmetric spin chains, where
the critical points are classified into two classes, one of
which can only take place in half-integer spin chains
while the other one can be realized only by integer spin
chains [6]. We generalize the SPC classification to SU(N)
symmetric critical phases of SU(N) spin chains with-
out emergent symmetries. Moreover, we also obtain a
constraint on the candidates of emergent higher SU(N 0)
symmetry with N 0 > N by matching their symmetry
anomaly. As a special example, such restriction can ex-
plain that SU(3) symmetry enhancements have not (ac-
tually cannot) been found in SU(2) and translation sym-
metric half-integer spin chains.

Based on.... anomaly, we come to the conclusion
that.... End of intro(?)

Translationally invariant SU(N) spin system in 1 + 1
dimensions and the LSM index — We consider a generic
(1 + 1)d SU(N) spin system described by a Hamilto-
nian HSU(N) with the lattice translation symmetry and
a global spin-rotation symmetry specified by the projec-
tive special unitary group PSU(N). Here the system is
subject to periodic boundary condition and the trans-
lation, for generality, defines the unit cell consisting of
multiple sites and forms a discrete group Ztrans in the
thermodynamic limit. A typical example of such a sys-
tem is the SU(N) Heisenberg antiferromagnetic (HAF)
model

HHAF = J
X

i,↵,�

S↵
i,�S

�
i+1,↵, J > 0. (25)

where ↵ and � are the spin indices that take values among
1 to N and the SU(N) generators satisfy the following

spin-1/2: (seems) ingappable

gapless

dimerized

ØAnother example: purely 1d (lattice) spin systems w/ SO(3)× ℤ()*+,



• Phases associated with “symmetry-protected in-gap(p)-ability”

Symmetry protected critical phase classification of SU(N) spin chains in rectangular
Young tableaux representations, and global axial anomaly in 1+1 dimensions

We derive the low-energy properties of SU(N) spin systems in the presence of spin rotation and
translation symmetries. Based on mixed PSU(N)-Z anomaly, the spin system cannot be gapped
with a unique ground state if the number of Young-tableaux boxes per unit cell is not divisible by
N . The SU(N) WZW model are classified into N symmetry-protected critical classes and each
spin system can only realize one of them at criticality. It implies a no-go theorem that an RG flow
is possible between two critical points only if they belong to the same symmetry-protected critical
class, as long as the underlying lattice spin models respect the imposed symmetries.
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Symmetry protected critical phase classification of SU(N) spin chains in rectangular
Young tableaux representations, and global axial anomaly in 1+1 dimensions

We derive the low-energy properties of SU(N) spin systems in the presence of spin rotation and
translation symmetries. Based on mixed PSU(N)-Z anomaly, the spin system cannot be gapped
with a unique ground state if the number of Young-tableaux boxes per unit cell is not divisible by
N . The SU(N) WZW model are classified into N symmetry-protected critical classes and each
spin system can only realize one of them at criticality. It implies a no-go theorem that an RG flow
is possible between two critical points only if they belong to the same symmetry-protected critical
class, as long as the underlying lattice spin models respect the imposed symmetries.
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Ø Implied by the Lieb-Schultz-Mattis (LSM) theorem

Symmetry protected critical phase classification of SU(N) spin chains in rectangular
Young tableaux representations, and global axial anomaly in 1+1 dimensions

We derive the low-energy properties of SU(N) spin systems in the presence of spin rotation and
translation symmetries. Based on mixed PSU(N)-Z anomaly, the spin system cannot be gapped
with a unique ground state if the number of Young-tableaux boxes per unit cell is not divisible by
N . The SU(N) WZW model are classified into N symmetry-protected critical classes and each
spin system can only realize one of them at criticality. It implies a no-go theorem that an RG flow
is possible between two critical points only if they belong to the same symmetry-protected critical
class, as long as the underlying lattice spin models respect the imposed symmetries.
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The classification of quantum phases is a central is-
sue in condensed matter physics, where considerable
recent progresses were initiated in strongly interacting
many-body systems. In particular, various topologi-
cal phases with unbroken symmetries, e.g. symmetry-
protected trivial (SPT) ordered phases [1, 2] and topo-
logical ordered phases enrich the phase diagram beyond
conventional Landau-Ginzburg-Wilson spontaneously-
symmetry-breaking paradigm. Therefore, the constraints
in the appearance of symmetries on phase diagrams play
essential roles since they rule out the existence of a large
class of forbidden gapped or gapless phases when the cer-
tain symmetry is respected. For gapped phases, the re-
striction on the ground-state degeneracy allows a unified
understanding on the low-energy spectral properties. For
example, Lieb-Schultz-Mattis (LSM) theorem [3] and its
generalization LSMOH theorem by Oshikawa and Hast-
ings [4, 5] states that the ground states cannot be trivially
gapped with a unique ground state if the particle number
per unit cell is fractional and both the translation sym-
metry and charge U(1) conservation are preserved. As
a part of gapless phases, critical phase classifications is
a key ingredient in the understanding of universal criti-
cal behaviors of various phase transitions. However, the
classification of critical phases still remains open and the
related proposal is only given in SU(2) spin chains [6].
Furthermore, many stable critical phases have been found
experimentally and numerically [7, 8], and the reason of
such stability is not completely understood.

In reality, the constraints on phase diagrams with more
general symmetries than U(1) and SU(2) are within
intense interest. For example, SU(N) “spin” systems
with N > 2 are realized in ultracold atoms on op-
tical lattices [9–16] and also in some spin-orbital sys-
tems [? ], although SU(N) systems was initially intro-
duced as theoretical toy models to understand “physical”
SU(2) spins. Thus the study related with the phase di-
agrams of SU(N) spin systems is of realistic interest in
its own. Furthermore, although spin-rotation and trans-
lation symmetries are imposed, symmetry enhancements
cannot be excluded, e.g. phases with emergent symme-
tries. The symmetry can be enhanced on the lattice such
as that the spin-1 chain has an explicit SU(3) symmetry
in the Uimin-Lai-Sutherland model [17–19]. In addition,
higher symmetries can also emerge at the thermodynam-
ical limit, e.g. the emergent SU(3) symmetry of critical
spin-2 chain [20]. Therefore, the generalized SU(N) spin
models are necessary in understanding the symmetry en-
hancement.

In this Letter, we focus on the fundamental constraints
on the phase diagrams of SU(N) spin chains in gen-
eral representations with SU(N) spin rotation symmetry

and lattice translation symmetry respected. More specif-
ically, we obtain the restriction of ground-state degener-
acy of gapped phases generalizing Lieb-Schultz-Mattis-
A✏eck (LSMA) theorem [21], and the classification of
critical phases, when the required symmetries are im-
posed. The compulsory degenerate ground states can
be understood by the concept of “ingappability” simi-
larly to the boundary states of nontrivial SPT phase,
which cannot be gapped with a specified symmetry un-
broken and bulk gap unclosed [1, 2]. On the SPT side,
the ingappability results from the quantum symmetry
anomaly of e↵ective boundary theory forbidding its lat-
tice realization [22]. CH: Should add more references
here. I will also do it later. Although the SU(N)
spin chain in our interest can be realized in its own di-
mension, the non-on-site nature of translation symme-
try enables us to understand its ingappability by consid-
ering the quantum anomaly of its e↵ective field theory
in the thermodynamical limit [23]. In a similar spirit,
the classification of critical phases can be done accord-
ing to their quantum anomaly. Such symmetry-protected
critical (SPC) classification has been proposed in SU(2)-
symmetric and translation-symmetric spin chains, where
the critical points are classified into two classes, one of
which can only take place in half-integer spin chains
while the other one can be realized only by integer spin
chains [6]. We generalize the SPC classification to SU(N)
symmetric critical phases of SU(N) spin chains with-
out emergent symmetries. Moreover, we also obtain a
constraint on the candidates of emergent higher SU(N 0)
symmetry with N 0 > N by matching their symmetry
anomaly. As a special example, such restriction can ex-
plain that SU(3) symmetry enhancements have not (ac-
tually cannot) been found in SU(2) and translation sym-
metric half-integer spin chains.

Based on.... anomaly, we come to the conclusion
that.... End of intro(?)

Translationally invariant SU(N) spin system in 1 + 1
dimensions and the LSM index — We consider a generic
(1 + 1)d SU(N) spin system described by a Hamilto-
nian HSU(N) with the lattice translation symmetry and
a global spin-rotation symmetry specified by the projec-
tive special unitary group PSU(N). Here the system is
subject to periodic boundary condition and the trans-
lation, for generality, defines the unit cell consisting of
multiple sites and forms a discrete group Ztrans in the
thermodynamic limit. A typical example of such a sys-
tem is the SU(N) Heisenberg antiferromagnetic (HAF)
model

HHAF = J
X

i,↵,�

S↵
i,�S

�
i+1,↵, J > 0. (25)

where ↵ and � are the spin indices that take values among
1 to N and the SU(N) generators satisfy the following

spin-1/2: (seems) ingappable

gapless

dimerized

ØAnother example: purely 1d (lattice) spin systems w/ SO(3)× ℤ()*+,



• The LSM theorem for 1d SU(2) spin chains:
[Lieb-Schultz-Mattis (61); Affleck-Lieb (86); etc]

A 1d SU(2) antiferromagnetic spin chain cannot have a unique
gapped GS if the spin per site is half-integral and if the lattice-transl
and spin-rotation symm are strictly imposed.



• Q1: Given any 1d lattice model w/ both translation and some 
on-site symm (!"#$%× ℤ$()*"), e.g. Hubbard or Heisenberg 
models, could we determine, basing on the symm and 
microscopic d.o.f. of the model, whether the system is 
ingappable? 

• Q2: If so, could we have further constraints on the (possible) 
low-energy phases of this model?

ØIn this talk, we will answer these questions from a field-theory 
aspect, focusing on the cases of 1d electron/spin systems
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• The LSM theorem for 1d electron systems:
[Oshikawa-Yamanaka-Affleck (96, 97); Oshikawa (00); etc]

A 1d electron-lattice system cannot be a trivial insulator if the
filling per unit cell is fractional and if the lattice-transl symm
and charge conservation are strictly imposed.



1d electron system with translation symmetry

• A simple model: tight-binding model of 1d spinless fermions 

5

where r labels the lattice site and  r = (cr", cr#)T a

spinful fermion; d̂
1,2
rr0 is a vector connecting the next

nearest-neighbor sites r and r0 on the honeycomb lat-
tice. The lattice Hamiltonian clearly respects the sym-
metry U(1)Q ⇥ U(1)Sz at the ultraviolet (UV) scale

Symmetry U(1)Q ⇥ U(1)Sz

U(1)Q :  ! e
i� ,

(Z2)Sz :  ! e
i�z⇡/2 (1)

U(1)Q :  ! e
i� ,

Z2:  ! �z (2)

The ground state is simply the combinations of the com-
pletely filled Chern band with Chern number ⌫ = 1 for
spin-" electrons and the completely filled Chern band
with ⌫ = �1 for spin-# electrons.

When the open boundary condition is imposed, along a
spatial direction x, say, gapless edge states emerge. They
can be described by the low-energy Hamiltonian

Hedge =

Z
dx  †(x)(�ivF@x)�z (x), (3)

where  (x) = ( "(x), #(x))T and vF is the Fermi veloc-
ity. The action of the U(1)Q ⇥ U(1)Sz symmetry on the
edge mode is still given by (2), if the fermionic operators
there are replaced by their boundary counterparts. It is
straightforward to check that there is no gapping term
when the symmetry (2) is strictly imposed on the edge.
Hence the gaplessness of the edge theory is protected by
the symmetry.

To facilitate to establish a connection with filling-
enforced gapless states on the 1d lattice, we note that
the criticality (as well as the quantum anomaly) of the
1d edge survive even if we lower U(1)Sz down to ZSz ,
i.e., instead of U(1)Sz , we can consider the discrete spin
rotation

ZSz :  r ! e
im✓F�z r, m 2 Z, (4)

with some ✓F 2 (0, 2⇡). When we fine-tune ✓F = ⇡/N ,
we can further “lower” the symmetry, Z ! Z2N . Note
also that, at the level of non-interacting fermions, the
classification of the 2d SPT with U(1) ⇥ Z2N is still Z
since one can easily verify that there is no mass term
allowed to the theory (3).

