Spontaneous symmetry breaking in open systems

Yoshimasa Hidaka RIKEN Collaboration with Yuki Minami 1509.05042[cond-mat.stat-mech], 1712.xxxx

Open systems

Environment

System

QGP

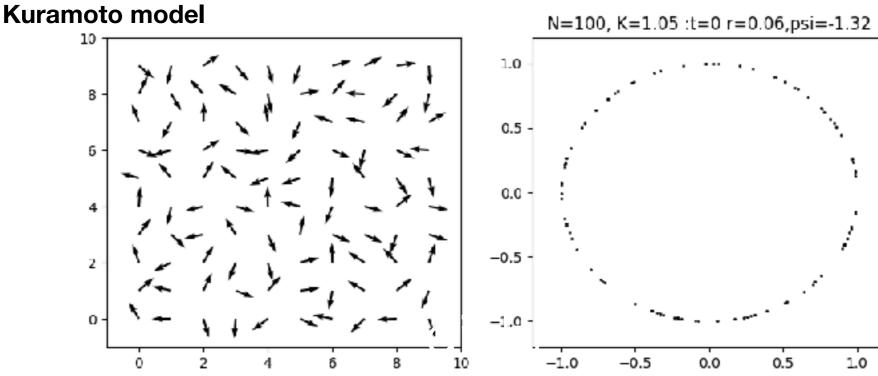
heavy quarks

Environment: QGP System: Heavy quarks

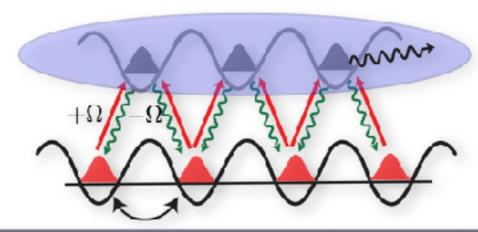
Environment: Air System: flock of birds

CC BY-SA 2.0

Symmetry breaking in open systems Synchronization



Metronome, fireflies, ... Driven dissipative condensate



Driving force and dissipative causes a condensate.

Diehl, Micheli, Kantian, Kraus, Büchler, Zoller, Nature Physics 4, 878 (2008); Kraus, Diehl, Micheli, Kantian, Büchler, Zoller, Phys. Rev. A 78, 042307 (2008).

figure is taken from Diehl's website

Questions Hamiltonian systems Continuum $\partial_{\mu}J^{\mu} = 0$ symmetry **Open systems** $\partial_{\mu}J^{\mu} \neq 0$ because of friction What is the symmetry? Is there any symmetry breaking? **Does a NG mode appear?**

Nambu-Goldstone theorem

<u>Nambu('60)</u>, <u>Goldstone(61)</u>, <u>Nambu Jona-Lasinio('61)</u>, <u>Goldstone</u>, <u>Salam</u>, <u>Weinberg('62)</u>.

For Lorentz invariant vacuum Spontaneous breaking of global symmetry

$N_{NG} = N_{BS}$ # of NG modes # of broken symmetries

Dispersion relation: $\omega = c |m{k}|$

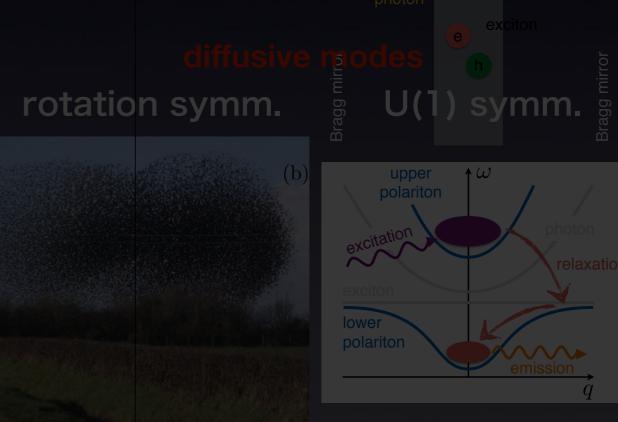
Gapless modes in nature

Need generalization We focus on open systems

NG theorem OK nodes

photon U(1) 1-form symm

translation symm.



