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W mod 2 can be seen from the product of two rotation eigenvalues!



Fu-Kane formula
• Z2 index for Quantum Spin Hall insulators (2D, TR)
Requires a careful gauge fixing and integration of 
Pfaffian in k space

• With additional inversion symmetry
Fu-Kane formula: ν = Πk=TRIMs ξk = ±1

Easy & helpful for material search!

Combination of inversion eigenvalues indicates Z2 QSH
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Fu-Kane formula
• Z2 index for Quantum Spin Hall insulators (2D, TR)
Requires a careful gauge fixing and integration of 
Pfaffian in k space

• With additional inversion symmetry
Fu-Kane formula: ν = Πk=TRIMs ξk = ±1

Easy & helpful for material search!

Combination of inversion eigenvalues indicates Z2 QSH
Irreducible representations of a more general space group

more general topology including HOTI

(0,0) (π,0)

(0,π) (π,π)

−−

++

++

++

cf. Professor Tay-Rong Chang’s talk



“topological” insulators
1. Presense of protected gapless edge/surface states

2. Winding number (e.g. Chern number, Z2 QSH index)

3. Obstruction in adiabatically connectinng to trivial states
    Most general definition / applicable to interacting systems

A

B

C

D



• Basics of symmetry indicators

• What can we “see” from it?
1. Conventional topological insulators (Chern, Z2 TI, etc)
2. Higher-order topological insulators
3. Weyl semimetals
4. Fragile topology
5. Topological superconductors
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Characterizing band 
structure by irreducible 

representations
Po-Vishwanath-Watanabe, Nat. Commun. (2017)

Related works:
Bradlyn-…-Bernevig (2017)
Shiozaki-Sato-Gomi (2018)
Song-…-Fang (2018)
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 band structures
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Representations in
 band structures

Hemstreet & Fong (1974)



Step-by-step process
Given symmetry setting (e.g., space group G, TR, spin-orbit)

1. List up all different types of high-sym k (points, lines, planes)

2. For each k, find the little group Gk = { g in G | gk = k + G }

3. Find irreps ukα (α = 1, 2, …) of Gk

4. Count the number of times ukα appears in band structure {nkα}

※ Note compatibility relations among {nkα}

5. Form a vector b = (nk11, nk12, … nk21, nk22, …)
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Example: 2D lattice with 
inversion symmetry

k

- k Γ = (0,0) X = (π,0)

Y = (0,π) M = (π,π)

−

+

+

+

Γ = (0,0)

X = (π,0)

Y = (0,π) M = (π,π)

(Γ,X,Y,M) : (−,+,+,+)Inversion I2 = +1 
→ eigenvalues +1 or -1

b = (0,1,1,0,1,0,1,0)



Band structure space {BS}
• Consider a vector b = {nkα} = (nk11, nk12, … nk21, nk22, …) 

satisfying all compatibility relations at high-sym momenta

• Form a set b’s (band structure space) :

{BS} = { b = {nkα} | satisfying compatibility relations } ⊂  ZdBS

lattice of {BS} ⊂  ZdBS



Trivial subset of {BS}



Atomic Insulators
TB model but no hopping (trivial flat bands)

Product state in real space (trivial)　⇔　Wannier orbitals



Example: 2D lattice with 
inversion symmetry

unit cell

We have to specify the position x and the orbital type

1. Choose x in unit cell.                                 e.g. x =

2. Find little group (site-symmetry) Gx.        Gx = {e, I} at x = 

3. Choose an orbit (an irrep of Gx).                (I = +1)          (I = −1) 



(+,+,+,+) (+,−,+,−) (+,+,−,−) (+,−,−,+)

(−,−,−,−) (−,+,−,+) (−,−,+,+) (−,+,+,−)

Irrep contents of AI

Γ = (0,0) X = (π,0)

Y = (0,π) M = (π,π)

(Γ,X,Y,M) :

(Γ,X,Y,M) :

Momentum space

Real space



k = (0, π)
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k = (0, π)

I = +1

k = (0, 0)

I = +1

k = (π, π)

I = −1

k = (π, 0)

I = −1



Atomic insulator space {AI}
• Consider a vector a = {nkα} = (nk11, nk12, … nk21, nk22, …) 

corresponding to atomic insulators. They automatically satisfy 
all compatibility relations.

• Form the set a’s (atomic insulator space) :

{AI} = { a = {nkα} | corresoinding to AI} ⊂  ZdAI

lattice of {AI}

(+,+,+,+) (+,−,+,−)
a1 = (1,0,1,0,1,0,1,0) a2 = (1,0,0,1,0,1,1,0)



Diagnosing the 
topology



(+,+,+,+) (+,−,+,−) (+,+,−,−) (+,−,−,+)

(−,−,−,−) (−,+,−,+) (−,−,+,+) (−,+,+,−)

(Γ,X,Y,M) :

(Γ,X,Y,M) :

Atomic Insulators

Band Structures

Γ = (0,0) X = (π,0)

Y = (0,π) M = (π,π)

{BS}: set of b’s

{AI}: set of a’s

(Γ,X,Y,M) : b1 = (+,−,−,+)

b3 = (+,+,+,−)

b2 = (++,+−,+−,++)

b4 = (++,++,++,−−)



Compare {BS} and {AI}
• {BS} \ {AI}: subtraction of two sets
poor mathematical structure. like vector-bundle classification.