B. (1+1)d lattice spinless fermions

We now consider the model of spinless fermions hop-
ping on a 1d lattice consisting of L lattice sites:

H = �t

LX

x

(c†xcx+1 + h.c.)� µ

LX

x

c
†
xcx. (5)

The model is invariant under the charge U(1)Q, and, with
periodic boundary condition, lattice translation symme-
try ZL with L � 1. In the thermodynamic limit L ! 1,
we have the two symmetries

U(1)Q : cx ! e
i�
cx,

Ztrans : cx ! cx+1. (6)

Note that the translation symmetry Ztrans is manifestly
non-onsite at this UV scale.
The ground state can be easily found by filling the

single particle states below the chemical potential µ,

|GSi /

⇣ Y

|k|kF

c
†
k

⌘
|vaci,

where |vaci is the Fock vacuum. The system realizes
gapless metal, which can be easily seen from the band
structure of (5), if the filling ⌫ = kF

⇡ /2 Z. Furthermore,
the LSMOH theorem? in 1d dictates that if the trans-
lation symmetry Ztrans and U(1)Q are not broken, then
the ground state should be always gapless even in the
presence of interactions; It is a filling-enforced critical
state.
To reveal the connection between this 1d lattice model

and the edge of the QSHE, we now proceed to the con-
tinuum IR limit of the theory (5)

H =

Z
dx  †(x)(�ivF@x)�z (x), (7)

where  (x) = ( R(x), L(x))T is the low-energy fermion
field near the Fermi point. Here, the microscopic fermion
operator cx can be expanded in terms of the slowly vary-
ing low-energy fields  R/L as

cx ⇡  R(x)e
ikF x +  L(x)e

�ikF x
. (8)

Here we take a convention that the kF is the right-most
momentum of the filled state.
The symmetry actions of U(1)Q ⇥ Ztrans within this

low-energy theory (7) can be easily derived,

U(1)Q :  (x) ! e
i� (x),

Ztrans :  (x) ! e
ikF�z

 (x). (9)

Here, in the continuum (conformal) limit where the UV
cuto↵, i.e., the lattice constant, is completely ignored,
the translation symmetry Ztrans, which is non-on-site at
UV scale, acts as if it is a purely local, on-site, symmetry
on the infrared (IR) field  (x).
In summary, the continuum IR limit (7) with the sym-

metry U(1)Q ⇥ Ztrans (9) is identical to the edge theory
(3) of the QSHE with the symmetry U(1)Q ⇥ ZSz (upto
the Fermi velocity which is irrelevant for the discussion
of quantum anomalies). In the IR limit, the two theo-
ries realize the same Z-symmetry actions (or appropriate
subgroup of Z if the filling is rational fraction – see be-
low) although the symmetry has very di↵erent origins
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rotation

ZSz :  r ! e
im✓F�z r, m 2 Z, (4)

with some ✓F 2 (0, 2⇡). When we fine-tune ✓F = ⇡/N ,
we can further “lower” the symmetry, Z ! Z2N . Note
also that, at the level of non-interacting fermions, the
classification of the 2d SPT with U(1) ⇥ Z2N is still Z
since one can easily verify that there is no mass term
allowed to the theory (3).

B. (1+1)d lattice spinless fermions

We now consider the model of spinless fermions hop-
ping on a 1d lattice consisting of L lattice sites:
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The model is invariant under the charge U(1)Q, and, with
periodic boundary condition, lattice translation symme-
try ZL with L � 1. In the thermodynamic limit L ! 1,
we have the two symmetries

U(1)Q : cx ! e
i�
cx,

Ztrans : cx ! cx+1. (6)

Note that the translation symmetry Ztrans is manifestly
non-onsite at this UV scale.
The ground state can be easily found by filling the

single particle states below the chemical potential µ,
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where |vaci is the Fock vacuum. The system realizes
gapless metal, which can be easily seen from the band
structure of (5), if the filling ⌫ = kF

⇡ /2 Z. Furthermore,
the LSMOH theorem? in 1d dictates that if the trans-
lation symmetry Ztrans and U(1)Q are not broken, then
the ground state should be always gapless even in the
presence of interactions; It is a filling-enforced critical
state.
To reveal the connection between this 1d lattice model

and the edge of the QSHE, we now proceed to the con-
tinuum IR limit of the theory (5)

H =

Z
dx  †(x)(�ivF@x)�z (x), (7)

where  (x) = ( R(x), L(x))T is the low-energy fermion
field near the Fermi point. Here, the microscopic fermion
operator cx can be expanded in terms of the slowly vary-
ing low-energy fields  R/L as

cx ⇡  R(x)e
ikF x +  L(x)e

�ikF x
. (8)

Here we take a convention that the kF is the right-most
momentum of the filled state.
The symmetry actions of U(1)Q ⇥ Ztrans within this

low-energy theory (7) can be easily derived,

U(1)Q :  (x) ! e
i� (x),

Ztrans :  (x) ! e
ikF�z

 (x). (9)

Here, in the continuum (conformal) limit where the UV
cuto↵, i.e., the lattice constant, is completely ignored,
the translation symmetry Ztrans, which is non-on-site at
UV scale, acts as if it is a purely local, on-site, symmetry
on the infrared (IR) field  (x).
In summary, the continuum IR limit (7) with the sym-

metry U(1)Q ⇥ Ztrans (9) is identical to the edge theory
(3) of the QSHE with the symmetry U(1)Q ⇥ ZSz (upto
the Fermi velocity which is irrelevant for the discussion
of quantum anomalies). In the IR limit, the two theo-
ries realize the same Z-symmetry actions (or appropriate
subgroup of Z if the filling is rational fraction – see be-
low) although the symmetry has very di↵erent origins
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The Lieb-Schultz-Mattis (LSM) theorem dictates that emergent low-energy states from a lattice

model cannot be a trivial symmetric insulator if the filling per unit cell is not integral and if the

lattice translation symmetry and particle number conservation are strictly imposed. In this paper,

we compare the one-dimensional gapless states enforced by the LSM theorem and the boundaries of

one-higher dimensional strong symmetry-protected topological (SPT) phases from the perspective

of quantum anomalies. We first note that, they can be both described by the same low-energy

e↵ective field theory with the same e↵ective symmetry realizations on low-energy modes, wherein

non-on-site lattice translation symmetry is encoded as if it is a local symmetry. In spite of the

identical form of the low-energy e↵ective field theories, we show that the quantum anomalies of

the theories play di↵erent roles in the two systems. In particular, we find that the chiral anomaly

is equivalent to the LSM theorem, whereas there is another anomaly, which is not related to the

LSM theorem but is intrinsic to the SPT states. As an application, we extend the conventional

LSM theorem to multiple-charge multiple-species problems and construct several exotic symmetric

insulators. We also find that the (3+1)d chiral anomaly provides only the perturbative stability of

the gapless-ness local in the parameter space.
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Predicting possible macroscopic behaviors of many-
body systems from a given kinematical input data, such
as spatial dimensions, the presence of a certain set of sym-
metries, etc., is a central question in many-body physics.
More precisely, predicting spectral properties (e.g., pres-
ence/absence of a spectral gap above ground states) and
the nature of ground states (e.g., long/short-range entan-
gled, trivial, etc.) would be of great interest.
In this regard, we will discuss the following three

classes of problems (systems) in this paper:

(i) The LSMOH theorem: The Lieb-Schultz-Mattis
theorem and its generalization by Oshikawa and
Hastings? ? ? ? dictates that when the lattice
translation symmetry and U(1) charge (electric
charge, spin, etc.) conservation are preserved, the
system must be gapless or its ground state must
be long-range entangled if the particle number (or
spin quantum number) per unit cell is fractional
(non-integral). In one spatial dimension, this in
particular means that the system has to be gap-
less.
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classes of problems (systems) in this paper:

(i) The LSMOH theorem: The Lieb-Schultz-Mattis
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less.
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• The continuum IR limit of the theory: 
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there are replaced by their boundary counterparts. It is
straightforward to check that there is no gapping term
when the symmetry (??) is strictly imposed on the edge.
Hence the gaplessness of the edge theory is protected by
the symmetry.

To facilitate to establish a connection with filling-
enforced gapless states on the 1d lattice, we note that
the criticality (as well as the quantum anomaly) of the
1d edge survive even if we lower U(1)Sz down to ZSz ,
i.e., instead of U(1)Sz , we can consider the discrete spin
rotation

ZSz :  r ! e
im✓F�z r, m 2 Z, (5)

with some ✓F 2 (0, 2⇡). When we fine-tune ✓F = ⇡/N ,
we can further “lower” the symmetry, Z ! Z2N . Note
also that, at the level of non-interacting fermions, the
classification of the 2d SPT with U(1) ⇥ Z2N is still Z
since one can easily verify that there is no mass term
allowed to the theory (??).

B. (1+1)d lattice spinless fermions

We now consider the model of spinless fermions hop-
ping on a 1d lattice consisting of L lattice sites:

H = �t

LX

x

(c†xcx+1 + h.c.)� µ

LX

x

c
†
xcx. (6)

The model is invariant under the charge U(1)Q, and, with
periodic boundary condition, lattice translation symme-
try ZL with L � 1. In the thermodynamic limit L ! 1,
we have the two symmetries

U(1)Q : cx ! e
i�
cx,

Ztrans : cx ! cx+1. (7)

Note that the translation symmetry Ztrans is manifestly
non-onsite at this UV scale.

The ground state can be easily found by filling the
single particle states below the chemical potential µ,

|GSi /

⇣ Y

|k|kF

c
†
k

⌘
|vaci,

where |vaci is the Fock vacuum. The system realizes
gapless metal, which can be easily seen from the band
structure of (??), if the filling ⌫ = kF

⇡ /2 Z. Further-
more, the LSMOH theorem? in 1d dictates that if the
translation symmetry Ztrans and U(1)Q are not broken,
then the ground state should be always gapless even in
the presence of interactions; It is a filling-enforced critical
state.

filling ⌫ =
Ne

L
=

kF

⇡
(8)

To reveal the connection between this 1d lattice model
and the edge of the QSHE, we now proceed to the con-
tinuum IR limit of the theory (??)

H =

Z
dx  †(x)(�ivF@x)�z (x), (9)

where  (x) = ( R(x), L(x))T is the low-energy fermion
field near the Fermi point. Here, the microscopic fermion
operator cx can be expanded in terms of the slowly vary-
ing low-energy fields  R/L as

cx ⇡  R(x)e
ikF x +  L(x)e

�ikF x
. (10)

Here we take a convention that the kF is the right-most
momentum of the filled state.
The symmetry actions of U(1)Q ⇥ Ztrans within this

low-energy theory (??) can be easily derived,

U(1)Q :  (x) ! e
i� (x),

Ztrans :  (x) ! e
ikF�z

 (x). (11)

Here, in the continuum (conformal) limit where the UV
cuto↵, i.e., the lattice constant, is completely ignored,
the translation symmetry Ztrans, which is non-on-site at
UV scale, acts as if it is a purely local, on-site, symmetry
on the infrared (IR) field  (x).
In summary, the continuum IR limit (??) with the

symmetry U(1)Q ⇥ Ztrans (??) is identical to the edge
theory (??) of the QSHE with the symmetry U(1)Q⇥ZSz

(upto the Fermi velocity which is irrelevant for the dis-
cussion of quantum anomalies). In the IR limit, the two
theories realize the same Z-symmetry actions (or appro-
priate subgroup of Z if the filling is rational fraction – see
below) although the symmetry has very di↵erent origins
at the UV scales. Furthermore, on the lattice scale, the
translation symmetry is non-on-site (non-local) (??), but
becomes local (??) on the IR scale and looks like the on-
site internal symmetry (spin rotation symmetry) of the
edge of the 2d QSHE. In other words, the 1d spinless
fermion lattice model at fractional filling evades the no-
go theorem This is exactly parallel to the proposed dual
description of the half-filled Landau level, which turns
out to be identical to the (dual) low-energy theory of the
2d boundary of the 3d topological insulator.

C. E↵ective symmetry

It is also important to note that when the filling is
rational, e.g., ⌫ = 1/q, then the translation symmetry in
Eq. (??) can be reduced to an e↵ective Z2q. If the center
of momentum is shifted to ⇡

2q (by some fine-tuning of the
band structures or by applying the background gauge
field), then the translation symmetry is in fact reduced
further to Zq such that

U(1)Q :  (x) ! e
i� (x),

Zq :  (x) ! e
i⇡
q (�z�1) (x). (12)
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we have the two symmetries

U(1)Q : cx ! e
i�
cx,

Ztrans : cx ! cx+1. (7)

Note that the translation symmetry Ztrans is manifestly
non-onsite at this UV scale.

The ground state can be easily found by filling the
single particle states below the chemical potential µ,
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†
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⌘
|vaci,

where |vaci is the Fock vacuum. The system realizes
gapless metal, which can be easily seen from the band
structure of (??), if the filling ⌫ = kF

⇡ /2 Z. Further-
more, the LSMOH theorem? in 1d dictates that if the
translation symmetry Ztrans and U(1)Q are not broken,
then the ground state should be always gapless even in
the presence of interactions; It is a filling-enforced critical
state.
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To reveal the connection between this 1d lattice model
and the edge of the QSHE, we now proceed to the con-
tinuum IR limit of the theory (??)