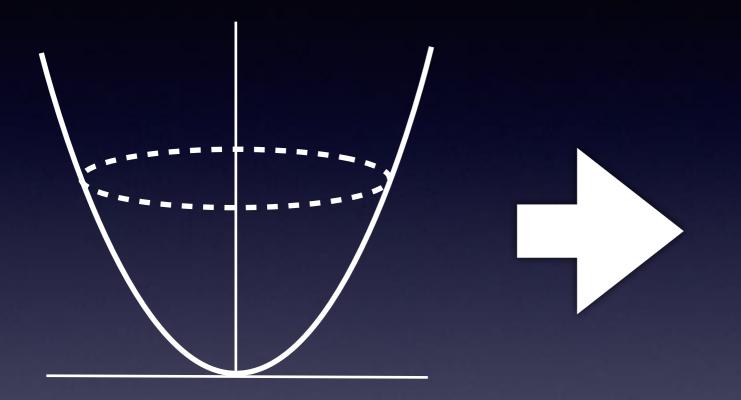
CC by-sa Roger McLassus

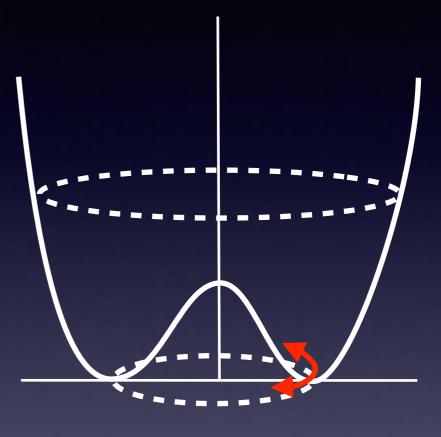
CC BY-SA 2.0

Classification of Nambu-Goldstone modes in Hamiltonian system

Exception of NG theorem NG modes with $N_{\mathrm{BS}}
eq N_{NG}$ and $\omega
eq k$ exist NG modes in Kaon condensed CFL phase Miransky, Shovkovy ('02) Schafer, Son, Stephanov, Toublan, and Verbaarschot ('01) $SU(2)_I \times U(1)_Y \to U(1)_{\rm em}$ $N_{\rm BS} = 3, \quad N_{\rm NG} = 2$ Dispersion: $\omega \propto k$ and $\omega \propto k^2$ – Magnon $\uparrow \uparrow \circ Spin rotation SO(3) \rightarrow SO(2)$ $N_{\rm BS} = \dim(G/H) = 2$ $N_{\rm NG} = 1$ Dispersion: $\omega \propto k^2$

Internal symmetry breaking Symmetry group $G \Rightarrow H$





of flat direction $N_{\rm BS} = \dim(G/H)$

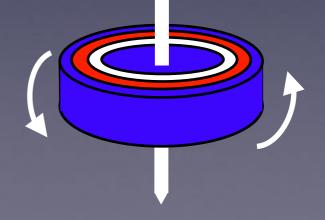
This does work in nonrelativistic system at zero and finite temperature Intuitive example for type-B NG modes Pendulum with a spinning top

 Rotation symmetry is explicitly broken by a weak gravity

Rotation along with z axis is unbroken.

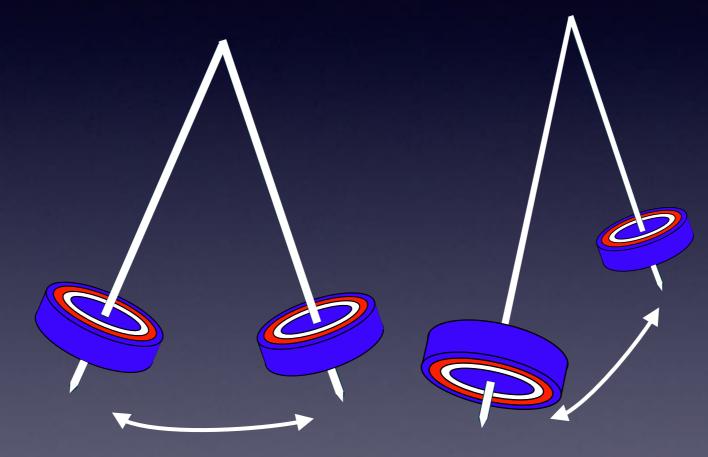
Rotation along with x or y is broken.

 The number of broken symmetry is two.



