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|. Motivation:Topological Order in Open
System



Motivation

mMost physical qubits are not robust against quantum
decoherence, i.e., leaking its quantum information into the
environment.

mThe robust qubits play key roles for reliable quantum
computations. Looking for robust qubit is a urgent task.

mThe fundamental way of making robust qubit not by fine
tuning is to implement it based on physical principle.

=One way is to make the qubit topological, i.e., protected
by the topological order.



ll. Majorana zero mode & Topological qubit



Majorana zero modes (MZMs)

mThe Dirac fermion localizing on a topological defect (such
as monopole, string or domain wall) results in MZMs. See
Jackiw-Rebbi or Jackiw-Rebbi.

mIn some sense, a MZM is half of the Dirac fermion, and
squares itself to unity. Two different MZMs anti-commute
with each other.
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Kitaev’s chain: 1D superconductor

mThe Z 2 1D p-wave superconductor is a model of TSc.
N—1

N
T
Hp =w Y (di—=dl,)(diga+d ) 420> (dldi=1/2),  [(=1)=%% Hp] =0

mThis can be seen by introducing the fractional Majorana fields
N-—1

N
Hp ~v ZV%—W% + w Z Y2iY2i4+-1

®mThe edge Majorana modes are robust and protected by Z 2.
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mTwo phases: one has no dangling Majorana modes, one does.



-
Topological Qubit

- We can pair up two spatially separated Majorana
zero modes to form a qubit. We call it topological
qubit.

- However, this is not really a qubit due to Z2
parity: iv172[0) =[0),  iv172ll) = —|1)

- Thus, we cannot form a state like |0y + ¢¢|1) as
long as Z2 parity is preserved.



.
Way out

®One way-out is to use 4 MZMs to form one topological
qubit by just restricting to the parity even states, e.qg., a

logical qubit as al00) + b|11)

mAnother way-out is to couple the MZMs to the environment
so that the MZMs are now open system, which can no
longer preserve Z2 parity.

mThe 2" way is what we will consider in this talk. So, 2
MZMs make one topological qubit.



Fermionic or Bosonic environments

m In this work, we consider two ways of coupling the Kitaev’s chains to
the environments:

1. The fermionic channel:
Z/Ya,oa ) OT — _Oa

These interactions breaks the parity symmetry.

2. The bosonic channel:

1172012 + 73714034,  or 1173013 + 7271024 , Ol = 0w

These interactions preserve the parity symmetry. We will see this will
cause different decoherence patterns from the fermionic ones.



-
MZMs as Open System

- Hamiltonian: Hyoar = Hprope + HOM™) + V7

env

Hprobe =0 9 V = Z Ba’YaOa + Z Bab’Ya/YbOab

a>b

- Environment operator, €.g. Qs = ¥a — %}  Oap = tath}
- They are assumed to Ohmic-type:

S () = co(Quw e /To . Q>0

spec -

- They obey the locality constraint:

(O1(1)O:(t)) =0



lll. Reduced dynamics



e
RDM in Interaction picture

pP(T) =U(7) po U'(7) po = pmo @ [0)e(0|

U(r) =T =7 VIEd" V= } % 0[(1) Oyt 7] := Bt O[] e~ 1ot

pu(7) = Trp e HET pP(7) e™HET = Trp pP(7) .

* In general, it is difficult to obtain the closed form of RDM.

* |t usually needs approximation. A common one is the
Markov approximation which leads to Lindblad master
equation for RDM.



-
Derive exact RDM for MZMs (1)

- Use Clifford algebra of MZMs, we get
U(r) =T e 21=1270{") — T II,_; 5 (cosh O;(7) — iv; sinh O;(7))

UT(1) = TT ;=1 2( cosh O;(7) + iv; sinh O;(7))

.Note  0,(r) = / " i 07(+)

T v101(7)1101(7) = — /OT dmy /OT dma|O(11 — 12)O1(11)O7 (12) + (11 > T2)]

_ / " dm / " dr T O7(1) O] (72) i= —T O1(1)O1(7)
0 0

bosonic time ordering for O operators!!



