

Workshop of Recent Developments in QCD and Quantum Field Theories

November 9-12, 2017 National Taiwan university, Taipei, Taiwan

National Taiwan University

Contacts: Karen McNulty Walsh, (631) 344-8350 or Peter Genzer, (631) 344-3174

RHIC Scientists Serve Up 'Perfect' Liquid

New state of matter more remarkable than predicted — raising many new questions

Monday, April 18, 2005

TAMPA, FL — The four detector groups conducting research at the <u>Relativistic Heavy Ion Collider</u> (RHIC) — a giant atom "smasher" located at the U.S. Department of Energy's Brookhaven National Laboratory — say they've created a new state of hot, dense matter out of the quarks and gluons that are the basic particles of atomic nuclei, but it is a state quite different and even more remarkable than had been predicted. In <u>peer-reviewed papers</u> summarizing the first three years of RHIC findings, the scientists say that instead of behaving like a gas of free quarks and gluons, as was expected, the

Other RHIC News

Using Supercomputers to Delve Ever Deeper into the Building Blocks of Matter

Summer Intern Jaime Avilés Acosta Studies Materials for Ultra-Fast Particle Detector

Successful Test of Small-Scale Accelerator with Big Potential Impacts for Science and Medicine

dense matter

Physics of the QGP

Fukushima and Sasaki (2013)

Investigation of matter under extreme conditions

- Order of phase transition
- Location of critical point and 1st order phase transition line
- Equation of state
- Transport coefficients
- Structure of "vacuum"

High-energy nuclear collisions: Unique approach to create matter under extreme conditions on the Earth

Bottom-up approach

3-D event display from STAR

- Momentum distribution
- Particle species
- Correlation

• • • •

Phenomenological approach

Physics properties of the QGP

- Equation of state
- Transport coefficients
- Stopping power
- Phase structure

Top-down approach Results from lattice QCD, …

Standard picture of dynamics in highenergy nuclear collisions

Energy frontier Anisotropic flow and precision QGP physics

Lessons from observational cosmology

ത

spaceinim

ackground

Cosmic Microwave Background Fluctuations of temperature (Planck) E.Komatsu, talk at IPMU(2013)

 $l \approx 180^{\circ}/\theta$

Precision measurements and analysis

Energy budget and lifetime of the Universe, inflation, \cdots One can reach eras before decoupling through these analyses.

Response to initial fluctuations of geometry TH et al. (2013) CMS Collaboration (2013)

How does the system respond to initial deformation? ← Contain information about transport properties of the QGP

Precision QGP physics using Bayesian parameter estimation

Sound velocity vs. Temperature

(Shear viscosity)/(Entropy density)

Experimental data \rightarrow Posterior probability of parameters $\leftarrow \rightarrow$ Comparison with results from lattice QCD

Correlation of initial conditions along collision axis ${\mathcal X}$ η_s

Heavy ion collision as a chromoelectric capacitor
 → Formation of color flux tubes ~Approximate boost invariance
 → Correlation of initial conditions in rapidity space

(De-)Correlation of elliptic flow along rapidity

A. Sakai* (QM2017) *Winner of Nuclear Physics A Young Scientist Awards

- Ideal and viscous hydro
 → Hard to break up correlations
- Random force from thermal (hydrodynamic) fluctuations in QGP
 - \rightarrow break up correlations
- New channel to constrain transport coefficients

Energy frontier Medium response and hard probes

Di-jet asymmetric event

CMS Collaboration (Quark Matter 2011) d'Enterria (2009) $E \sim 200 \text{ GeV}$ jet dragged by medium with $T \sim 300 \text{ MeV}$ in a few femtometer \rightarrow Where the lost energy goes? \rightarrow Change of jet structure as a function of r?

Large angle emission of soft particles

Mach-cone like medium response at large angle from jet axis

Y.Tachibana *et al*. (2017)

Jet structure at large r: A new channel to constrain transport properties of QGP?