H =

Z
dx  †(x)(�ivF@x)�z (x), (9)

where  (x) = ( R(x), L(x))T is the low-energy fermion
field near the Fermi point. Here, the microscopic fermion
operator cx can be expanded in terms of the slowly vary-
ing low-energy fields  R/L as

cx ⇡  R(x)e
ikF x +  L(x)e

�ikF x
. (10)

Here we take a convention that the kF is the right-most
momentum of the filled state.
The symmetry actions of U(1)Q ⇥ Ztrans within this

low-energy theory (??) can be easily derived,

U(1)Q :  (x) ! e
i� (x),

Ztrans :  (x) ! e
ikF�z

 (x). (11)

Here, in the continuum (conformal) limit where the UV
cuto↵, i.e., the lattice constant, is completely ignored,
the translation symmetry Ztrans, which is non-on-site at
UV scale, acts as if it is a purely local, on-site, symmetry
on the infrared (IR) field  (x).
In summary, the continuum IR limit (??) with the

symmetry U(1)Q ⇥ Ztrans (??) is identical to the edge
theory (??) of the QSHE with the symmetry U(1)Q⇥ZSz

(upto the Fermi velocity which is irrelevant for the dis-
cussion of quantum anomalies). In the IR limit, the two
theories realize the same Z-symmetry actions (or appro-
priate subgroup of Z if the filling is rational fraction – see
below) although the symmetry has very di↵erent origins
at the UV scales. Furthermore, on the lattice scale, the
translation symmetry is non-on-site (non-local) (??), but
becomes local (??) on the IR scale and looks like the on-
site internal symmetry (spin rotation symmetry) of the
edge of the 2d QSHE. In other words, the 1d spinless
fermion lattice model at fractional filling evades the no-
go theorem This is exactly parallel to the proposed dual
description of the half-filled Landau level, which turns
out to be identical to the (dual) low-energy theory of the
2d boundary of the 3d topological insulator.

C. E↵ective symmetry

It is also important to note that when the filling is
rational, e.g., ⌫ = 1/q, then the translation symmetry in
Eq. (??) can be reduced to an e↵ective Z2q. If the center
of momentum is shifted to ⇡

2q (by some fine-tuning of the
band structures or by applying the background gauge
field), then the translation symmetry is in fact reduced
further to Zq such that

U(1)Q :  (x) ! e
i� (x),

Zq :  (x) ! e
i⇡
q (�z�1) (x). (12)
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The Lieb-Schultz-Mattis (LSM) theorem dictates that emergent low-energy states from a lattice

model cannot be a trivial symmetric insulator if the filling per unit cell is not integral and if the

lattice translation symmetry and particle number conservation are strictly imposed. In this paper,

we compare the one-dimensional gapless states enforced by the LSM theorem and the boundaries of

one-higher dimensional strong symmetry-protected topological (SPT) phases from the perspective

of quantum anomalies. We first note that, they can be both described by the same low-energy

e↵ective field theory with the same e↵ective symmetry realizations on low-energy modes, wherein

non-on-site lattice translation symmetry is encoded as if it is a local symmetry. In spite of the

identical form of the low-energy e↵ective field theories, we show that the quantum anomalies of

the theories play di↵erent roles in the two systems. In particular, we find that the chiral anomaly

is equivalent to the LSM theorem, whereas there is another anomaly, which is not related to the

LSM theorem but is intrinsic to the SPT states. As an application, we extend the conventional

LSM theorem to multiple-charge multiple-species problems and construct several exotic symmetric

insulators. We also find that the (3+1)d chiral anomaly provides only the perturbative stability of

the gapless-ness local in the parameter space.
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I. INTRODUCTION
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(1)

�kF (2)

Predicting possible macroscopic behaviors of many-
body systems from a given kinematical input data, such
as spatial dimensions, the presence of a certain set of sym-
metries, etc., is a central question in many-body physics.
More precisely, predicting spectral properties (e.g., pres-
ence/absence of a spectral gap above ground states) and
the nature of ground states (e.g., long/short-range entan-
gled, trivial, etc.) would be of great interest.
In this regard, we will discuss the following three

classes of problems (systems) in this paper:

(i) The LSMOH theorem: The Lieb-Schultz-Mattis
theorem and its generalization by Oshikawa and
Hastings? ? ? ? dictates that when the lattice
translation symmetry and U(1) charge (electric
charge, spin, etc.) conservation are preserved, the
system must be gapless or its ground state must
be long-range entangled if the particle number (or
spin quantum number) per unit cell is fractional
(non-integral). In one spatial dimension, this in
particular means that the system has to be gap-
less.
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Predicting possible macroscopic behaviors of many-
body systems from a given kinematical input data, such
as spatial dimensions, the presence of a certain set of sym-
metries, etc., is a central question in many-body physics.
More precisely, predicting spectral properties (e.g., pres-
ence/absence of a spectral gap above ground states) and
the nature of ground states (e.g., long/short-range entan-
gled, trivial, etc.) would be of great interest.
In this regard, we will discuss the following three

classes of problems (systems) in this paper:

(i) The LSMOH theorem: The Lieb-Schultz-Mattis
theorem and its generalization by Oshikawa and
Hastings? ? ? ? dictates that when the lattice
translation symmetry and U(1) charge (electric
charge, spin, etc.) conservation are preserved, the
system must be gapless or its ground state must
be long-range entangled if the particle number (or
spin quantum number) per unit cell is fractional
(non-integral). In one spatial dimension, this in
particular means that the system has to be gap-
less.

Symmetry in the low-energy theory:

Ø Taking ν = 1/2, we have U(1)Q × Z2.

Ø For generic ν, we have U(1)Q � Z

Transl becomes (discrete) chiral symm! 



Anomalies in the low-energy theory
• There is a ”discrete” chiral/axial anomaly in the Dirac theory

• That is, the part. func. in the presence of a U(1) field is in 
general not invariant under the axial transf [Cho-Hsieh-Ryu 17]

5

there are replaced by their boundary counterparts. It is
straightforward to check that there is no gapping term
when the symmetry (??) is strictly imposed on the edge.
Hence the gaplessness of the edge theory is protected by
the symmetry.

To facilitate to establish a connection with filling-
enforced gapless states on the 1d lattice, we note that
the criticality (as well as the quantum anomaly) of the
1d edge survive even if we lower U(1)Sz down to ZSz ,
i.e., instead of U(1)Sz , we can consider the discrete spin
rotation

ZSz :  r ! e
im✓F�z r, m 2 Z, (5)

with some ✓F 2 (0, 2⇡). When we fine-tune ✓F = ⇡/N ,
we can further “lower” the symmetry, Z ! Z2N . Note
also that, at the level of non-interacting fermions, the
classification of the 2d SPT with U(1) ⇥ Z2N is still Z
since one can easily verify that there is no mass term
allowed to the theory (??).

B. (1+1)d lattice spinless fermions

We now consider the model of spinless fermions hop-
ping on a 1d lattice consisting of L lattice sites:

H = �t

LX

x

(c†xcx+1 + h.c.)� µ

LX

x

c
†
xcx. (6)

The model is invariant under the charge U(1)Q, and, with
periodic boundary condition, lattice translation symme-
try ZL with L � 1. In the thermodynamic limit L ! 1,
we have the two symmetries

U(1)Q : cx ! e
i�
cx,

Ztrans : cx ! cx+1. (7)

Note that the translation symmetry Ztrans is manifestly
non-onsite at this UV scale.

The ground state can be easily found by filling the
single particle states below the chemical potential µ,

|GSi /

⇣ Y

|k|kF

c
†
k

⌘
|vaci,

where |vaci is the Fock vacuum. The system realizes
gapless metal, which can be easily seen from the band
structure of (??), if the filling ⌫ = kF

⇡ /2 Z. Further-
more, the LSMOH theorem? in 1d dictates that if the
translation symmetry Ztrans and U(1)Q are not broken,
then the ground state should be always gapless even in
the presence of interactions; It is a filling-enforced critical
state.

filling ⌫ =
Ne

L
=

kF

⇡
(8)

To reveal the connection between this 1d lattice model
and the edge of the QSHE, we now proceed to the con-
tinuum IR limit of the theory (??)

H =

Z
dx  †(x)(�ivF@x)�z (x), (9)

where  (x) = ( R(x), L(x))T is the low-energy fermion
field near the Fermi point. Here, the microscopic fermion
operator cx can be expanded in terms of the slowly vary-
ing low-energy fields  R/L as

cx ⇡  R(x)e
ikF x +  L(x)e

�ikF x
. (10)

Here we take a convention that the kF is the right-most
momentum of the filled state.
The symmetry actions of U(1)Q ⇥ Ztrans within this

low-energy theory (??) can be easily derived,

U(1)Q :  (x) ! e
i� (x),

Ztrans :  (x) ! e
ikF�z

 (x). (11)

Here, in the continuum (conformal) limit where the UV
cuto↵, i.e., the lattice constant, is completely ignored,
the translation symmetry Ztrans, which is non-on-site at
UV scale, acts as if it is a purely local, on-site, symmetry
on the infrared (IR) field  (x).
In summary, the continuum IR limit (??) with the

symmetry U(1)Q ⇥ Ztrans (??) is identical to the edge
theory (??) of the QSHE with the symmetry U(1)Q⇥ZSz

(upto the Fermi velocity which is irrelevant for the dis-
cussion of quantum anomalies). In the IR limit, the two
theories realize the same Z-symmetry actions (or appro-
priate subgroup of Z if the filling is rational fraction – see
below) although the symmetry has very di↵erent origins
at the UV scales. Furthermore, on the lattice scale, the
translation symmetry is non-on-site (non-local) (??), but
becomes local (??) on the IR scale and looks like the on-
site internal symmetry (spin rotation symmetry) of the
edge of the 2d QSHE. In other words, the 1d spinless
fermion lattice model at fractional filling evades the no-
go theorem This is exactly parallel to the proposed dual
description of the half-filled Landau level, which turns
out to be identical to the (dual) low-energy theory of the
2d boundary of the 3d topological insulator.

C. E↵ective symmetry

It is also important to note that when the filling is
rational, e.g., ⌫ = 1/q, then the translation symmetry in
Eq. (??) can be reduced to an e↵ective Z2q. If the center
of momentum is shifted to ⇡

2q (by some fine-tuning of the
band structures or by applying the background gauge
field), then the translation symmetry is in fact reduced
further to Zq such that

U(1)Q :  (x) ! e
i� (x),

Zq :  (x) ! e
i⇡
q (�z�1) (x). (12)

vector
axial

Symmetry protected critical phase classification of SU(N) spin chains in rectangular
Young tableaux representations, and global axial anomaly in 1+1 dimensions

We derive the low-energy properties of SU(N) spin systems in the presence of spin rotation and
translation symmetries. Based on mixed PSU(N)-Z anomaly, the spin system cannot be gapped
with a unique ground state if the number of Young-tableaux boxes per unit cell is not divisible by
N . The SU(N) WZW model are classified into N symmetry-protected critical classes and each
spin system can only realize one of them at criticality. It implies a no-go theorem that an RG flow
is possible between two critical points only if they belong to the same symmetry-protected critical
class, as long as the underlying lattice spin models respect the imposed symmetries.

Introduction.—
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The classification of quantum phases is a central is-
sue in condensed matter physics, where considerable
recent progresses were initiated in strongly interacting
many-body systems. In particular, various topologi-
cal phases with unbroken symmetries, e.g. symmetry-
protected trivial (SPT) ordered phases [1, 2] and topo-
logical ordered phases enrich the phase diagram beyond
conventional Landau-Ginzburg-Wilson spontaneously-
symmetry-breaking paradigm. Therefore, the constraints
in the appearance of symmetries on phase diagrams play

essential roles since they rule out the existence of a large
class of forbidden gapped or gapless phases when the cer-
tain symmetry is respected. For gapped phases, the re-
striction on the ground-state degeneracy allows a unified
understanding on the low-energy spectral properties. For
example, Lieb-Schultz-Mattis (LSM) theorem [3] and its
generalization LSMOH theorem by Oshikawa and Hast-
ings [4, 5] states that the ground states cannot be trivially
gapped with a unique ground state if the particle number
per unit cell is fractional and both the translation sym-
metry and charge U(1) conservation are preserved. As
a part of gapless phases, critical phase classifications is
a key ingredient in the understanding of universal criti-
cal behaviors of various phase transitions. However, the
classification of critical phases still remains open and the
related proposal is only given in SU(2) spin chains [6].
Furthermore, many stable critical phases have been found
experimentally and numerically [7, 8], and the reason of
such stability is not completely understood.

In reality, the constraints on phase diagrams with more
general symmetries than U(1) and SU(2) are within
intense interest. For example, SU(N) “spin” systems
with N > 2 are realized in ultracold atoms on op-
tical lattices [9–16] and also in some spin-orbital sys-
tems [? ], although SU(N) systems was initially intro-
duced as theoretical toy models to understand “physical”
SU(2) spins. Thus the study related with the phase di-
agrams of SU(N) spin systems is of realistic interest in
its own. Furthermore, although spin-rotation and trans-
lation symmetries are imposed, symmetry enhancements
cannot be excluded, e.g. phases with emergent symme-
tries. The symmetry can be enhanced on the lattice such
as that the spin-1 chain has an explicit SU(3) symmetry
in the Uimin-Lai-Sutherland model [17–19]. In addition,
higher symmetries can also emerge at the thermodynam-
ical limit, e.g. the emergent SU(3) symmetry of critical
spin-2 chain [20]. Therefore, the generalized SU(N) spin
models are necessary in understanding the symmetry en-
hancement.