-
Derive exact RDM for MZMs (2)

- Use the above and the locality constraint, we get
prm (7) = C1C2 paro — S1C2 o1pamoo1r — S2C1 o2paroo2 + S152 03pM,003

C; = (TTcoshO;(7)T cosh O;(7)) ,  S; = (T sinh O;(7)T sinh O;(7)) .
- No odd parity terms like (77sinh O;(7)7 cosh O;(7))
- These correlators are bosonic under time

ordering, and the closed form can be obtained by
Wick contraction.
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Exact RDM for 2 MZMs

(1) 5+ (oo — 3)eP 0RO ¢RURe poy + i VIm poy
PM ) =
DRe por — iemOIm po; 2 — (poo — 3 )P O

00 Po1
pr(t =10) = )
Po1 L — poo

—Q/dT/dTstym —7)

Gz sym(t —1') = —(<Oi(t)0z‘(t')> +(0:(t)0i(t))) -



IV. Robust topological qubits



Characterizing decoherence

mFor qubit systems, the most unambiguous way to
characterize quantum decoherence is to check if the
reduced density matrix becomes a pointer state or not.

mA particular pointer state is the Gibbs state, i..e,
thermalization.

Or?v\ §YsRm
00 | Do
o= (0% O\ sy [ot €
O :: e-@“: dynamits
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Purity and Concurrence

mlf the state of the qubits does not reduce to a pointer state,
it means the decoherence is incomplete, and could be
further purified. Then we can characterize the purity by

P = Trp-=(t)
mFor two-qubit state, we can characterize the quantum
entanglement between the two qubits by concurrence:

C(pr) :=max(0, A\ — Ag — A3 — \g)

A1, A2, A3, Ay are the square roots of eigenvalues, in decreasing
order, of  p,(oy ® 03)pr(0y @ 04) -

mZero concurrence implies no entanglement, but the state
could be still guantum.



Single qubit: Memory in strongly correlated environment

For 1nitial state described by pp(t=0) = ( Zg(l) Z?i )

Recall that () = ¢2B° [*dr [* 7' Coym(r—7") — o—2B%|aa 2|Iq (t4=0.T0)

Bosonic environments:

p?.(t) = ( oo aOla(t) ) V = Z Ba’?aoa + Z: Bab?"a'}'boab

ajpa(t) an =t

Fermionic environments:

1 [ 1+ (2a99 — 1)a?(t) 2a0, (1)
1) =3 ( 2ar00(t) 1+ (2a1; — 1)a2(t) )

Diagonal elements in bosonic environments protected by (fermion) parity
so that the qubit state decohere completely but does not thermalize for
sub-Ohmic environment. This is not case for the fermionic one.




Special features

mThere is no retarded Green function appearing in the final
form of the reduced dynamics. This is related to the fact
that the Majorana modes are dissipationless, i.e.,
generating no heat.

mThe symmetric Green function appearing above is the
Majorana-dressed one as discussed. It control the overall
time dependence.

®mTurn out that this time factor for Ohmic-like spectrum has
a closed form, and has a critical point at Q=1.



Time dependence factor --- critical at Q=1

2 2
Siped) (w) = co(Quw e /Mo Q>0

(Q = 2k — 1 for fermionic and @) = 2A —4 for bosonic environment)

@ > 1 (super Ohmic) @ < 1 (Ohmic and sub-Ohmic)

2

FIG. 3: e fetn=0T0o=1) v 5 ¢ for Q = 0.5(blue), 0.9(green),
1(red), 2 (black) and 4 (brown). This factor controls the time
dependence of the influence functional. We can see that there
is a critical value at () = 1 beyond which this factor will have
a pattern of drop-dip-flat and will not decay to zero.



Effective gap-ness

® The quantum information of the probe is carried away by
the collective excitations of the environment, which is
specified by the spectral density.

mThe Ohmic-like spectrum has no gap at low energy, and
one would expect the complete decoherence.

mHowever, the super-Ohmic spectrum suppress more the
low energy modes than the higher energy ones.

mAdding the topological nature of the Majorana modes, we
see an effective gap emerging for super-Ohmic cases.



Two Qubits: Special case for uniform environments

Before studying the reduced dynamics for more general initial states:
(e1,€e2,€e3,€e4)) = €1|00) + e2|01) + €3]|10) + e4|11)

with |61|2 -1 |€2|2 -+ |¢5’3|2 -+ |64|2 = 1.

Let us first consider a simple case: choose the initial state as [(¢1,0,0.¢4)) e,

le1|? 0 0 ee}

0O 00 O

pp(t-—-O)-— 0 0 0
0

6?64

Ann 0 0 Ay
0 Ay 0 0

1

. i fe)y ==
Fermionic: =71 0 0 A3 0
f441 O O f444

with A1 = 14 a(t)* + 2(2]e1]* — 1)a(t)?, A2z = Ass = 1—af(t)?,

Ags = 1+ a(t)* +2(2]es]|? — 1)a(t)? and Ayy =A7, = dejeja(t)?

el 00 eejalt)?
: b 0 00 0
Bosonic: pr(t) = 0 00 0
etesa(t)?2 0 0 ey)?