Z⁰-jet correlations as a new probe CMS Collaboration (2017)

 $qg \rightarrow qZ$ and $\overline{q}g \rightarrow \overline{q}Z$ less background than $qg \rightarrow q\gamma$ or $\overline{q}g \rightarrow \overline{q}\gamma$

CMS PbPb, 0-30 % □ Smeared pp 0.8 $p_{T}^{Z} > 60 \text{ GeV/c}$ anti- \dot{k}_{τ} jet R = 0.3 0.6 $p_{-}^{jet} > 30 \text{ GeV/c}$ $\frac{1}{N_{z}}\frac{dN_{jz}}{dx_{jz}}$ $x_{iZ} = p_{T}^{jet}/p_{T}^{Z}$

 x_{jZ} ~1 → Balance btw. jet and Z Peak shifted to lower x_{jZ} → New probe for jet tomography

Discovery of top quarks in p+Pb collisions

CMS Collaboration (2017)

e.g.) $gg \to t\bar{t} \to W^+ b W^- \bar{b}$

- Constraint on nPDFs $5 \cdot 10^{-3} < x < 0.05$ $Q^2 \sim 3 \cdot 10^4 \text{ GeV}^2$
- b-quark energy loss in heavy ion collision case
 cτ of top quarks~0.15 fm
 << Dimension of the medium ~
 several fm
 → New channel to probe the QGP

d'Enterria *et al*. (2015)

Small colliding systems New challenge to models

colliding systems

* "Collectivity" = Correlated particle emission ≠ flow

Everything starts from CMS findings

(b) CMS MinBias, 1.0GeV/c<p_<3.0GeV/c

(d) CMS N \geq 110, 1.0GeV/c<p_<3.0GeV/c

What is "Ridge"? Correlation of two particle emission with the same azimuthal angle but large rapidity gap $(\Delta \eta \sim 2-4)$

Ridge in heavy ion collisions ←Interpreted as collective flow

First ridge observation in high-multiplicity pp collisions at $\sqrt{s} = 7$ TeV !

Collectivity in pp and pPb collisions at LHC

Guilbaud for CMS (2017)

Collectivity in p,d,He+Au collisions at RHIC PHENIX Collaboration(2017)

Large elliptic flow measured at RHIC • Mass ordering • Consistent with hydrodynamic calculations $\frac{\eta}{-} = 0.08$

The same hydro models reproduce experimental results in both large and small systems at RHIC.

Strangeness enhancement in pp

 h_S/π increase with multiplicity Multi-strange hadrons increase more rapidly \leftarrow Commonly seen in <u>heavy ion data</u> from SPS to LHC

Violation of "jet universality"?
QGP formation (EPOS, 2015)
Rope hadronization (DIPSY, 2015, 2016)
Thermodynamical string model
(Fischer,Sjöstrand, 2017)
→ Need more studies in final stage

Initial or Initial + Final?

Schlichting, Tribedy (2016)

- Initial state correlations (Glasma graphs)
- Initial state correlations (Minijets)
- Response to initial geometry

Large system: Final state effect Small system: Initial or Initial + Final state effect \rightarrow Necessity for sophisticated modeling in small systems \rightarrow Thermalization, hydrodynamization, …

Short summary of small colliding systems

Experimental data in pp and pA: Collectivity (ridge, finite v_2, \cdots) Strangeness enhancement ←How small can the QGP be? ←Collectivity or fluidity? Interpretation not settled: Final state effects: QGP fluid, rope + shove, themodynamical string frag, color reconnection, \cdots Initial state effects: Color glass condensate

Various collision energies RHIC-Beam Energy Scan program and beyond

Scanning phase diagram

STAR Collaboration (2017)

Chemical freezeout parameters from particle yields in Au+Au collisions at various energies Centrality dependence of μ_B at low energies \leftarrow Baryon stopping

Control baryon density and initial energy density Scan broad regions of phase diagram

Collision energy evolution of third harmonics

Response of the system \rightarrow Minimum at $\sqrt{s_{NN}} \sim 20$ GeV (mostly seen in semi-central collisions) \rightarrow Indication of softest point (minimum sound velocity) in equation of state?