Intuitive example for type-B NG modes

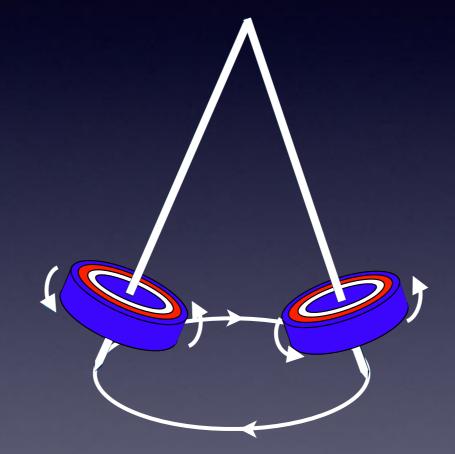
Pendulum has two oscillation motions



if the top is not spinning.

Intuitive example for type-B NG modes

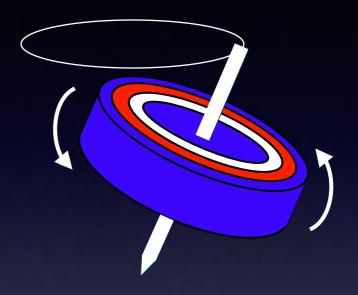
If the top is spinning,



the only one rotation motion (Precession) exists. In this case, $\{L_x, L_y\}_P = L_z \neq 0$

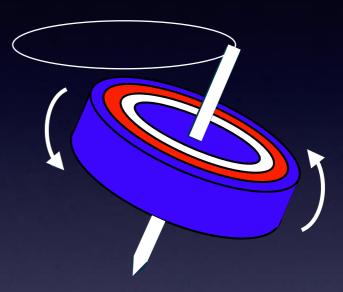
Classification of NG modes Watanabe, Murayama ('12), YH ('12)

cf. Takahashi, Nitta ('14), Beekman ('14)



Type-A
Harmonic oscillationType-B
Precession $N_A = N_{BS} - rank\langle [iQ_a, Q_b] \rangle$ $N_B = \frac{1}{2} rank\langle [iQ_a, Q_b] \rangle$ Ex.) superfluid phononEx.) magnon $N_{NG} = N_{BS} - \frac{1}{2} \langle i[Q_a, Q_b] \rangle$