In this Letter, we focus on the fundamental constraints
on the phase diagrams of SU(N) spin chains in gen-
eral representations with SU(N) spin rotation symmetry
and lattice translation symmetry respected. More specif-
ically, we obtain the restriction of ground-state degener-
acy of gapped phases generalizing Lieb-Schultz-Mattis-
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Symmetry protected critical phase classification of SU(N) spin chains in rectangular
Young tableaux representations, and global axial anomaly in 1+1 dimensions

We derive the low-energy properties of SU(N) spin systems in the presence of spin rotation and
translation symmetries. Based on mixed PSU(N)-Z anomaly, the spin system cannot be gapped
with a unique ground state if the number of Young-tableaux boxes per unit cell is not divisible by
N . The SU(N) WZW model are classified into N symmetry-protected critical classes and each
spin system can only realize one of them at criticality. It implies a no-go theorem that an RG flow
is possible between two critical points only if they belong to the same symmetry-protected critical
class, as long as the underlying lattice spin models respect the imposed symmetries.
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Implication of the anomaly 
• IR: If ! ≠ integer, the low-energy theory is anomalous; it must 

be either gapless or, when perturbed by (symmetric) 
interactions, gapped with spontaneous symm breaking.

• UV (lattice): If the filling per unit cell is not integral, the system 
does not allow a unique gapped ground state; it must be in a 
gapless phase or a gapped phase breaking the transl symm.

ØThis is nothing but the LSM theorem for an electron system!



Implication of the anomaly 
• For example, a half-filled spinless ferm (ν = ½) is ingappable

while two half-filled (spinful) ferm (νtot = 1) is gappable

(U/t >>1, the system is trivially gapped)

(V/t >>1, the system is gapped w/ SSB of transl)

e.g.

e.g.
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The classification of quantum phases is a central is-
sue in condensed matter physics, where considerable
recent progresses were initiated in strongly interacting
many-body systems. In particular, various topologi-
cal phases with unbroken symmetries, e.g. symmetry-
protected trivial (SPT) ordered phases [1, 2] and topo-
logical ordered phases enrich the phase diagram beyond
conventional Landau-Ginzburg-Wilson spontaneously-
symmetry-breaking paradigm. Therefore, the constraints
in the appearance of symmetries on phase diagrams play
essential roles since they rule out the existence of a large
class of forbidden gapped or gapless phases when the cer-
tain symmetry is respected. For gapped phases, the re-
striction on the ground-state degeneracy allows a unified
understanding on the low-energy spectral properties. For
example, Lieb-Schultz-Mattis (LSM) theorem [3] and its
generalization LSMOH theorem by Oshikawa and Hast-
ings [4, 5] states that the ground states cannot be trivially
gapped with a unique ground state if the particle number
per unit cell is fractional and both the translation sym-
metry and charge U(1) conservation are preserved. As
a part of gapless phases, critical phase classifications is

a key ingredient in the understanding of universal criti-
cal behaviors of various phase transitions. However, the
classification of critical phases still remains open and the
related proposal is only given in SU(2) spin chains [6].
Furthermore, many stable critical phases have been found
experimentally and numerically [7, 8], and the reason of
such stability is not completely understood.
In reality, the constraints on phase diagrams with more

general symmetries than U(1) and SU(2) are within
intense interest. For example, SU(N) “spin” systems
with N > 2 are realized in ultracold atoms on op-
tical lattices [9–16] and also in some spin-orbital sys-
tems [? ], although SU(N) systems was initially intro-
duced as theoretical toy models to understand “physical”
SU(2) spins. Thus the study related with the phase di-
agrams of SU(N) spin systems is of realistic interest in
its own. Furthermore, although spin-rotation and trans-
lation symmetries are imposed, symmetry enhancements
cannot be excluded, e.g. phases with emergent symme-
tries. The symmetry can be enhanced on the lattice such
as that the spin-1 chain has an explicit SU(3) symmetry
in the Uimin-Lai-Sutherland model [17–19]. In addition,
higher symmetries can also emerge at the thermodynam-
ical limit, e.g. the emergent SU(3) symmetry of critical
spin-2 chain [20]. Therefore, the generalized SU(N) spin
models are necessary in understanding the symmetry en-
hancement.
In this Letter, we focus on the fundamental constraints

on the phase diagrams of SU(N) spin chains in gen-
eral representations with SU(N) spin rotation symmetry
and lattice translation symmetry respected. More specif-
ically, we obtain the restriction of ground-state degener-
acy of gapped phases generalizing Lieb-Schultz-Mattis-
A✏eck (LSMA) theorem [21], and the classification of
critical phases, when the required symmetries are im-
posed. The compulsory degenerate ground states can
be understood by the concept of “ingappability” simi-
larly to the boundary states of nontrivial SPT phase,
which cannot be gapped with a specified symmetry un-
broken and bulk gap unclosed [1, 2]. On the SPT side,
the ingappability results from the quantum symmetry
anomaly of e↵ective boundary theory forbidding its lat-
tice realization [22]. CH: Should add more references
here. I will also do it later. Although the SU(N)
spin chain in our interest can be realized in its own di-
mension, the non-on-site nature of translation symme-
try enables us to understand its ingappability by consid-
ering the quantum anomaly of its e↵ective field theory
in the thermodynamical limit [23]. In a similar spirit,
the classification of critical phases can be done accord-
ing to their quantum anomaly. Such symmetry-protected
critical (SPC) classification has been proposed in SU(2)-
symmetric and translation-symmetric spin chains, where
the critical points are classified into two classes, one of
which can only take place in half-integer spin chains
while the other one can be realized only by integer spin
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sue in condensed matter physics, where considerable
recent progresses were initiated in strongly interacting
many-body systems. In particular, various topologi-
cal phases with unbroken symmetries, e.g. symmetry-
protected trivial (SPT) ordered phases [1, 2] and topo-
logical ordered phases enrich the phase diagram beyond
conventional Landau-Ginzburg-Wilson spontaneously-
symmetry-breaking paradigm. Therefore, the constraints
in the appearance of symmetries on phase diagrams play
essential roles since they rule out the existence of a large
class of forbidden gapped or gapless phases when the cer-
tain symmetry is respected. For gapped phases, the re-
striction on the ground-state degeneracy allows a unified
understanding on the low-energy spectral properties. For
example, Lieb-Schultz-Mattis (LSM) theorem [3] and its
generalization LSMOH theorem by Oshikawa and Hast-
ings [4, 5] states that the ground states cannot be trivially
gapped with a unique ground state if the particle number
per unit cell is fractional and both the translation sym-
metry and charge U(1) conservation are preserved. As
a part of gapless phases, critical phase classifications is

a key ingredient in the understanding of universal criti-
cal behaviors of various phase transitions. However, the
classification of critical phases still remains open and the
related proposal is only given in SU(2) spin chains [6].
Furthermore, many stable critical phases have been found
experimentally and numerically [7, 8], and the reason of
such stability is not completely understood.
In reality, the constraints on phase diagrams with more

general symmetries than U(1) and SU(2) are within
intense interest. For example, SU(N) “spin” systems
with N > 2 are realized in ultracold atoms on op-
tical lattices [9–16] and also in some spin-orbital sys-
tems [? ], although SU(N) systems was initially intro-
duced as theoretical toy models to understand “physical”
SU(2) spins. Thus the study related with the phase di-
agrams of SU(N) spin systems is of realistic interest in
its own. Furthermore, although spin-rotation and trans-
lation symmetries are imposed, symmetry enhancements
cannot be excluded, e.g. phases with emergent symme-
tries. The symmetry can be enhanced on the lattice such
as that the spin-1 chain has an explicit SU(3) symmetry
in the Uimin-Lai-Sutherland model [17–19]. In addition,
higher symmetries can also emerge at the thermodynam-
ical limit, e.g. the emergent SU(3) symmetry of critical
spin-2 chain [20]. Therefore, the generalized SU(N) spin
models are necessary in understanding the symmetry en-
hancement.
In this Letter, we focus on the fundamental constraints

on the phase diagrams of SU(N) spin chains in gen-
eral representations with SU(N) spin rotation symmetry
and lattice translation symmetry respected. More specif-
ically, we obtain the restriction of ground-state degener-
acy of gapped phases generalizing Lieb-Schultz-Mattis-
A✏eck (LSMA) theorem [21], and the classification of
critical phases, when the required symmetries are im-
posed. The compulsory degenerate ground states can
be understood by the concept of “ingappability” simi-
larly to the boundary states of nontrivial SPT phase,
which cannot be gapped with a specified symmetry un-
broken and bulk gap unclosed [1, 2]. On the SPT side,
the ingappability results from the quantum symmetry
anomaly of e↵ective boundary theory forbidding its lat-
tice realization [22]. CH: Should add more references
here. I will also do it later. Although the SU(N)
spin chain in our interest can be realized in its own di-
mension, the non-on-site nature of translation symme-
try enables us to understand its ingappability by consid-
ering the quantum anomaly of its e↵ective field theory
in the thermodynamical limit [23]. In a similar spirit,
the classification of critical phases can be done accord-
ing to their quantum anomaly. Such symmetry-protected
critical (SPC) classification has been proposed in SU(2)-
symmetric and translation-symmetric spin chains, where
the critical points are classified into two classes, one of
which can only take place in half-integer spin chains
while the other one can be realized only by integer spin



Generality 
• Our approach is based on the idea of (’t Hooft) anomaly 

matching [’t Hooft et al. 80], which enables us to obtain some 
fundamental constraints on the phase diagrams.
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Generality
• Our approach is based on the idea of (’t Hooft) anomaly 

matching [’t Hooft et al. 80], which enables us to obtain some 
fundamental constraints on the phase diagrams.

Hlattice
Gsite � ℤtrans

UV

IR
HEFT 

Gvector � ℤaxial
There is a potential disc 
chiral anomaly at IR

It can be traced back to 
the non-on-site nature of 
(part of) the lattice symm

By “matching” the IR anomaly

we identify a top. index, the 
LSM index, for any lattice 
system to characterize its phase

Such an anomaly can diagnose 
the ingappability of the system!
[Hsieh et al. 14]



• The chiral anomaly – and thus the LSM index – is a topological 
quantity indep. of inter-particle interactions (at either UV or IR). 

• At the lattice scale, the LSM index only depends on a quantity 
associated with !"#$% of the d.o.f. within a unit cell. 

• Let’s examine this approach with a more complicated example 
in the following discussion.

ØBecause anomaly is “preserved” under RG (’t Hooft anomaly 
matching condition).

Ø(1) Anomalous (IR) = nontrivial LSM index (UV) = ingappable
(2) Anomaly-free (IR) = trivial LSM index (UV) = gappable
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1d spin chain with translation symmetry
• The LSM theorem for 1d SU(2) spin chains:

[Lieb-Schultz-Mattis (61); Affleck-Lieb (86); etc]

A 1d SU(2) antiferromagnetic spin chain cannot have a unique
gapped GS if the spin per site is half-integral and if the lattice
transl symm and SO(3) symm are strictly imposed.



1d spin chain with translation symmetry
• A generalization to the case of SU(2k) spin chain, the LSMA 

theorem, was also known: [Affleck-Lieb (86)]

A 1d SU(2k) antiferromagnetic spin chain cannot have a
unique gapped GS if the Young tableau rep per site has an odd
number of boxes and if the lattice transl symm and PSU(2k)
symm are strictly imposed.



1d spin chain with translation symmetry
• How about for an SU(N) chain with a generic Young-tableau 

(YT) rep ! per site and with both PSU(N) and transl Ztrans

symm? For N=2, PSU(2) = 
SO(3)



1d spin chain with translation symmetry
• How about for an SU(N) chain with a generic Young-tableau 

(YT) rep ! per site and with both PSU(N) and transl Ztrans

symm?

• We will answer this question, again, by the anomaly matching 
argument

! ! ! ! !

Chapter 1. The SU(N ) Heisenberg model

1.1.2 Young tableau, Young operator

The definitions introduced for the permutation group can now be used to define Young
tableaux and Young operators.

Each cycle structure λ can by graphically represented by putting λ1 boxes in the first line, λ2

boxes in the second and so on. For instance, a permutation belonging to the cycle structure
λ= {4,2,1} corresponds to:

(1.15)

Such a graphical representation is known as a Young diagram and its structure is fixed by some
simple rules. All boxes must be in contact and left justified, the number of boxes in each row
must be smaller than or equal to the number of boxes in the row above.