• {BS} / {AI}: quotient of Abelian groups {BS} < {AI}
symmetry indicators: stable topology like K-theory.

need to allow “negative integers” in {BS}, {AI}

lattice of {BS} lattice of {AI}

Po-Vishwanath-Watanabe
Nat. Commun. (2017)
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Compare {BS} and {AI}
• {BS} \ {AI}: subtraction of two sets
poor mathematical structure. like vector-bundle classification.

• {BS} / {AI}: quotient of Abelian groups {BS} < {AI}
symmetry indicators: stable topology like K-theory.

need to allow “negative integers” in {BS}, {AI}

lattice of {BS}

X = Z2 × Z2

lattice of {AI}

Po-Vishwanath-Watanabe
Nat. Commun. (2017)
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X = Z2 × Z2 × Z2 × Z4

Symmetry indicator for 
inversion &TRS with SOC in 3D 

Po-Vishwanath-Watanabe, Nat. Commun. (2017)
Chen Fang & Liang Fu, arXiv:1709.01929
Khalaf-Po-Vsiwanath-Watanabe, PRX (2018)

Sum of inversion parities
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weak TI
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X = Z2 × Z2 × Z2 × Z4

weak TI strong TI + α

Symmetry indicator for 
inversion &TRS with SOC in 3D 

Po-Vishwanath-Watanabe, Nat. Commun. (2017)
Chen Fang & Liang Fu, arXiv:1709.01929
Khalaf-Po-Vsiwanath-Watanabe, PRX (2018)

Sum of inversion parities



Symmetry indicator for 
rotation symmetric systems in 2D

• n-fold rotation → Chern number C mod n

• Extention to interacting systems using twisted 
boundary condition

Matsugatani-Ishiguro-Shiozaki-Watanabe PRL (2018)

Fang-Gilbert-Bernevig PRB (2012)

Γ = (0,0) X = (π,0)

Y = (0,π) M = (π,π)
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+ (−1)C = product of rotation eigenvalues

In our language, X = Zn
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X = Z2 × Z2 × Z2 × Z4

Weyl SMA. Turner, …, A. Vishwanath (2010)

{BS}: “band structure” can be semimetal
(band touching at generic points in BZ)

Symmetry indicator for TR breaking
inversion symmetric system in 3D 

See also 
Song-Zhang-Fang PRX (2018)
for nodal semimetals in the ansence of SOC
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Honeycomb lattice with SOC

Wannier orbital Exponential decay of Wannier

M K

fragile topo.

trivial

trivial

Po-Watanabe-Vishwanath PRL (2018)

Stability against interaction:
Else-Po-Watanabe arXiv:1809.02128
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Honeycomb lattice with SOC

Wannier orbital Exponential decay of Wannier

M K

fragile topo.

trivial

trivial

Po-Watanabe-Vishwanath PRL (2018)

Stability against interaction:
Else-Po-Watanabe arXiv:1809.02128

A

B

C

D

a honeycomb

a triangular

a honeycomb − a honeycomb
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Weak-coupling assumption

We can extract indicators for SCs 
from the band structure in the normal phase!

Ono-Yanase-Watanabe, arXiv:1811.08712



p+ip SC with nodes
(SC version of Weyl semimetal)

Ono-Yanase-Watanabe, arXiv:1811.08712



Summary

PRX (2018)

Nat. Commun. (2017) Sci. Adv. (2018)

PRL (2018), arXiv:1809.02128

PRL (2018)

PRB (2018), arXiv:1811.08712

• Extract band topology by comparing {BS} and {AI}

• Applications include
1. Conventional topological insulators (Chern, Z2 TI, etc)
2. Higher-order topological insulators
3. Weyl semimetals
4. Fragile topology
5. Topological superconductors



A useful fact

{BS} = {b = {nkα} | satisfying compatibility rels.} ⊂  ZdBS

{AI} = {a = {nkα} | corresoinding to AI} ⊂  ZdAI

dBS = dAI

(+,+,+,−) = 1/2 [ (+,+,+,+) + (+,+,−,−) + (+,−,+,−) − (+,−,−,+) ] 
b a1 a2 a3 a4

lattice of {BS} lattice of {AI}

We do not have to solve compatibility relations to find out {BS}!

Po-Vishwanath-Watanabe
Nat. Commun. (2017)