Dispersion relation



Type-A $\omega \sim \sqrt{g} \sim \sqrt{k^2}$

Type-B $\omega \sim g \sim k^2$

Examples of Type-B NG modes

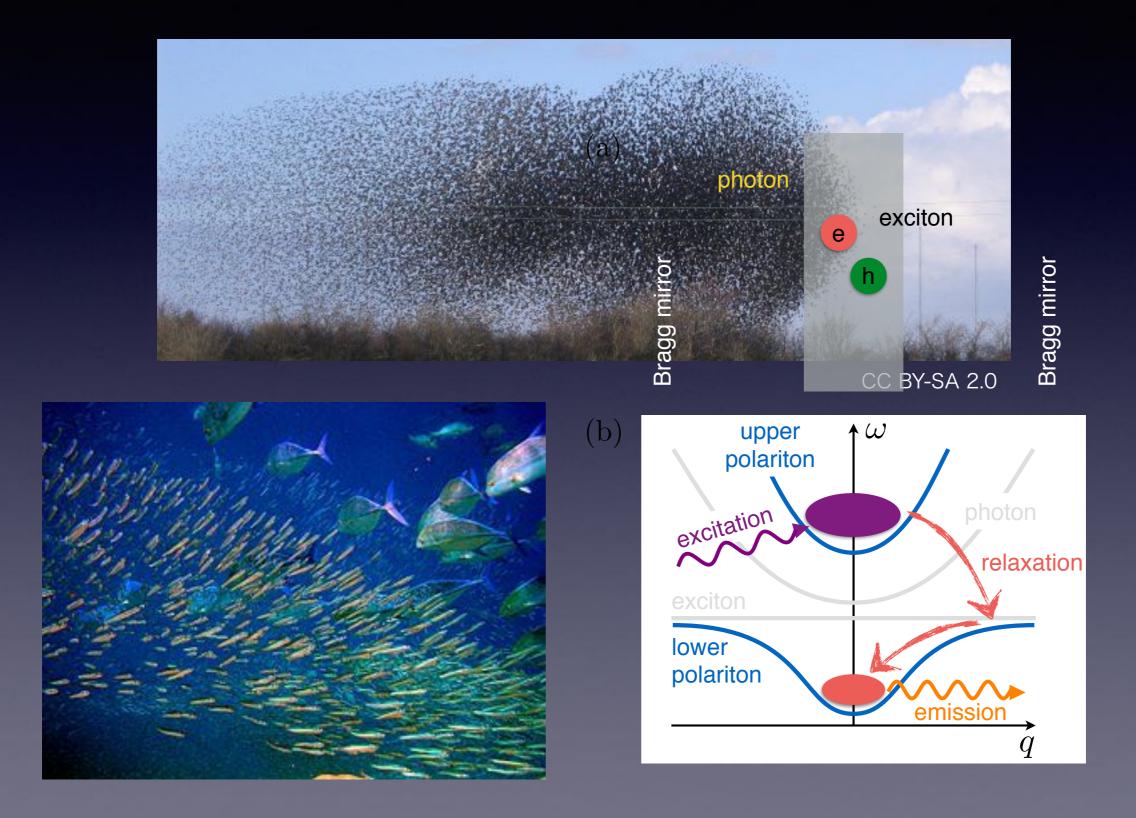
	$N_{\rm BS}$	$N_{\rm type-A}$	$N_{\rm type-B}$	$\frac{1}{2} \operatorname{rank} \langle [Q_a, Q_b] \rangle$	$N_{\rm type-A} + 2N_{\rm type-B}$
Spin wave in ferromanget SO(3)→SO(2)	2	0	1	1	2
NG modes in Kaon condensed CFL SU(2)xSU(1)y→U(1)em	3	1	-1		3
Spinor BEC SO(3)xU(1)→U(1)	3	1	1		3
nonrelativistic massive CP¹ model U(1)x R ³→ R ²	2	0	1		2
$N_{\text{type-A}} + 2N_{\text{type-B}} = N_{\text{BS}}$ $N_{\text{BS}} - N_{\text{NG}} = \frac{1}{2} \text{rank} \langle [Q_a, Q_b] \rangle$					

2

At finite temperature Hayata, YH ('14)

The interaction with thermal particles modifies the dispersion relation Type-A: $\omega = ak - ibk^2$ Type-B: $\omega = a'k^2 - ib'k^4$

Open system

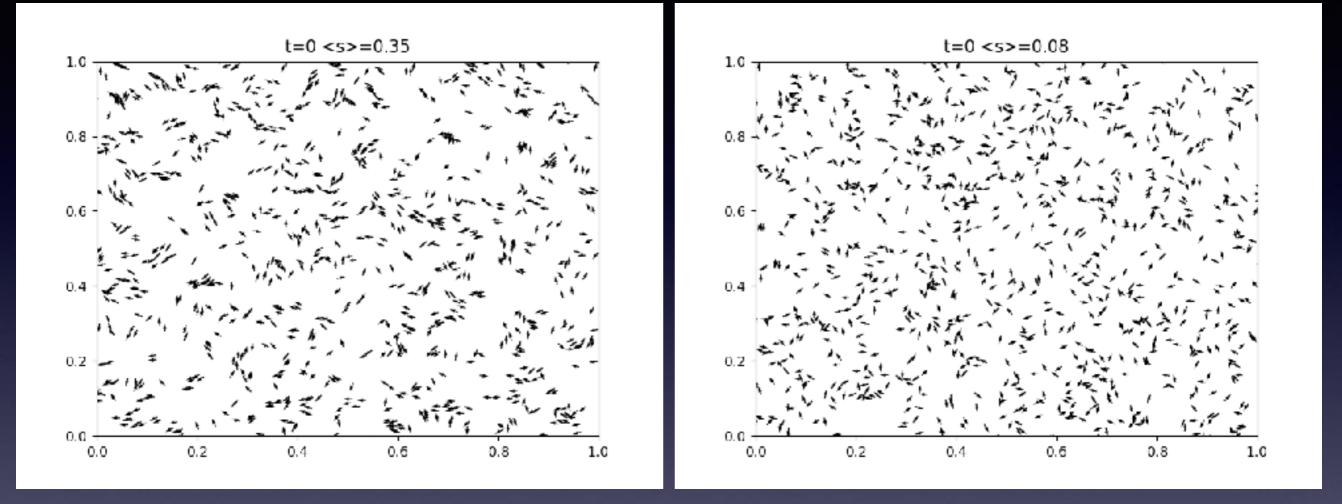


Ex2) Vicsek model

T. Vicsek, et al., PRL (1995).

 $oldsymbol{x}_i(t+\Delta t) = oldsymbol{x}_i(t) + oldsymbol{v}_i\Delta t$ velocity