Small ← Initial energy density → Large

Collision energy evolution of jet quenching

Ratio of central to peripheral

Yield at high p_T is suppressed at the top RHIC energy as an evidence for QGP formation \leftarrow Monotonic change with $\sqrt{s_{NN}}$ \rightarrow Null results on <u>onset of QGP</u> <u>formation</u>? Hard to disentangle jet quenching

from Cronin effect (random transverse kicks in the initial collision)

STAR Collaboration (2017)

Higher order fluctuations of conserved quantity Asakawa, Ejiri, Kitazawa (2009), Stephanov (2009, 2011), ...

Non-monotonic behavior expected around critical point

$$\kappa \sigma^{2} = \frac{\chi_{4}}{\chi_{2}}$$

$$\chi_{n} = \frac{\partial^{n} \hat{p}}{\partial \hat{\mu}^{n}} \qquad \hat{p} = \frac{p}{T^{4}}, \hat{\mu} = \frac{\mu}{T}$$

$$\int_{0}^{\kappa \sigma^{2}} \frac{\delta^{n} \hat{\sigma}^{2}}{\sqrt{s}}$$
Critical Signature

Collision energy dependence of $\kappa\sigma^2$

$$\kappa\sigma^{2} = \frac{\langle (\delta N_{B})^{4} \rangle}{\langle (\delta N_{B})^{2} \rangle} = \frac{\chi_{4}}{\chi_{2}}$$

*In actual experimental data, not net baryon, but net proton

Expected non-monotonic behavior seen in experimental data →Signature of critical point!?

Future study of Super-dense nuclear/quark matter

http://j-parc.jp/researcher/Hadron/ en/pac_1607/pdf/Lol_2016-16.pdf

Binary neutron star merger

M. Shibata, talk at QM2015

Outlook (instead of Summary)

- Construct robust models against precision data
 - Correlation measurement and its analysis
 - New (hard) probes
 - Interplay between soft and hard
- Need much more studies even in pp collisions!
 - Initial state: Particle production, thermalization?
 - Final state: hydro? Interacting color fields? Novel fragmentation?
- Final question: Everything flows?

$\pi\alpha\nu\tau\alpha$ $\rho\epsilon\iota!$ Everything flows!

Spontaneous rotation

Even cats flow!

The 2017 Ig Nobel Prize in Physics: M.A. Fardin for using fluid dynamics to probe the question "Can a Cat Be Both a Solid and a Liquid?" (https://www.improbable.com/ig)

Figures taken from M.A.Fardin, On the rheology of cats, Rheology Bulletin, 83(2) July 2014

Correlation of elliptic flow parameter between different rapidity

Same quadrupole emission pattern across rapidity?

Rope + shove model

Bierlich *et al.*(2014, 2016)

Strings overlapping in transverse plane →"Rope" formation (with larger string tension)

Schwinger mechanism

$$P \propto \exp\left(-\frac{\pi m_q^2}{\kappa}\right)$$

 $\kappa \rightarrow \kappa' (> \kappa)$ expected to enhance yields of strange hadrons

 $\Delta \phi$

QGP as the most vortical fluid

Z.T.Liang, X.N.Wang (2005), Voloshin (2004, unpublished), Betz, Gyulassy, Torrieri (2007)

$$\omega \sim \frac{1}{2} \nabla \times v$$

$$|v_z^+ - v_z^-| \sim 0.1c$$

$$\omega |\omega| \sim 10^{22} \text{ s}^{-1}$$

$$d \sim 10 \text{ fm}$$

Protons from Λ carry information about polarization $P_{\Lambda} + P_{\overline{\Lambda}} = \frac{\hbar\omega}{k_B T} \longrightarrow \begin{array}{l} \omega = \\ (9 \pm 1) \times 10^{21} s^{-1} \end{array}$ Beccatini *et al.* (2017) STAR Collaboration (2017)

Contents

- Introduction
- Energy frontier
 - Anisotropic flow and precision QGP physics
 - Medium response and hard probes
- Small colliding systems
- Various collision energies
 - RHIC-Beam Energy Scan program and beyond
- Summary