A Young diagram with m boxes, where the integers associated to each box are sorted in a way
that they are strictly increasing along lines (left to right) and columns (top to bottom), is called
a standard Young tableau. The following standard Young tableau with the same shape λ is one
possible example:

1 3 4 7
2 6
5

(1.16)

For a given standard Young tableau defined by its cycle structure {λ1, . . . ,λm} and box number-
ing, one can construct a Young operator Y defined as the product of operators Pi associated
to each row i and operators Q j associated to each column j , see (1.12). The operator Pi is the
sum of all permutations of the integers labelling the boxes of the i -th row. The Q j operator
is the same but for the columns (the numbering is unchanged). The following example best
illustrates these definitions for a Young tableau with cycle structure λ= {2,2,1}:

1 2
3 4
5

−→ Q1Q2 = (e − (1,3)− (1,5)− (3,5)+ (1,3,5)+ (1,5,3))(e − (2,4))
P1P2P3 = (e + (1,2))(e + (3,4))e

(1.17)

The related Young operator is simply given by:

Y =Q1Q2P1P2P3 (1.18)

= (e − (1,3)− (1,5)− (3,5)+ (1,3,5)+ (1,5,3))(e − (2,4))(e + (1,2))(e + (3,4)) (1.19)
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(for 
example)

Ø A typical example is the (generalized) HAF model

2

RG flows in special cases have been proposed. In the
presence of the ZN symmetry, the massless RG flow from
SU(N)k to SU(N)1 WZWs is conjectured if (N, k) = 1
by the trace of adjoint field operator as perturbation [22],
and this conjecture is justified in the special case where
N = 3 with k = 2 in parafermionic approach [22] and
by density matrix renormalization group (DMRG) cal-
culation of central charge from the entanglement entropy
of critical SU(3) spin chain in (1 ⇥ 2)-YT representa-
tion [23]. This only applies to a very limited set of SU(N)
WZW models, and thus the global structure of the RG
flows in the SU(N) symmetric theories remains unclear.
A related unresolved question was the field-theory un-
derstanding of the Lieb-Schultz-Mattis-A✏eck (LSMA)
theorem [24] which is the spin-chain generalization of
the Lieb-Schultz-Mattis theorem [25–27]. Furthermore,
LSMA theorem only applies for the self-conjugated repre-
sentation of SU(2m) spin chain which can be understood
near criticality by SPT-boundary approach [28], but SPT
trivial gapping conditions is generically stronger than the
desired LSM gapping conditions [29]. Nevertheless, the
low-energy spectral properties of gapped phases in gen-
eral SU(N) representations is still lacking.

In this paper, based on the discrete global axial
anomaly in the 2-dimensional space-time k-colorN -flavor
quantum chromodynamics (QCD2), we obtain a no-go
theorem which restricts the RG flow between SU(N)k
and SU(N)l WZW models when PSU(N) and a discrete
symmetry belonging to the center element of SU(N)
are imposed. The LSMA theorem is re-derived by our
field theory based on the symmetry anomaly of global
axial subgroups in QCD2. Our SPC classification pro-
vides a list of candidates for universality classes of critical
translational-symmetric SU(N) spin chains, which pro-
poses additional nontrivial possible stable critical points
besides SU(N)1 WZW universality classes stablized by
ZN [11, 22].

*****************************
Translational invariant SU(N) spin chain and the

LSM index.— Consider a (1+1)-dimensional SU(N)
spin chain with a generic YT representation � on each
site and with the Hamiltonian HSU(N) that respects a
global PSU(N) symmetry and lattice translation sym-
metry, described by an infinite cyclic group Ztrans (in the
thermodynamic limit). Here the lattice translation can
be a single-lattice or a p-lattice (multi-lattice) transla-
tion. A typical example of such a system is the (general-
ized) SU(N) Heisenberg antiferromagnetic model

HHAF =
X

hi,ji,↵,�

JS↵
i,�S

�
j,↵, J > 0, (4)

where ↵ and � are the spin indices that take values among
1 to N and the SU(N) generators satisfy the following
su(N) Lie algebra commutation relations:

h
S↵
i,� , S

�
j,�

i
= �i,j

⇣
�↵� S

�
i,� � ���S

↵
i,�

⌘
. (5)

E↵ective theories describing the low-energy states of a
generic HSU(N) might possess the same global PSU(N)
symmetry as HSU(N) but also a global internal symme-
try Ge↵ ✓ Z that is emergent from the lattice trans-
lation symmetry Ztrans. In this situation, there might
be an (mixed) ”anomaly” while both symmetries are
present in an on-site manner. As discussed previously,
this anomaly manifestation of symmetries in the low-
energy theories of a purely (1+1)d lattice model origi-
nates from the non-on-site nature of the lattice transla-
tion [29]. Such an anomaly keeps track of the microscopic
information, such as the representation (of SU(N)) per
site, that determines some low-energy properties of the
system – an ”anomaly matching” between models at the
lattice scale and the corresponding e↵ective theories in
the long-wavelength limit.
From this ”anomaly matching” viewpoint, it is nat-

ural to define a quantity, called as LSM index and de-
noted as I�;p

PSU(N)
here, that is identified with the mixed

anomaly between PSU(N) and the internal Z (not just
its subgroup Ge↵) symmetries and can be used to diag-
nose features of the ground states (gaplessness and de-
generacy) of HSU(N). Such an index/anomaly is repre-
sented by an element of a subgroup of the third coho-
mology group H3(PSU(N) ⇥ Z, U(1)), which classifies
the (2+1)d bosonic SPT with PSU(N) ⇥ Z symmetry.
(In other words, the mixed anomaly is a part of the full
’t Hooft anomaly of the symmetry group PSU(N)⇥ Z.)
More precisely, the (2+1)d PSU(N) ⇥ Z bosonic SPT
phases decompose into two separate classes, the one pro-
tected solely by PSU(N) symmetry, which supports chi-
ral edge states, and the one protected by both PSU(N)
and Z symmetries, which support non-chiral edge states
that are identified exactly with the low-energy states of
our (1+1)d SU(N) model HSU(N), thanks to the follow-
ing mathematical fact (Künneth theorem)

H3(PSU(N)⇥ Z, U(1))

⇠= H3(PSU(N), U(1))⇥H2(PSU(N), U(1)). (6)

Note that the former (chiral edge states) is character-
ized by an integer class ⌫ 2 H3(PSU(N), U(1)) ⇠=
Z, while the latter (non-chiral edge states) is char-
acterized by a mod N class which is an element of
the subgroup of H3(PSU(N) ⇥ Z, U(1)) isomorphic to
H2(PSU(N), U(1)) ⇠= ZN .

Therefore, there must be a correspondence between
the LSM index I�;p

PSU(N)
for a given HSU(N) and the co-

homology class that represents a (1+1)d bosonic SPT
phase protected by PSU(N) symmetry. This can be
seen explicitly, based on a similar argument in [30] for
the case of PSU(2) = SO(3) symmetry, by writing
down the bulk e↵ective action of a (2+1)d non-chiral
SPT phase with PSU(N) ⇥ Z symmetry as Sbulk =
2⇡ip
N

R
X3
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RG flows in special cases have been proposed. In the
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SU(N)k to SU(N)1 WZWs is conjectured if (N, k) = 1
by the trace of adjoint field operator as perturbation [22],
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In this paper, based on the discrete global axial
anomaly in the 2-dimensional space-time k-colorN -flavor
quantum chromodynamics (QCD2), we obtain a no-go
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*****************************
Translational invariant SU(N) spin chain and the
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HHAF =
X

hi,ji,↵,�

JS↵
i,�S

�
j,↵, J > 0, (4)
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�
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i,�

⌘
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E↵ective theories describing the low-energy states of a
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PSU(N)
here, that is identified with the mixed
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⇠= H3(PSU(N), U(1))⇥H2(PSU(N), U(1)). (6)
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H[N,m] were investigated by numerical and analytical solutions of the Bethe ansatz equations [41–43].
The representations [N, m] of SU(N ) are given by the totally symmetric combination of m fundamental
representations of SU(N ). The corresponding Young tableaux is

♣ ♣ ♣

︸ ︷︷ ︸

m boxes

♣

For SU(2), all the representations are of this form, with m = 2S. For SU(3), the symmetric representations
include the fundamental representation 3 and the representation 6, for m = 1 and 2, respectively. The
dimensionality n of the totally symmetric representation [N, m] is in general given by

n ≡ dim[N, m] =
(

N − 1 + m

m

)

. (7)

The Hamiltonians H[N,m] contain two-site interactions only and are invariant under global SU(N ) spin
rotations, i.e., Heisenberg interaction terms to arbitrary power [30–34,40]. Note that all the modelsH[N,m]

are integrable, due to an infinite number of operators which commute with the Hamiltonians. In this work,
we consider the models with [N, m] = [2, 1], [2, 2], [2, 3], [3, 1], [3, 2], and [4, 1].

The Hamiltonians for [N, 1], i.e., the fundamental representations, are just the nearest-neighbor Heisen-
berg models,

H[N,1] =
N

∑

i=1

SiSi+1. (8)

In general, Si is an SU(N ) representation [N, m] spin operator at site i. Since the dimension of the Lie
algebra su(N ) is N2 − 1, the spin operator Si consists of the N2 − 1 generators,

Sα
i =

1
2

∑

σ,σ′=f1,...,fn

c†iσV α
σσ′ciσ′ , (9)

where α = 1, . . . , N2 − 1, V α
σσ′ are the SU(N ) Gell-Mann matrices, and f1, . . . , fn denote the n different

spin states [15]. Trivially, SiSi+1 ≡
∑N2−1

α=1 Sα
i Sα

i+1.
For the fundamental representation [2, 1] of SU(2), the V ’s are just the Pauli matrices and the two spin

states can be classified by the eigenstates f1 =↑, f2 =↓ of Sz . For the fundamental representation [3, 1]
of SU(3), the V ’s are given by the eight Gell-Mann matrices. The matrices V for representations [3, 2] (
i.e., SU(3) representation 6) and [4, 1] ( i.e., SU(4) representation 4) are written out in Apps. B and C. In
our numerical implementations, we have scaled the Hamiltonians such that the pre-factor of the bilinear
Heisenberg term SiSi+1 is ±1 and we have dropped the constant term.

As we confirm numerically below, the low-energy behavior of the models H[N,1] is described by the
SU(N )1 WZW model, with topological coupling constant k = 1. With (1), we expect to find c = N −1 for
the central charge. The integrable spin S = 1 model we investigate, the Takhtajan–Babudjan model [30–32],
is given by

H[2,2] =
N∑

i=1

[

SiSi+1 − (SiSi+1)2
]

. (10)

The low energy physics is described by the SU(2)2 WZW model. With (1), we expect to find c = 3
2 .

Note that the criticality of this integer spin model is not inconsistent with the Haldane gap, as Haldane’s
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N . The SU(N) WZW model are classified into N symmetry-protected critical classes and each
spin system can only realize one of them at criticality. It implies a no-go theorem that an RG flow
is possible between two critical points only if they belong to the same symmetry-protected critical
class, as long as the underlying lattice spin models respect the imposed symmetries.
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The classification of quantum phases is a central is-
sue in condensed matter physics, where considerable
recent progresses were initiated in strongly interacting
many-body systems. In particular, various topologi-
cal phases with unbroken symmetries, e.g. symmetry-
protected trivial (SPT) ordered phases [1, 2] and topo-
logical ordered phases enrich the phase diagram beyond
conventional Landau-Ginzburg-Wilson spontaneously-
symmetry-breaking paradigm. Therefore, the constraints
in the appearance of symmetries on phase diagrams play
essential roles since they rule out the existence of a large
class of forbidden gapped or gapless phases when the cer-
tain symmetry is respected. For gapped phases, the re-
striction on the ground-state degeneracy allows a unified
understanding on the low-energy spectral properties. For
example, Lieb-Schultz-Mattis (LSM) theorem [3] and its
generalization LSMOH theorem by Oshikawa and Hast-
ings [4, 5] states that the ground states cannot be trivially
gapped with a unique ground state if the particle number
per unit cell is fractional and both the translation sym-
metry and charge U(1) conservation are preserved. As
a part of gapless phases, critical phase classifications is
a key ingredient in the understanding of universal criti-
cal behaviors of various phase transitions. However, the
classification of critical phases still remains open and the
related proposal is only given in SU(2) spin chains [6].
Furthermore, many stable critical phases have been found
experimentally and numerically [7, 8], and the reason of
such stability is not completely understood.
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The classification of quantum phases is a central is-
sue in condensed matter physics, where considerable
recent progresses were initiated in strongly interacting
many-body systems. In particular, various topologi-
cal phases with unbroken symmetries, e.g. symmetry-
protected trivial (SPT) ordered phases [1, 2] and topo-
logical ordered phases enrich the phase diagram beyond
conventional Landau-Ginzburg-Wilson spontaneously-
symmetry-breaking paradigm. Therefore, the constraints
in the appearance of symmetries on phase diagrams play
essential roles since they rule out the existence of a large
class of forbidden gapped or gapless phases when the cer-
tain symmetry is respected. For gapped phases, the re-
striction on the ground-state degeneracy allows a unified
understanding on the low-energy spectral properties. For
example, Lieb-Schultz-Mattis (LSM) theorem [3] and its
generalization LSMOH theorem by Oshikawa and Hast-
ings [4, 5] states that the ground states cannot be trivially
gapped with a unique ground state if the particle number
per unit cell is fractional and both the translation sym-
metry and charge U(1) conservation are preserved. As
a part of gapless phases, critical phase classifications is
a key ingredient in the understanding of universal criti-
cal behaviors of various phase transitions. However, the
classification of critical phases still remains open and the
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class, as long as the underlying lattice spin models respect the imposed symmetries.