 $oldsymbol{v}_i = oldsymbol{v}_0 (\cos heta_i, \sin heta_i)$ $eta_i (t + \Delta t) = \langle heta_i (t)
angle_r + \xi_i$ angle of velocity average noise angle

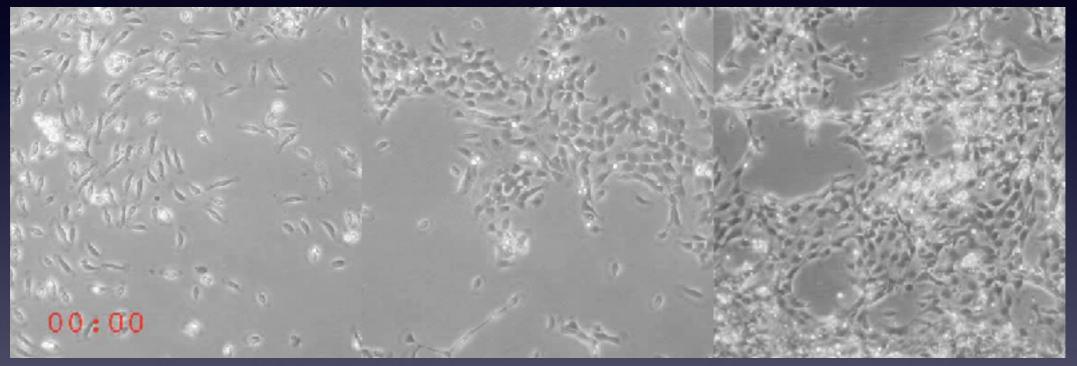


An example of SSB in open systems

Some cells on fish skin

low density

high density



B. Szabo, et al., Phys. Rev. E 74, 061908 (2006)

Model of active matter: Vicseck model, Active hydrodynamics, T. Vicsek, et al., PRL (1995). J. Toner, and Y. Tu, PRL (1995).

Field theoretical model Ex.) NG mode in Active hydrodynamics J. Toner, and Y. Tu, PRE (1998)

 $\begin{array}{l} \partial \rho + \boldsymbol{\nabla} \cdot (\rho \boldsymbol{v}) = 0 \\ \partial_t \boldsymbol{v} + (\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{v} = \alpha \boldsymbol{v} - \beta \boldsymbol{v}^2 \boldsymbol{v} - \boldsymbol{\nabla} P + D_L \boldsymbol{\nabla} (\boldsymbol{\nabla} \cdot \boldsymbol{v}) + D_l (\boldsymbol{v} \cdot \boldsymbol{\nabla})^2 \boldsymbol{v} + \boldsymbol{f} \\ \text{nonconserved term} & \text{noise} \end{array}$

Steady state solution: $v^2 = \alpha/\beta \equiv v_0^2$ Symmetry breaking: $O(3) \rightarrow O(2)$ Fluctuation: $v = (v_0 + \delta v_x, \delta v_y, \delta v_z)$

 $\omega = ck \quad \omega = i\Gamma k^2 \text{ NG modes}$ propagating diffusive

Can we discuss symmetry breaking without ordinary conservation law?

Ex) Symmetry of Brownian motion

Langevin equation $\frac{d}{dt}\boldsymbol{x}(t) = \boldsymbol{u}(t)$ $\frac{d}{dt}\boldsymbol{u}(t) = -\gamma \boldsymbol{u}(t) + \boldsymbol{\xi}(t)$

$$\langle \xi_i(t)\xi_j(t')\rangle = 2\delta_{ij}\gamma T\delta(t-t')$$

Angular momentum L = x imes u

$$\frac{d}{dt} \langle \boldsymbol{L}(t) \rangle = -\gamma \langle \boldsymbol{x} \times \boldsymbol{u}(t) \rangle \neq 0$$

not conserved

Langevin equation $\frac{d}{dt}u(t) = -\gamma u(t) + \xi(t)$ Fokker-Planck equation $\partial_t P(t, u) = \frac{\partial}{\partial u_i} \left(\gamma T \frac{\partial}{\partial u_i} + \gamma u_i \right) P(t, u)$ Path integral Martin-Siggia-Rose formalism $Z = \int \mathcal{D}\chi \mathcal{D}u e^{iS[\chi, u]}$ **Dynamic action:** $iS = \int dt \left[i\chi_i \left(\frac{d}{dt} u_i + \gamma u_i \right) - T\gamma \chi_i^2 \right]$