Again, diagonal elements in bosonic environments protected by
(fermion) parity.




Two qubits in fermionic environments |
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FIG. 4: Purity vs  for k = 05 (red) and & = 2 (blue) w at short time. Here we add a black solid line representing
o ' . . the concurrence pattern of the initial state |(e1, e, es, e4)) =
initial states |(e1,ea, es,e4)) = |(1,0,0,1)) (solid), |(2, 1,0,

. . . 1(2,2,1,2)) in the = 0.5 environment to show its concur-
(dashed), |(1’ L0, 1)) (dotted). The inset is to magnify 1 rence does not diminish with the other red lines at the same

early time region of k = 2 cases. time.



Two qubits in bosonic environments |

The red lines all turn into the pointer states but the blue lines do not.
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FIG. 6: Purity vs t for A = 2.3 (red) and A = 4.1 (blue) with
initial states |(e1, eq, e3,e4)) = [(1,0,0,1)) (sohd), |(2,1,0,2))
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(dashed), |(1,1,0,1)) (dotted).
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FIG. T: Concurrence vs t for the states and environments

specified in Fig. 6.



Parity-violating bosonic environments

B In the above, we mainly consider the parity-

preserving bosonic environments, i.e.,
1172012 + 713714034

B For the parity-violating ones, i.e., 1173013 + 71271024

(lalfll o 0 0
0 jea| +les|” 0 0 for sub-Ohmic

>

b . 2 . Yy
/)r(x' ) o 0 0 'l'2|':|"3£ () environment

\ 0 0 0 esP+eal? )

Only for particular set of initial states, it will be thermalized.



C.f. Spin-Boson model
ref. S.T. Wu PRA89p034301
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FIG. 3. (Color online) Time evolution for the (a) concurrence and
(b) maximum teleportation fidelity for the Bell state (12) at weak
environment coupling (o = 0.01) when the spectral function is sub-
Ohmic (s = 1/2. blue dashed curves), Ohmic (s = 1. red dot-dashed
curves), and super-Ohmic (s = 3, green solid curves). The horizontal

dashed line in (b) indicates the classical limit F = %



V. Accelerating topological qubit



MZMs In motion

- We can generalize the above to the MZMs In
motion, either boost or in acceleration.

Frame of MZMs (M-frame) vs Frame of Environment (E-frame)



Local frame change

- The overall RDM formalism is the same as for the
static case.

- Only thing to take care is the change of the local
time frame according to the relative motions.

Given local times for MZMs t = t(Tz’) : T = f(Tz)
dt(Tk)
D,T _ T T Tk e
HT k_HEk_i_‘/k H™ : . Hpg

= Z% OF (1) -



Influence functionals in local frames

a a

oar(t) = >+ (poo — 3)eBH TR0 eBMRe poy + ieF!Im py fr) = Smher . _ coshar—1
el2MRe po; — ietWIm poy % — (poo — %)ezl(t)JrIz(t)

Worldline of constant a!

- Influence functional in M-frame:

2(m) = =2 [ art [ a MnM ) [ dw ol ) -1e0)
}{ A exp [iwi - (&(rf) — #(rf)] (3.23)

- Influence functional in E-frame:

IF(t) = —2 / dt’ / dt” Xi(ri () Ni(r:(1")) dz Z;z, / doo |w]41 Ay (w)e~ ¥ —t")

< }{ A exp [iwn - [E(r(t)) — F(r(t"))] (3.24)



Transition Rate

- Treating the MZMs as kind of Unruh-DeWit detector, then
the transition amplitude is

AP = lim (£ (m[U(1)[0) )

1—=f
- The full transition probability is

Pryp =Y AT P = lim (£ (mlU(5)[0)]i)(i[{O|U" (8)|m) | f) = lim (f[TezpP (0)]f)

- In the current setup, itis

1
Po1 = tliglo —(1 - 611(75)+12(t))

Decoherence - zero transition!