Introduction.—

Hom(⌦̃spin
c

3
(BZ), U(1)) ⇠= U(1) ⇠= R/Z (1)

LSM index I = (total charges per unit cell) mod 1.
(2)

H3(PSU(N)⇥ Z, U(1))/H3(PSU(N), U(1)) ⇠= ZN (3)
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The classification of quantum phases is a central is-
sue in condensed matter physics, where considerable
recent progresses were initiated in strongly interacting
many-body systems. In particular, various topologi-
cal phases with unbroken symmetries, e.g. symmetry-
protected trivial (SPT) ordered phases [1, 2] and topo-
logical ordered phases enrich the phase diagram beyond
conventional Landau-Ginzburg-Wilson spontaneously-
symmetry-breaking paradigm. Therefore, the constraints
in the appearance of symmetries on phase diagrams play
essential roles since they rule out the existence of a large
class of forbidden gapped or gapless phases when the cer-
tain symmetry is respected. For gapped phases, the re-
striction on the ground-state degeneracy allows a unified
understanding on the low-energy spectral properties. For
example, Lieb-Schultz-Mattis (LSM) theorem [3] and its
generalization LSMOH theorem by Oshikawa and Hast-
ings [4, 5] states that the ground states cannot be trivially
gapped with a unique ground state if the particle number
per unit cell is fractional and both the translation sym-
metry and charge U(1) conservation are preserved. As
a part of gapless phases, critical phase classifications is
a key ingredient in the understanding of universal criti-
cal behaviors of various phase transitions. However, the
classification of critical phases still remains open and the
related proposal is only given in SU(2) spin chains [6].
Furthermore, many stable critical phases have been found
experimentally and numerically [7, 8], and the reason of
such stability is not completely understood.

In reality, the constraints on phase diagrams with more
general symmetries than U(1) and SU(2) are within
intense interest. For example, SU(N) “spin” systems
with N > 2 are realized in ultracold atoms on op-
tical lattices [9–16] and also in some spin-orbital sys-
tems [? ], although SU(N) systems was initially intro-
duced as theoretical toy models to understand “physical”
SU(2) spins. Thus the study related with the phase di-
agrams of SU(N) spin systems is of realistic interest in
its own. Furthermore, although spin-rotation and trans-
lation symmetries are imposed, symmetry enhancements
cannot be excluded, e.g. phases with emergent symme-
tries. The symmetry can be enhanced on the lattice such
as that the spin-1 chain has an explicit SU(3) symmetry
in the Uimin-Lai-Sutherland model [17–19]. In addition,
higher symmetries can also emerge at the thermodynam-
ical limit, e.g. the emergent SU(3) symmetry of critical
spin-2 chain [20]. Therefore, the generalized SU(N) spin
models are necessary in understanding the symmetry en-
hancement.

In this Letter, we focus on the fundamental constraints
on the phase diagrams of SU(N) spin chains in gen-
eral representations with SU(N) spin rotation symmetry
and lattice translation symmetry respected. More specif-
ically, we obtain the restriction of ground-state degener-
acy of gapped phases generalizing Lieb-Schultz-Mattis-
A✏eck (LSMA) theorem [21], and the classification of
critical phases, when the required symmetries are im-
posed. The compulsory degenerate ground states can
be understood by the concept of “ingappability” simi-
larly to the boundary states of nontrivial SPT phase,
which cannot be gapped with a specified symmetry un-
broken and bulk gap unclosed [1, 2]. On the SPT side,
the ingappability results from the quantum symmetry
anomaly of e↵ective boundary theory forbidding its lat-
tice realization [22]. CH: Should add more references
here. I will also do it later. Although the SU(N)
spin chain in our interest can be realized in its own di-
mension, the non-on-site nature of translation symme-
try enables us to understand its ingappability by consid-
ering the quantum anomaly of its e↵ective field theory
in the thermodynamical limit [23]. In a similar spirit,
the classification of critical phases can be done accord-
ing to their quantum anomaly. Such symmetry-protected
critical (SPC) classification has been proposed in SU(2)-

Math fact (cohomology theory):
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general symmetries than U(1) and SU(2) are within
intense interest. For example, SU(N) “spin” systems
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recent progresses were initiated in strongly interacting
many-body systems. In particular, various topologi-
cal phases with unbroken symmetries, e.g. symmetry-
protected trivial (SPT) ordered phases [1, 2] and topo-
logical ordered phases enrich the phase diagram beyond
conventional Landau-Ginzburg-Wilson spontaneously-
symmetry-breaking paradigm. Therefore, the constraints
in the appearance of symmetries on phase diagrams play
essential roles since they rule out the existence of a large
class of forbidden gapped or gapless phases when the cer-
tain symmetry is respected. For gapped phases, the re-
striction on the ground-state degeneracy allows a unified
understanding on the low-energy spectral properties. For
example, Lieb-Schultz-Mattis (LSM) theorem [3] and its
generalization LSMOH theorem by Oshikawa and Hast-
ings [4, 5] states that the ground states cannot be trivially

gapped with a unique ground state if the particle number
per unit cell is fractional and both the translation sym-
metry and charge U(1) conservation are preserved. As
a part of gapless phases, critical phase classifications is
a key ingredient in the understanding of universal criti-
cal behaviors of various phase transitions. However, the
classification of critical phases still remains open and the
related proposal is only given in SU(2) spin chains [6].
Furthermore, many stable critical phases have been found
experimentally and numerically [7, 8], and the reason of
such stability is not completely understood.

In reality, the constraints on phase diagrams with more
general symmetries than U(1) and SU(2) are within
intense interest. For example, SU(N) “spin” systems
with N > 2 are realized in ultracold atoms on op-
tical lattices [9–16] and also in some spin-orbital sys-
tems [? ], although SU(N) systems was initially intro-
duced as theoretical toy models to understand “physical”
SU(2) spins. Thus the study related with the phase di-
agrams of SU(N) spin systems is of realistic interest in
its own. Furthermore, although spin-rotation and trans-
lation symmetries are imposed, symmetry enhancements
cannot be excluded, e.g. phases with emergent symme-
tries. The symmetry can be enhanced on the lattice such
as that the spin-1 chain has an explicit SU(3) symmetry
in the Uimin-Lai-Sutherland model [17–19]. In addition,
higher symmetries can also emerge at the thermodynam-
ical limit, e.g. the emergent SU(3) symmetry of critical
spin-2 chain [20]. Therefore, the generalized SU(N) spin
models are necessary in understanding the symmetry en-
hancement.

In this Letter, we focus on the fundamental constraints
on the phase diagrams of SU(N) spin chains in gen-
eral representations with SU(N) spin rotation symmetry
and lattice translation symmetry respected. More specif-
ically, we obtain the restriction of ground-state degener-
acy of gapped phases generalizing Lieb-Schultz-Mattis-
A✏eck (LSMA) theorem [21], and the classification of
critical phases, when the required symmetries are im-
posed. The compulsory degenerate ground states can
be understood by the concept of “ingappability” simi-
larly to the boundary states of nontrivial SPT phase,
which cannot be gapped with a specified symmetry un-
broken and bulk gap unclosed [1, 2]. On the SPT side,
the ingappability results from the quantum symmetry
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Young tableaux representations, and global axial anomaly in 1+1 dimensions

We derive the low-energy properties of SU(N) spin systems in the presence of spin rotation and
translation symmetries. Based on mixed PSU(N)-Z anomaly, the spin system cannot be gapped
with a unique ground state if the number of Young-tableaux boxes per unit cell is not divisible by
N . The SU(N) WZW model are classified into N symmetry-protected critical classes and each
spin system can only realize one of them at criticality. It implies a no-go theorem that an RG flow
is possible between two critical points only if they belong to the same symmetry-protected critical
class, as long as the underlying lattice spin models respect the imposed symmetries.
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H[N,m] were investigated by numerical and analytical solutions of the Bethe ansatz equations [41–43].
The representations [N, m] of SU(N ) are given by the totally symmetric combination of m fundamental
representations of SU(N ). The corresponding Young tableaux is

♣ ♣ ♣

︸ ︷︷ ︸

m boxes

♣

For SU(2), all the representations are of this form, with m = 2S. For SU(3), the symmetric representations
include the fundamental representation 3 and the representation 6, for m = 1 and 2, respectively. The
dimensionality n of the totally symmetric representation [N, m] is in general given by

n ≡ dim[N, m] =
(

N − 1 + m

m

)

. (7)

The Hamiltonians H[N,m] contain two-site interactions only and are invariant under global SU(N ) spin
rotations, i.e., Heisenberg interaction terms to arbitrary power [30–34,40]. Note that all the modelsH[N,m]

are integrable, due to an infinite number of operators which commute with the Hamiltonians. In this work,
we consider the models with [N, m] = [2, 1], [2, 2], [2, 3], [3, 1], [3, 2], and [4, 1].

The Hamiltonians for [N, 1], i.e., the fundamental representations, are just the nearest-neighbor Heisen-
berg models,

H[N,1] =
N

∑

i=1

SiSi+1. (8)

In general, Si is an SU(N ) representation [N, m] spin operator at site i. Since the dimension of the Lie
algebra su(N ) is N2 − 1, the spin operator Si consists of the N2 − 1 generators,

Sα
i =

1
2

∑

σ,σ′=f1,...,fn

c†iσV α
σσ′ciσ′ , (9)

where α = 1, . . . , N2 − 1, V α
σσ′ are the SU(N ) Gell-Mann matrices, and f1, . . . , fn denote the n different

spin states [15]. Trivially, SiSi+1 ≡
∑N2−1

α=1 Sα
i Sα

i+1.
For the fundamental representation [2, 1] of SU(2), the V ’s are just the Pauli matrices and the two spin

states can be classified by the eigenstates f1 =↑, f2 =↓ of Sz . For the fundamental representation [3, 1]
of SU(3), the V ’s are given by the eight Gell-Mann matrices. The matrices V for representations [3, 2] (
i.e., SU(3) representation 6) and [4, 1] ( i.e., SU(4) representation 4) are written out in Apps. B and C. In
our numerical implementations, we have scaled the Hamiltonians such that the pre-factor of the bilinear
Heisenberg term SiSi+1 is ±1 and we have dropped the constant term.

As we confirm numerically below, the low-energy behavior of the models H[N,1] is described by the
SU(N )1 WZW model, with topological coupling constant k = 1. With (1), we expect to find c = N −1 for
the central charge. The integrable spin S = 1 model we investigate, the Takhtajan–Babudjan model [30–32],
is given by

H[2,2] =
N∑

i=1

[

SiSi+1 − (SiSi+1)2
]

. (10)

The low energy physics is described by the SU(2)2 WZW model. With (1), we expect to find c = 3
2 .

Note that the criticality of this integer spin model is not inconsistent with the Haldane gap, as Haldane’s
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Constraints on the low-energy phases
• The value of the LSM index IN can be used to further constrain

the GSD or the possible universality class when the system is in 
a gapped or a critical phase, respectively:

ØGSD of a gapped phase: 

ØSU(N)k WZW CFT with transl symm :
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sections, we will discuss these constraints respectively in
more detail.

Ground-state degeneracy associated with SSB of trans-
lation symmetry — A physical implication of the LSM
index is the ingappability when the required symmetry is
respected by perturbations [23]. In the following discus-
sions, we take PSU(N)⇥Ztrans as the protecting symme-
try, where Ztrans defines the unit cell of the system. Then,
by considering a family of the LSM indices pIN associ-
ated with lower translation symmetries pZtrans ✓ Ztrans

for p 2 N of an SU(N) spin model, one can obtain a
restriction on the ground-state degeneracy (G.S. deg) of
gapped phases of this model [supple]. In general, the G.S.
deg must be a multiple of N/(IN , N), namely

Ndeg 2 N

(IN , N)
N, (13)

with IN defined in Eq. (11). In the first two rows of
Table I, we list the exactly solvable SU(3) trimer and 8-
VBS models – analogs of SU(2) dimer and ALKT models
– that breaks and restorest a single-site translation sym-
metry, respectively. Their G.S. degs in the fourth column
are consistent with the G.S.-deg constraints by Eq. (17).

Constraints on the low-energy critical theories — The
other possibility of an SU(N) model with a nontrivial
LSM index IN is the emergence of an infrared critical the-
ory that preserves all the microscopic symmetries. How-
ever, the corresponding low-energy e↵ective symmetries
would enjoy an ’t Hooft anomaly associated to the value
of IN . While the critical theory is described by a WZW
CFT, such an anomaly is in relation to, besides the rep-
resentation of PSU(N) ⇥ Z, the a�ne (Lie) algebra of
this CFT. YY: does chiral algebra mean chiral anomaly?

