Talk by T. Hirano Talk by Y. Hidaka Hydrodynamics, current algebra, and quantum anomaly Talk by D. Kharzeev

Outline

MOTIVATION:

Origin of chiral transport (Chiral Magnetic Effect)?

Mori's method as a generalization of current algebra

Anomalous commutation:

Chiral Magnetic Effect in operator formalism:

QGP as Chiral fluid

- Existence of extremely strong magnetic field
- Chirality drastically affect hydrodynamic transport

Hydrodynamics is

- Effective theory for macroscopic dynamics
- Universal description, not depending on details
- Only conserved quantity ~ symmetry of system

http://www.bnl.gov/rhic/news2/news.asp?a=1403&t=pr

Symmetry breaking and Hydro

Spontaneous symmetry breaking

Micro: Selecting vacuum

Macro: Superfluid

Symmetry breaking by quantum anomaly

Micro : π^{o} decay

[Adller (1969), Bell-Jackiw (1969)]

Macro: Anomalous transport

Parity-violating chiral transport

Anomaly and chiral transport

Can we understand this based on current algebra?

Problem. Not vacuum physics as is the case for QCD!

 \rightarrow We have to generalize current algebra for $~T\neq 0, \mu\neq 0$

Outline

Chiral Magnetic Effect in operator formalism:

Review: Current algebra for QCD

• Current algebra for $SU(N)_R \times SU(N)_L$

$$\left[\hat{Q}_{L,a}, \hat{J}^{\mu}_{L,b}(x)\right] = i f^c_{\ ab} \hat{J}^{\mu}_{L,c}(x), \quad \left[\hat{Q}_{L,a}, \hat{J}^{\mu}_{R,b}(x)\right] = 0$$

$$\left[\hat{Q}_{R,a}, \hat{J}^{\mu}_{R,b}(x)\right] = if^{c}_{\ ab}\hat{J}^{\mu}_{R,c}(x), \quad \left[\hat{Q}_{R,a}, \hat{J}^{\mu}_{L,b}(x)\right] = 0$$

Low-energy theorem

Universal results for process with **low-energy** pion scattering!

If current algebra satisfies the above relations, it does not matter whether UV theory is QCD, NJL model, or anything!

Current algebra and chiral anomaly

 \checkmark Current algebra in external EM fields for $U(1)_V \times U(1)_A$

$$\begin{bmatrix} \hat{J}^{0}(t, \boldsymbol{x}), \hat{J}^{0}(t, \boldsymbol{y}) \end{bmatrix} = \begin{bmatrix} \hat{J}^{0}_{5}(t, \boldsymbol{x}), \hat{J}^{0}_{5}(t, \boldsymbol{y}) \end{bmatrix} = 0$$
$$\begin{bmatrix} \hat{J}^{0}_{5}(t, \boldsymbol{x}), \hat{J}^{0}(t, \boldsymbol{y}) \end{bmatrix} = 0$$

Proof.

Definition of Noether current gives $\hat{J}^{0}(x) = -\frac{\partial \mathcal{L}}{\partial(\partial \phi)} i \hat{\phi} = -i \hat{\pi}(x) \hat{\phi}(x), \qquad \hat{J}^{0}_{5}(x) = -i \hat{\pi}(x) \gamma_{5} \hat{\phi}(x)$ Using canonical commutation relation $\left[\hat{\phi}(t, x), \hat{\pi}(t, y)\right] = i \delta(x - y)$ we can directly show the above current algebraic structure!

Current algebra and chiral anomaly

 \checkmark Current algebra in external EM fields for $U(1)_V \times U(1)_A$

$$\begin{bmatrix} \hat{J}^0(t, \boldsymbol{x}), \hat{J}^0(t, \boldsymbol{y}) \end{bmatrix} = \begin{bmatrix} \hat{J}_5^0(t, \boldsymbol{x}), \hat{J}_5^0(t, \boldsymbol{y}) \end{bmatrix} = 0$$
$$\begin{bmatrix} \hat{J}_5^0(t, \boldsymbol{x}), \hat{J}^0(t, \boldsymbol{y}) \end{bmatrix} = -\frac{i}{2\pi^2} B^i(t, \boldsymbol{y}) \partial_i^x \delta(\boldsymbol{x} - \boldsymbol{y})$$

Sketch of Proof.