Thermalization

- We find that even for robust topological qubit will be
thermalized due to Unruh effect.
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FIG. 2. Decoherence patterns (exponential of “influence functionals” vs log of proper time) of a
constantly-accelerating topological qubit in various frames in the environments of uniform spectrum
(Left) and of super-Ohmic spectrum (Right): in the M-frame (solid red), in the E-frame (dotted

blue) and of the thermal one (dashed black) with the acceleration a = 5.
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Boosted MZMs
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FIG. 4. Decoherence patterns of a boost topological qubit in the M-frame in the environments
of sub-Ohmic spectrum (Left panel) and of super-Ohmic spectrum (Right panel) for different
velocities: v = 0 (solid red), v = 0.4 (dotted blue) and v = 0.8 (dashed black). The insets show

the details of “overtaking” phenomena during the decohrence.



Overtaking/Decoherence inertial impedance
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FIG. 3. “Influence functionals” of a constantly-accelerating topological qubit in the M-frame in
the environments of uniform spectrum (Left) and of super-Ohmic spectrum (Right) for different

accelerations: a = 1 (solid red), a = 5 (dotted blue) and a = 10 (dashed black). Note that the

decoherence patterns show the “overtaking” phenomenon.
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FIG. 5. Decoherence patterns and transition probabilities in the M-frame of a constantly acceler-
ating MUDW detector in the super-Ohmic environment (with ¢ = 0.5) with the switching function
of the time duration scales: ¢ = 0.1 (red) and o = 2 (blue). Left : Decoherence patterns with
a =1 (solid), a = 5 (dashed) and a = 10 (dotted). Right: Transition probabilities Py_; (solid)
and Po(i),l (dashed) versus acceleration a. The left y-axis is for Py—,; and P(g31 with o = 0.1, and
the right y-axis with ¢ = 2. This figure shows that the “overtaking” and “anti-Unruh” implies

each other.



Anti-Unruh phenomenon (2)
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FIG. 6. Transition probabilities Py (solid) and P0(21 (dashed) in the M-frame of a constantly
accelerating MUDW detector with the switching function of the time duration scales: ¢ = 0.1

(red) and o = 2 (blue) in the environments of uniform spectrum with ¢ = 0.01 (Left) and ¢ = 0.05
(Right). The IR cutoff A;r = 0.02.



Decoherence inertial impedance

- From the above, we see a highly nontrivial non-
equilibrium phenomenon, we call it decoherence
iInertial impedance.

- There is initial resistance for the system to
against the change caused by the external forces
such as acceleration.

- That is, the large acceleration cause less
decoherence.

- The anti-Unruh and decoherence inertial
Impedance/overtaking imply each other.



Information backflow: coupling modulation
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FIG. 9. Decoherence patterns in the M-frame of a constantly accelerating topological qubit in the
environments of uniform spectrum (Left) and of super-Ohmic spectrum (Right) with the frequency
modulation of the switching function: the modulation frequencies are wy; = 1 (solid red), wy; =5

(dotted blue) and wpy; = 10 (dashed black) with the acceleration a = 5.




Information backflow:
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FIG. 10. Decoherence patterns in the M-frame of an accelerating topological qubit in the super-
Ohmic environment with the amplitude modulation (AM) and frequency modulation (FM) of the
acceleration. Left: AM with C' = 1 (solid red) , C' = 5 (dotted blue) and C' = 10 (dashed black)
as 71 = 0.3 and 7 = 0.5. Right: FM with wg = 10 (solid red) , wg = 50 (dotted blue) and wg =1
(dashed black) as a = 10.



Incoherent motions
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FIG. 11. Decoherence pattern in the super-Ohmic environment associated with the Majorana
mode v moving with the acceleration as as seen from the observer in the comoving frame of the
Majorana mode ~; moving with the acceleration a. There is an initial separation L between ~;
and ~y. Left: L = 0 (solid red) , L = 1 (dotted blue) and L = 5 (dashed black) with a = ay = 5.
Right: as = 5 (dotted blue), a2 = 2 (solid red), a2 = 1 (dot-dashed brown) and as = —1 (dashed
black) with a = 2 and L = 0.



. . t(r:) = /OT‘ y(r)dr',  x(r;) =rocosOi(ri), y(mi) =rosinO;(r;) .
Circular motions

0(r) 1= [ AU +7bia, A7) =

- We see the similar overtaking, anti-Unruh and information
back flow for the circular motions of MZMs.
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VI. Conclusions



Conlusions

- Our works are the first systematic study of the topological
order in open system.

- This is an interesting interplay between topological order
and (relativistic) quantum information.

- By the locality constraint, the reduced dynamics can be
solved exactly.

- We find the robust topological qubits in the super-Ohmic
environment.

- By setting MZMs in motion, we find the universal
thermalization, anti-Unruh, decoherence inertial
impedance and information backflow.



Thankxs!