We first focus on SU(N)k WZW CFTs – as they are
the most concerned critical theories of SU(N) spin mod-
els. The actions is

kI(g) =
k

8⇡

Z

M2

dtdxTr
�
@µg

�1@µg
�
+ k�WZ,

�WZ =
1

12⇡

Z

B:@B=M2

dtdxdyTr(dgg�1)3, (14)

where g is an SU(N) matrix-valued field and “Tr” is
the conventional matrix trace. The Wess-Zumino term
�WZ is defined as an extended integral onto an auxiliary
manifold B whose boundary is M2, and a consistent CFT
is independent on such extension. The lattice translation
symmetry becomes a discrete “axial” symmetry in the
continuum limit [37]

g ! e2⇡im/Ng, m 2 {0, 1, ..., N � 1}, (15)

generating a Zn group, with n = N/(m,N), which is a
subgroup of the center of SU(N). (Note that any e↵ec-
tive symmetry at low-energy associated to the transla-
tion symmetry must be a subgroup of Z.) On the other

hand, the on-site spin-rotation symmetry corresponds to
the vector PSU(N) symmetry, a diagonal subgroup of a
larger SU(N)L⇥SU(N)R symmetry, in the WZWmodel.
As PSU(N)⇥Zn is exact as a global symmetry of the

(quantum) WZW theory, there might be ’t Hooft anoma-
lies of it, including the mixed one between PSU(N) and
Zn and the one for Zn itself [38]. However, only the mixed
anomaly is relevant to the physics characterized by the
LSM index, while the the other one is an “emergent”
anomaly which only characterizes ingappability against
infinitesimal perturbations around criticality [23? , 24]
that is irrelevant to the situation we consider here.
One way to visualize the mixed anomaly in the WZW

model is to make use of the equivalence between SU(N)k
WZW model to U(kN)1/U(k) constrained Dirac fermion
(CDF) theory [39, 40] and then compute the Zn axial
anomaly in the CDF theory coupled to a background
PSU(N) gauge field. More explicitly, we show that
[supple] there is a phase ambiguity of the WZW/CDF
partition function with a background PSU(N) field
under the Zn transformation (14), which takes the

form exp
⇣

2⇡ikm
N

R
M2

w(P )
⌘
, where P is the underlying

PSU(N) bundle (over M2) and w(P ) 2 H2(M2,ZN ) ⇠=
ZN . From this fact, we deduce that the mixed PSU(N)�
Zn anomaly for any SU(N)k WZW theory with m de-
fined by Eq. (14) is characterized by a mod-N integer

km mod N. (16)

Note that the anomaly computed here is actually the
mixed PSU(N)� Z anomaly discussed before, since the
value of the mixed anomaly is unchanged when Zn is
extended to Z (by nZ); see similar discussions in [23, 24].

Then, by the definition of the LSM index (9) and also
the way we represent it, we conclude that an SU(N)
model with an index IN at the lattice scale, when flowing
to some SU(N)k WZW CFT in the infrared, must obey

IN = km mod N. (17)

A summary of the generalized LSMA theorem here A
spin system with its LSM index as IN can only realize
one of these N SPC classes, satisfying km = IN mod N ,
when PSU(N)⇥Ztrans symmetry is possessed by the spin
Hamiltonian.
Generalized LSMA theorem: The low-energy states
in gapped phases of SU(N) spin systems cannot be triv-
ially gapped in the thermodynamical limit if the total
number of Young-tableaux boxes per unit cell is not di-
visible by N with the PSU(N) spin rotation symmetry
and Ztrans translation symmetry strictly respected. The
ground-state degeneracy (G.S. deg) must be a multiple of
N/(IN , N), namely

Ndeg 2
N

(IN , N)
N, (18)
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=> For N = 2, (2) agrees with Furuya-Oshikawa (PRL, 
17)
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The classification of quantum phases is a central is-
sue in condensed matter physics, where considerable
recent progresses were initiated in strongly interacting
many-body systems. In particular, various topologi-
cal phases with unbroken symmetries, e.g. symmetry-
protected trivial (SPT) ordered phases [1, 2] and topo-
logical ordered phases enrich the phase diagram beyond
conventional Landau-Ginzburg-Wilson spontaneously-
symmetry-breaking paradigm. Therefore, the constraints
in the appearance of symmetries on phase diagrams play

essential roles since they rule out the existence of a large
class of forbidden gapped or gapless phases when the cer-
tain symmetry is respected. For gapped phases, the re-
striction on the ground-state degeneracy allows a unified
understanding on the low-energy spectral properties. For
example, Lieb-Schultz-Mattis (LSM) theorem [3] and its
generalization LSMOH theorem by Oshikawa and Hast-
ings [4, 5] states that the ground states cannot be trivially
gapped with a unique ground state if the particle number
per unit cell is fractional and both the translation sym-
metry and charge U(1) conservation are preserved. As
a part of gapless phases, critical phase classifications is
a key ingredient in the understanding of universal criti-
cal behaviors of various phase transitions. However, the
classification of critical phases still remains open and the
related proposal is only given in SU(2) spin chains [6].
Furthermore, many stable critical phases have been found
experimentally and numerically [7, 8], and the reason of
such stability is not completely understood.

In reality, the constraints on phase diagrams with more
general symmetries than U(1) and SU(2) are within
intense interest. For example, SU(N) “spin” systems
with N > 2 are realized in ultracold atoms on op-
tical lattices [9–16] and also in some spin-orbital sys-
tems [? ], although SU(N) systems was initially intro-
duced as theoretical toy models to understand “physical”
SU(2) spins. Thus the study related with the phase di-
agrams of SU(N) spin systems is of realistic interest in
its own. Furthermore, although spin-rotation and trans-
lation symmetries are imposed, symmetry enhancements
cannot be excluded, e.g. phases with emergent symme-
tries. The symmetry can be enhanced on the lattice such
as that the spin-1 chain has an explicit SU(3) symmetry
in the Uimin-Lai-Sutherland model [17–19]. In addition,
higher symmetries can also emerge at the thermodynam-
ical limit, e.g. the emergent SU(3) symmetry of critical
spin-2 chain [20]. Therefore, the generalized SU(N) spin
models are necessary in understanding the symmetry en-
hancement.

In this Letter, we focus on the fundamental constraints
on the phase diagrams of SU(N) spin chains in gen-
eral representations with SU(N) spin rotation symmetry
and lattice translation symmetry respected. More specif-
ically, we obtain the restriction of ground-state degener-
acy of gapped phases generalizing Lieb-Schultz-Mattis-
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(only at zero temperature), while the latter happens in
a system with degenerate gapped ground states with the
periodicity larger than the one of the physical Hamilto-
nian, e.g., dimerized phase of SU(2) spin chains.

(ii) Symmetry-respecting critical phases. If the whole
symmetry is preserved, the system must be in a gapless
phase. In simpler situations, a system in such a phase
– at a critical point in particular – is described by a
universality class, e.g. a WZW model. In this case, how-
ever, the corresponding low-energy symmetry (that is,
PSU(N)⇥ Z) would be anomalous.

The value of a nontrivial LSM index can further, quan-
titatively, give a lower bound of the ground-state degen-
eracy due to SSB of translation symmetry in case (i),
and constrain, by anomaly-matching argument, the pos-
sible WZW universality classes in case (ii). These lead
to a natural generalization of the original LSMA theo-
rem and a classification of symmetry-protected critical
(SPC) phases for SU(N) spin chains. In the following
sections, we will discuss these constraints respectively in
more detail.

Ground-state degeneracy associated with SSB of trans-
lation symmetry — A physical implication of the LSM
index is the ingappability when the required symmetry is
respected by perturbations [? ]. In the following discus-
sions, we take PSU(N)⇥Ztrans as the protecting symme-
try, where Ztrans defines the unit cell of the system. Then,
by considering a family of the LSM indices pIN associ-
ated with lower translation symmetries pZtrans ✓ Ztrans

for p 2 N of an SU(N) spin model, one can obtain a
restriction on the ground-state degeneracy (G.S. deg) of
gapped phases of this model [supple]. In general, the G.S.
deg must be a multiple of N/(IN , N), namely

Ndeg 2 N

(IN , N)
N, (17)

with IN defined in Eq. (??). In the first two rows of Ta-
ble ??, we list the exactly solvable SU(3) trimer and 8-
VBS models – analogs of SU(2) dimer and ALKT models
– that breaks and restorest a single-site translation sym-
metry, respectively. Their G.S. degs in the fourth column
are consistent with the G.S.-deg constraints by Eq. (??).

Constraints on the low-energy critical theories — The
other possibility of an SU(N) model with a nontrivial
LSM index IN is the emergence of an infrared critical the-
ory that preserves all the microscopic symmetries. How-
ever, the corresponding low-energy e↵ective symmetries
would enjoy an ’t Hooft anomaly associated to the value
of IN . While the critical theory is described by a WZW
CFT, such an anomaly is in relation to, besides the rep-
resentation of PSU(N) ⇥ Z, the a�ne (Lie) algebra of
this CFT. YY: does chiral algebra mean chiral anomaly?

We first focus on SU(N)k WZW CFTs – as they are
the most concerned critical theories of SU(N) spin mod-

els. The actions is

kI(g) =
k

8⇡

Z

M2

dtdxTr
�
@µg

�1@µg
�
+ k�WZ,

�WZ =
1

12⇡

Z

B:@B=M2

dtdxdyTr(dgg�1)3, (18)

where g is an SU(N) matrix-valued field and “Tr” is
the conventional matrix trace. The Wess-Zumino term
�WZ is defined as an extended integral onto an auxiliary
manifold B whose boundary is M2, and a consistent CFT
is independent on such extension. The lattice translation
symmetry becomes a discrete “axial” symmetry in the
continuum limit [? ]

g ! e2⇡im/Ng, m 2 {0, 1, ..., N � 1}, (19)

generating a Zn group, with n = N/(m,N), which is a
subgroup of the center of SU(N). (Note that any e↵ec-
tive symmetry at low-energy associated to the transla-
tion symmetry must be a subgroup of Z.) On the other
hand, the on-site spin-rotation symmetry corresponds to
the vector PSU(N) symmetry, a diagonal subgroup of a
larger SU(N)L⇥SU(N)R symmetry, in the WZWmodel.

As PSU(N)⇥Zn is exact as a global symmetry of the
(quantum) WZW theory, there might be ’t Hooft anoma-
lies of it, including the mixed one between PSU(N) and
Zn and the one for Zn itself [? ]. However, only the mixed
anomaly is relevant to the physics characterized by the
LSM index, while the the other one is an “emergent”
anomaly which only characterizes ingappability against
infinitesimal perturbations around criticality [? ? ? ]
that is irrelevant to the situation we consider here.

One way to visualize the mixed anomaly in the WZW
model is to make use of the equivalence between SU(N)k
WZW model to U(kN)1/U(k) constrained Dirac fermion
(CDF) theory [? ? ] and then compute the Zn axial
anomaly in the CDF theory coupled to a background
PSU(N) gauge field. More explicitly, we show that
[supple] there is a phase ambiguity of the WZW/CDF
partition function with a background PSU(N) field
under the Zn transformation (??), which takes the

form exp
⇣

2⇡ikm
N

R
M2

w(P )
⌘
, where P is the underlying

PSU(N) bundle (over M2) and w(P ) 2 H2(M2,ZN ) ⇠=
ZN . From this fact, we deduce that the mixed PSU(N)�
Zn anomaly for any SU(N)k WZW theory with m de-
fined by Eq. (??) is characterized by a mod-N integer

km mod N. (20)

Note that the anomaly computed here is actually the
mixed PSU(N)� Z anomaly discussed before, since the
value of the mixed anomaly is unchanged when Zn is
extended to Z (by nZ); see similar discussions in [? ? ].