Ward-Takahashi identity is not $\langle \partial_{\mu} J_5^{\mu}(x) \rangle_A = 0$ but

 $\langle \partial_{\mu} J_5^{\mu}(x) \rangle_A = C \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu}(x) F_{\rho\sigma}(x) \sim C dA dA$

Variation w.r.t A_0 gives $\partial_{\mu} \langle J_5^{\mu}(x) J^0(y) \rangle_A \sim C d d A \sim C d B$

"Corr. function = T-product in operator formalism" gives the above

Anomaly and chiral transport

Can we understand this based on current algebra?

Problem. Not vacuum physics as is the case for QCD!

 \rightarrow We have to generalize current algebra for $~T\neq 0, \mu\neq 0$

Mori's projection operator method

 $\bullet \text{ EoM given by Mori's projection operator method}$ $\partial_0 \hat{A}_n(t) = i\Omega_n^m \hat{A}_m(t) - \int_0^t ds \Phi_n^m(t-s) \hat{A}_m(s, \boldsymbol{y}) + \hat{R}_n(t)$ $\textbf{Reversible} \qquad \textbf{Dissipative} \qquad \textbf{Noise}$ $\begin{cases} i\Omega_n^m = -\frac{i}{\beta} \langle [\hat{A}_n(0), \hat{A}^m(0)] \rangle + i\mu([\hat{N}, \hat{A}_n(0)], \hat{A}^m(0)) \\ \textbf{Fluctuation Dissipation relation: } \Phi_n^m(t-s) = (\hat{R}_n(t-s), \hat{R}^m(0)) \end{cases}$

Mori's projection operator method

• EoM given by Mori's projection operator method $\partial_{0}\hat{A}_{n}(t) = i\Omega_{n}^{\ m}\hat{A}_{m}(t) - \int_{0}^{t} ds \Phi_{n}^{\ m}(t-s)\hat{A}_{m}(s, y) + \hat{R}_{n}(t)$ Reversible Dissipative Noise $\begin{cases}
i\Omega_{n}^{\ m} = -\frac{i}{\beta} \langle [\hat{A}_{n}(0), \hat{A}^{m}(0)] \rangle + i\mu ([\hat{N}, \hat{A}_{n}(0)], \hat{A}^{m}(0))$ Fluctuation Dissipation relation: $\Phi_{n}^{m}(t-s) = (\hat{R}_{n}(t-s), \hat{R}^{m}(0))$

Outline

Origin of chiral transport (Chiral Magnetic Effect)?

 $\hat{\mathcal{P}}_{\vec{\mathcal{P}}} \vec{\mathcal{P}} \vec{B} = \sum_{i} a^{i} \vec{A}_{i}$

🤗 APPROACH:

Mori's method as a generalization of current algebra $A_{\vec{A}_i}^{\vec{A}_i}$

Anomalous commutation: $\left[\hat{J}_5^0(t, \boldsymbol{x}), \hat{J}^0(t, \boldsymbol{y})\right] = -\frac{i}{2\pi^2} B^i(t, \boldsymbol{y}) \partial_i^x \delta(\boldsymbol{x} - \boldsymbol{y})$

Chiral Magnetic Effect in operator formalism:

Sound and Chiral Magnetic Wave as a family of Type-B NG mode

Mori's method and current algebra

Leading Order term in EOM

 $\partial_0 \hat{A}_n(t) = -i\chi^{lm} \langle [\hat{A}_n(0), \hat{A}_m(0)] \rangle \hat{A}_l(t) + \cdots \langle \chi^{lm} : \text{inv. suscep.} \rangle$

• Current algebra related to relativistic hydrodynamics Choose $\hat{A}_n(t)$ as conserve charges: $\hat{A}_n(t) = \{\hat{T}_0^0(t, \boldsymbol{x}), \hat{T}_i^0(t, \boldsymbol{x})\}$ • EoM(LO) is controlled by energy-momentum density algebra! ($\hat{T}_0^0(t, \boldsymbol{x}), \hat{T}_0^0(t, \boldsymbol{y})$] = $-i(\hat{T}_0^k(t, \boldsymbol{x}) + \hat{T}_0^k(t, \boldsymbol{y}))\partial_k\delta(\boldsymbol{x} - \boldsymbol{y})$ ($\hat{T}_0^0(t, \boldsymbol{x}), \hat{T}_i^0(t, \boldsymbol{y})$] = $-i(\hat{T}_i^j(t, \boldsymbol{x})\partial_j - \hat{T}_0^0(t, \boldsymbol{y})\partial_i)\delta(\boldsymbol{x} - \boldsymbol{y})$ ($\hat{T}_i^0(t, \boldsymbol{x}), \hat{T}_j^0(t, \boldsymbol{y})$] = $-i(\hat{T}_j^0(t, \boldsymbol{x})\partial_i + \hat{T}_i^0(t, \boldsymbol{y})\partial_j)\delta(\boldsymbol{x} - \boldsymbol{y})$

• EoM for perfect fluid (Sound wave) is derived!!

Perfect fluid from Mori's method

- • Relativistic hydrodynamic from Mori's method

 $\begin{aligned} \partial_0 \delta \hat{T}^0_{\ 0} &= -ik^i \delta \hat{T}^0_{\ i} \\ \partial_0 \delta \hat{T}^0_{\ i} &= -ik_i h_{\text{eq}} \chi^{ee} \delta \hat{T}^0_{\ 0} \\ &- \left[k_i k^k \left(\frac{\zeta}{h_{\text{eq}}} + \frac{d-3}{d-1} \frac{\eta}{h_{\text{eq}}} \right) + \mathbf{k}^2 \delta^k_i \frac{\eta}{h_{\text{eq}}} \right] \delta \hat{T}^0_{\ k} + \hat{R}_{\pi_i} \end{aligned}$

Green-Kubo formula for transport coefficients (viscosity)

$$\begin{aligned} \zeta &= \beta_{\text{eq}} \int_0^\infty dt \int d^{d-1} x \left(e^{\hat{\mathcal{Q}}i\hat{\mathcal{L}}t} \hat{\mathcal{Q}}\delta\hat{p}(0,\boldsymbol{x}), \hat{\mathcal{Q}}\delta\hat{p}(0,\boldsymbol{0}) \right) \\ \eta &= \frac{\beta_{\text{eq}}}{(d+1)(d-2)} \int_0^\infty dt \int d^{d-1} x \left(e^{\hat{\mathcal{Q}}i\hat{\mathcal{L}}t} \hat{\mathcal{Q}}\delta\hat{\pi}_{ik}(0,\boldsymbol{x}), \hat{\mathcal{Q}}\delta\hat{\pi}_{jl}(0,\boldsymbol{0}) \right) \Delta^{ij} \Delta^{kl} \end{aligned}$$

Reversible \rightarrow Sound wave / **Dissipative** \rightarrow Diffusion mode

CME from anomalous commutation

For EoM:
$$\partial_0 \hat{A}_n(t) = -i\chi^{lm} \langle [\hat{A}_n(0), \hat{A}_m(0)] \rangle \hat{A}_l(t) + \cdots$$

Choose $\hat{A}_n(t) = \{\hat{T}_0^0(t, \boldsymbol{x}), \hat{T}_i^0(t, \boldsymbol{x}), J^0(t, \boldsymbol{x}), J_5^0(t, \boldsymbol{x})\}$
Current algebra
with
anomalous
commutation rel.
 $\begin{bmatrix} \hat{T}_i^0(t, \boldsymbol{x}), \hat{J}^0(t, \boldsymbol{y}) \end{bmatrix} = -i\hat{J}_5^0(t, \boldsymbol{x})\partial_j\delta(\boldsymbol{x} - \boldsymbol{y})$
 $\begin{bmatrix} \hat{T}_i^0(t, \boldsymbol{x}), \hat{J}_5^0(t, \boldsymbol{y}) \end{bmatrix} = -i\hat{J}_5^0(t, \boldsymbol{x})\partial_j\delta(\boldsymbol{x} - \boldsymbol{y})$
 $\begin{bmatrix} \hat{J}_5^0(t, \boldsymbol{x}), \hat{J}^0(t, \boldsymbol{y}) \end{bmatrix} = -\frac{i}{2\pi^2}B^i(t, \boldsymbol{y})\partial_i^x\delta(\boldsymbol{x} - \boldsymbol{y})$
 $\begin{bmatrix} \hat{J}^0(t, \boldsymbol{x}), \hat{J}^0(t, \boldsymbol{y}) \end{bmatrix} = \begin{bmatrix} \hat{J}_5^0(t, \boldsymbol{x}), \hat{J}_5^0(t, \boldsymbol{y}) \end{bmatrix} = 0$
 \bullet EoM for $\hat{J}^0(t, \boldsymbol{x})$
 $\partial_0 \hat{J}^0(\boldsymbol{x}) + \partial_i^x \begin{bmatrix} \frac{\chi^{nn_5} \hat{J}_5^0(\boldsymbol{x})}{2\pi^2} B^i(\boldsymbol{x}) \end{bmatrix} + \cdots = 0$