Then, by the definition of the LSM index (??) and
also the way we represent it, we conclude that an SU(N)

symm:

vector

axial
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We derive the low-energy properties of SU(N) spin systems in the presence of spin rotation and
translation symmetries. Based on mixed PSU(N)-Z anomaly, the spin system cannot be gapped
with a unique ground state if the number of Young-tableaux boxes per unit cell is not divisible by
N . The SU(N) WZW model are classified into N symmetry-protected critical classes and each
spin system can only realize one of them at criticality. It implies a no-go theorem that an RG flow
is possible between two critical points only if they belong to the same symmetry-protected critical
class, as long as the underlying lattice spin models respect the imposed symmetries.
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Hom(⌦̃spin
c

3
(BZ), U(1)) ⇠= U(1) ⇠= R/Z (1)

LSM index I = (total charges per unit cell) mod 1.
(2)

H3(PSU(N)⇥ Z, U(1))/H3(PSU(N), U(1)) ⇠= ZN (3)

LSM index IN = (# of YT boxes per unit cell) mod N.
(4)

I2 = 2s mod 2. (5)

IN 6= 0 mod N. (6)

GSD 2 N

gcd(IN , N)
N, (7)

U(1) :  ! ei� 

Z :  ! eikF�z = ei⇡⌫�z (8)

Z(A)
axial�! e2⇡i⌫⇥integerZ(A) (9)

PSU(N) : g ! wgw�1, w 2 SU(N)

Zn(trans) : g ! e2⇡im/Ng, m 2 {0, 1, ..., N � 1} (10)

n = N/ gcd(m,N) (11)

The classification of quantum phases is a central is-
sue in condensed matter physics, where considerable

recent progresses were initiated in strongly interacting
many-body systems. In particular, various topologi-
cal phases with unbroken symmetries, e.g. symmetry-
protected trivial (SPT) ordered phases [1, 2] and topo-
logical ordered phases enrich the phase diagram beyond
conventional Landau-Ginzburg-Wilson spontaneously-
symmetry-breaking paradigm. Therefore, the constraints
in the appearance of symmetries on phase diagrams play
essential roles since they rule out the existence of a large
class of forbidden gapped or gapless phases when the cer-
tain symmetry is respected. For gapped phases, the re-
striction on the ground-state degeneracy allows a unified
understanding on the low-energy spectral properties. For
example, Lieb-Schultz-Mattis (LSM) theorem [3] and its
generalization LSMOH theorem by Oshikawa and Hast-
ings [4, 5] states that the ground states cannot be trivially
gapped with a unique ground state if the particle number
per unit cell is fractional and both the translation sym-
metry and charge U(1) conservation are preserved. As
a part of gapless phases, critical phase classifications is
a key ingredient in the understanding of universal criti-
cal behaviors of various phase transitions. However, the
classification of critical phases still remains open and the
related proposal is only given in SU(2) spin chains [6].
Furthermore, many stable critical phases have been found
experimentally and numerically [7, 8], and the reason of
such stability is not completely understood.

In reality, the constraints on phase diagrams with more
general symmetries than U(1) and SU(2) are within
intense interest. For example, SU(N) “spin” systems
with N > 2 are realized in ultracold atoms on op-
tical lattices [9–16] and also in some spin-orbital sys-
tems [? ], although SU(N) systems was initially intro-
duced as theoretical toy models to understand “physical”
SU(2) spins. Thus the study related with the phase di-
agrams of SU(N) spin systems is of realistic interest in
its own. Furthermore, although spin-rotation and trans-
lation symmetries are imposed, symmetry enhancements
cannot be excluded, e.g. phases with emergent symme-
tries. The symmetry can be enhanced on the lattice such
as that the spin-1 chain has an explicit SU(3) symmetry
in the Uimin-Lai-Sutherland model [17–19]. In addition,
higher symmetries can also emerge at the thermodynam-
ical limit, e.g. the emergent SU(3) symmetry of critical
spin-2 chain [20]. Therefore, the generalized SU(N) spin
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The classification of quantum phases is a central is-
sue in condensed matter physics, where considerable

recent progresses were initiated in strongly interacting
many-body systems. In particular, various topologi-
cal phases with unbroken symmetries, e.g. symmetry-
protected trivial (SPT) ordered phases [1, 2] and topo-
logical ordered phases enrich the phase diagram beyond
conventional Landau-Ginzburg-Wilson spontaneously-
symmetry-breaking paradigm. Therefore, the constraints
in the appearance of symmetries on phase diagrams play
essential roles since they rule out the existence of a large
class of forbidden gapped or gapless phases when the cer-
tain symmetry is respected. For gapped phases, the re-
striction on the ground-state degeneracy allows a unified
understanding on the low-energy spectral properties. For
example, Lieb-Schultz-Mattis (LSM) theorem [3] and its
generalization LSMOH theorem by Oshikawa and Hast-
ings [4, 5] states that the ground states cannot be trivially
gapped with a unique ground state if the particle number
per unit cell is fractional and both the translation sym-
metry and charge U(1) conservation are preserved. As
a part of gapless phases, critical phase classifications is
a key ingredient in the understanding of universal criti-
cal behaviors of various phase transitions. However, the
classification of critical phases still remains open and the
related proposal is only given in SU(2) spin chains [6].
Furthermore, many stable critical phases have been found
experimentally and numerically [7, 8], and the reason of
such stability is not completely understood.

In reality, the constraints on phase diagrams with more
general symmetries than U(1) and SU(2) are within
intense interest. For example, SU(N) “spin” systems
with N > 2 are realized in ultracold atoms on op-
tical lattices [9–16] and also in some spin-orbital sys-
tems [? ], although SU(N) systems was initially intro-
duced as theoretical toy models to understand “physical”
SU(2) spins. Thus the study related with the phase di-
agrams of SU(N) spin systems is of realistic interest in
its own. Furthermore, although spin-rotation and trans-
lation symmetries are imposed, symmetry enhancements
cannot be excluded, e.g. phases with emergent symme-
tries. The symmetry can be enhanced on the lattice such
as that the spin-1 chain has an explicit SU(3) symmetry
in the Uimin-Lai-Sutherland model [17–19]. In addition,
higher symmetries can also emerge at the thermodynam-
ical limit, e.g. the emergent SU(3) symmetry of critical
spin-2 chain [20]. Therefore, the generalized SU(N) spin
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axial�! e2⇡i⌫⇥integerZ(AU(1)) (9)
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The classification of quantum phases is a central is-
sue in condensed matter physics, where considerable
recent progresses were initiated in strongly interacting
many-body systems. In particular, various topologi-
cal phases with unbroken symmetries, e.g. symmetry-
protected trivial (SPT) ordered phases [1, 2] and topo-
logical ordered phases enrich the phase diagram beyond
conventional Landau-Ginzburg-Wilson spontaneously-
symmetry-breaking paradigm. Therefore, the constraints
in the appearance of symmetries on phase diagrams play
essential roles since they rule out the existence of a large
class of forbidden gapped or gapless phases when the cer-
tain symmetry is respected. For gapped phases, the re-
striction on the ground-state degeneracy allows a unified
understanding on the low-energy spectral properties. For
example, Lieb-Schultz-Mattis (LSM) theorem [3] and its
generalization LSMOH theorem by Oshikawa and Hast-
ings [4, 5] states that the ground states cannot be trivially
gapped with a unique ground state if the particle number
per unit cell is fractional and both the translation sym-
metry and charge U(1) conservation are preserved. As
a part of gapless phases, critical phase classifications is
a key ingredient in the understanding of universal criti-
cal behaviors of various phase transitions. However, the
classification of critical phases still remains open and the
related proposal is only given in SU(2) spin chains [6].
Furthermore, many stable critical phases have been found
experimentally and numerically [7, 8], and the reason of
such stability is not completely understood.
In reality, the constraints on phase diagrams with more

general symmetries than U(1) and SU(2) are within
intense interest. For example, SU(N) “spin” systems
with N > 2 are realized in ultracold atoms on op-
tical lattices [9–16] and also in some spin-orbital sys-
tems [? ], although SU(N) systems was initially intro-
duced as theoretical toy models to understand “physical”
SU(2) spins. Thus the study related with the phase di-
agrams of SU(N) spin systems is of realistic interest in
its own. Furthermore, although spin-rotation and trans-
lation symmetries are imposed, symmetry enhancements
cannot be excluded, e.g. phases with emergent symme-
tries. The symmetry can be enhanced on the lattice such
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Model YT IN GSD IR CFT; m Mixed anomaly

SU(3) trimer model [43] 1 mod 3 3 2 3N - -

SU(3) 10-VBS model [43] 0 mod 3 1 2 1N - -

SU(6) 70-VBS model [44] 3 mod 6 2 2 2N - -

S-3/2 TBmodel[45, 46] 1 mod 2 - SU(2)3 WZW; 1 1 mod 2

H
[3,2] AJ model[47, 48] 2 mod 3 - SU(3)2 WZW; 1 2 mod 3

SU(3) 1⇥2-YT HAF[49, 50] 2 mod 3 - SU(3)1 WZW; 2 2 mod 3

SU(9) 2⇥1-YT HAF[51] 2 mod 9 - SU(9)1 WZW; 2 2 mod 9

SU(3) 2-leg ladder [52] ⌦ 2 mod 3 - SU(3)1 WZW; 2 2 mod 3

TABLE I. Examples of gapped and critical SU(N) spin systems. For the first two gapped exactly solvable models, the actual
GSDs are consistent with our constraint. For the following critical models, the numerically proposed IR CFTs in the fifth column
obey SPC classification specified by Eq. (10). VBS: Valence-bond-solid; TB: Takhtajan-Babujian; AJ: Andrei-Johannesson.

the sum of the associated indices of these spin chains,
which equals the total number of YT boxes

P
�i

b�i per
unit cell in the original model, namely, Eq. (5). In Ta-
ble I (the third column), we list the LSM indices for sev-
eral SU(N) models with given YT reps. per unit cell.
A system with a nonzero LSM index (IN 6= 0 mod N)
must exhibit nontrivial low-energy behaviors in connec-
tion with the ingappability mentioned earlier, as we will
elaborate in the following.

Ground-state degeneracy associated with a spontaneous
broken translation symmetry — First let us assume that
the system has a non-zero gap above the ground state(s).
In this case, a non-zero LSM index implies GSD, as in
the case of the existing LSM-type theorems. Here we
derive the degeneracy based on the mixed anomaly. By
considering a family of the LSM indices pIN associated
with lower translation symmetries pZtrans ✓ Ztrans for
p 2 N of an SU(N) spin model, we obtain a restriction
on the GSD of any gapped phase of this model [54]

GSD 2 N

gcd(IN , N)
N, (6)

and the translation symmetry is spontaneously broken to
at least N/gcd(IN , N) of unit cells, realizable by exactly
solvable models [44]. This indeed corresponds to the LSM
theorem for the SU(N) spin chain [2], with an explicit
statement on GSD. In the first two rows of Table I, we
list the exactly solvable SU(3) trimer and 8-VBS models
– analogs of SU(2) dimer and AKLT models – whose
ground states break and respect a single-site translation
symmetry, respectively. Their GSDs (shown in the fourth
column) are consistent with the constraint (6).

Constraint on critical WZW SU(N)k universality
classes — Next we consider the other possibility, namely
when the system is gapless. While the usual LSM-type
theorems do not give any further restriction in this case,

the anomaly-based approach leads to constraints on the
possible universality class of the gapless critical phase.
The most natural universality classes of a critical SU(N)
spin model is the SU(N) WZW theories, with the global
SU(N) and conformal symmetries. Their action is given
as

kI(g) =
k

8⇡

Z

M2

dtdxTr
�
@µg

�1@µg
�
+ k�WZ,

�WZ =
1

12⇡

Z

B:@B=M2

dtdxdyTr(dgg�1)3, (7)

where k is an integer called level, g is an SU(N) matrix-
valued field, and Tr is the conventional matrix trace. The
level k characterizes the SU(N) WZW theory, and we
denote the SU(N) WZW theory of level k as SU(N)k
WZW. The Wess-Zumino term �WZ is defined as an
extended integral onto an auxiliary manifold B whose
boundary is M2, and a consistent CFT is independent
on such extension. The lattice translation symmetry in
the infrared becomes a discrete “axial” symmetry [55]

g ! e2⇡im/Ng, (8)

which forms a Zn group with n = N/gcd(m,N) and the
integer m defined modulo N . (Note that any low-energy
e↵ective symmetry associated to the translation symme-
try must be a subgroup of Z.) On the other hand, the
on-site spin-rotation symmetry corresponds to the vec-
tor PSU(N) symmetry, a diagonal subgroup of a larger
[SU(N)L⇥SU(N)R]/ZN symmetry, in the WZW theory.

As PSU(N)⇥Zn is exact as a global symmetry of the
(quantum) WZW theory, there might be ’t Hooft anoma-
lies of it, including the mixed one between PSU(N) and
Zn and the one for Zn itself [56]. However, only the mixed
anomaly is relevant to the physics characterized by the
LSM index, while the the other one is an “emergent”
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In summary, if a spin model with an exact SU(N) spin-rotation 
and transl symm has a nontrivial LSM index, i.e., the total 
umber of Young-tableau boxes per unit cell is not divisible by N, 
the system must have either 

• degenerate gapped ground states, with the multiplicity (1), or 

• gapless excitations / symm-protected critical states (SPC). If the 
low-energy SPC is given by an SU(N) WZW theory, its level is 
constrained by (2). 
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Conclusion
• We apply the idea of (’t Hooft) anomaly matching to study 1d 

condensed matter systems – many-body systems in general – in 
the presence of both lattice transl and some on-site symm.

Hlattice
Gsite � ℤtrans

UV

IR
HEFT 

Gvector � ℤaxial
There is a potential disc 
chiral anomaly at IR

It can be traced back to 
the non-on-site nature of 
(part of) the lattice symm

By “matching” the IR anomaly

we identify a top. index, the 
LSM index, for any lattice 
system to characterize its phase

Such an anomaly can diagnose 
the ingappability of the system!
[Hsieh et al. 14]
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