CME from anomalous commutation

$$\partial_0 \hat{J}^0(x) + \partial_i^x \left[\frac{\chi^{nn_5} \hat{J}_5^0(x)}{2\pi^2} B^i(x) \right] + \dots = 0$$
$$= \hat{J}^i(x)$$

• Summary of result
- Conservation law:
$$\partial_{\mu} \hat{J}^{\mu}(x) = 0$$

- Const. relation: $\hat{J}^{i}(x) = \frac{\chi^{nn_{5}} \hat{J}_{5}^{0}(x)}{2\pi^{2}} B^{i}(x)$ \leftarrow Chiral Magnetic Effect
(CME)

Chiral Magnetic Wave (CMW)

Interpretation as Type-B NG mode

- \diamond Spontaneous symmetry breaking & Nambu-Goldstone mode -For some conserved charge \hat{Q}_a $\exists \hat{\Phi}(x)$ such that $\langle [i\hat{Q}_a, \hat{\Phi}_i(x)] \rangle \equiv \text{Tr}(\hat{\rho}[i\hat{Q}_a, \hat{\Phi}_i(x)]) \neq 0$ Spontaneous Symmetry Breaking (SSB)

Massless mode = Nambu-Goldstone (NG) mode appears!

◆ Classification of NG mode [Hidaka (2012), Watanabe-Murayama(2012)] $\begin{cases}
- Type-A NG mode : \forall \hat{Q}_b \text{ satisfy } \langle [i\hat{Q}_a, \hat{Q}_b] \rangle = 0 \\
- Type-B NG mode : \exists \hat{Q}_b \text{ such that } \langle [i\hat{Q}_a, \hat{Q}_b] \rangle \neq 0
\end{cases}$ Generalization of Nambu-Goldstone's theorem for type-B NG mode

CMW ≒ Type-B NG mode?

- Type-B NG mode : $\exists \hat{Q}_b$ such that $\langle [i\hat{Q}_a, \hat{Q}_b] \rangle \neq 0$ Hydrodynamics of chiral plasma contains massless collective excitation known as - Sound wave - Chiral Magnetic Wave (CMW) **Origin of Sound wave and CMW** $\langle \left[\hat{T}^{0}_{0}(t,\boldsymbol{x}), \hat{T}^{0}_{i}(t,\boldsymbol{y}) \right] \rangle = -i \left(\langle \hat{T}^{j}_{i}(t,\boldsymbol{x}) \rangle \partial_{j} - \langle \hat{T}^{0}_{0}(t,\boldsymbol{y}) \rangle \right) \partial_{k} \delta(\boldsymbol{x} - \boldsymbol{y}) \neq \boldsymbol{0}$ $\langle \left[\hat{J}^{0}_{5}(t,\boldsymbol{x}), \hat{J}^{0}(t,\boldsymbol{y}) \right] \rangle = -\frac{i}{2\pi^{2}} B^{i}(t,\boldsymbol{y}) \partial_{i}^{x} \delta(\boldsymbol{x} - \boldsymbol{y}) \neq \boldsymbol{0}$

The above definition states they are a friend of Type-B NG mode! $\partial_0 \hat{A}_n(t) = -i\chi^{lm} \langle [\hat{A}_n(0), \hat{A}_m(0)] \rangle \hat{A}_l(t) + \cdots$

Summary

Sound and Chiral Magnetic Wave as a friend of Type-B NG mode

Outlook I

Path-integral treatment?

	Operator formalism	Path-integral formalism
QCD	CA w/ Anomalous CR	Chiral pert. w/ Wess-Zumino term
Hydro	Mori's projection w/ Anomalous CR	MSRJD effective lagrangian w/ ?? [Crossley et al. (2015)]

Outlook 2: Chiral superfluid

Spontaneous symmetry breaking

Micro: Selecting vacuum

Macro : Superfluid

Symmetry breaking by quantum anomaly

Micro : π^{o} decay

[Adller (1969), Bell-Jackiw (1969)]

Macro: Anomalous transport

Back up