Symmetry of Dynamic action

$$iS = \int dt \left[i\chi_i \left(\frac{d}{dt} u_i + \gamma u_i \right) - T\gamma \chi_i^2 \right]$$

O(3) symmetry $\chi_i \rightarrow R_{ij}\chi_j \quad u_i \rightarrow R_{ij}u_j \quad \text{with } R_{ik}R_{kj} = \delta_{jk}$ Noether charge $L_{MSR} = \chi \times u \quad L = \chi \times u$ $L_{MSR} \neq L$

Open quantum system

cf. for review, Sieberer, Buchhold, Diehl, 1512.00637

Schwinger-Keldysh Path integral

 $\frac{\phi_1}{\phi_2}$ $Z = \int \mathcal{D}\phi_1 \mathcal{D}\phi_2 \exp\left[iS[\phi_1] - iS[\phi_2] + iS_{12}[\phi_1, \phi_2]\right]$ complex

$S[\phi_1]$: forward evolution $S[\phi_2]$: backward evolution $S_{12}[\phi_1, \phi_2]$: Interaction with environment

Example Lindblad equation

$\partial_t \rho = -i[H,\rho] + \gamma \left(L\rho L^{\dagger} - \frac{1}{2} (L^{\dagger} L\rho + \rho L^{\dagger} L) \right)$ fluctuation and dissipation

Action

$$S[\phi] = \frac{1}{2} (\partial_{\mu} \phi)^{2} - \frac{1}{2} m^{2} \phi^{2} - \frac{\lambda}{4!} \phi^{4}$$
$$iS_{12}[\phi_{1}, \phi_{2}] = \gamma L(\phi_{1}) L^{\dagger}(\phi_{2}) - \frac{\gamma}{2} \Big(L(\phi_{1}) L^{\dagger}(\phi_{1}) + L(\phi_{2}) L^{\dagger}(\phi_{2}) \Big)$$

$\begin{array}{ll} \textbf{R/A basis} \\ \phi_R = \frac{1}{2}(\phi_1 + \phi_2) & \phi_A = \phi_1 - \phi_2 \\ \textbf{classical field} & \textbf{fluctuation} \end{array}$

$$S[\phi_1] - S[\phi_2] = \int d^4x \phi_A \left(-\partial_\mu^2 \phi_R - m^2 \phi_R - \frac{\lambda}{3!} \phi_R^3 \right) + \int d^4x \frac{\lambda}{24} \phi_A^3 \phi_R$$

classical Equation of motion

For example, $iS_{12}[\phi_R,\phi_A] = -\gamma \phi_A \partial_0 \phi_R - \frac{A}{2} \phi_A^2 + \cdots$

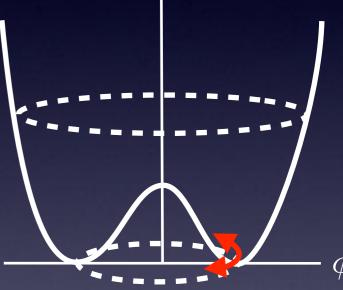
Symmetry of Open quantum system

cf. for review, Sieberer, Buchhold, Diehl, 1512.00637

Schwinger-Keldysh Path integral time ϕ_1 ϕ_2 $Z = \left[\mathcal{D}\phi_1 \mathcal{D}\phi_2 \exp\left[iS[\phi_1] - iS[\phi_2] + iS_{12}[\phi_1, \phi_2] \right] \right]$ complex Q_1, Q_2 :Symmetry generators: $S[\phi_1], S[\phi_2]$ are invariant. Suppose $S_{12}[\phi_1, \phi_2]$ is invariant under $Q_A = \frac{Q_1 - Q_2}{2}$ We also define $Q_R = \frac{Q_1 + Q_2}{2}$

Spontaneous symmetry breaking Minami, YH ('15) Ex1) SU(2)xU(1) model Type-A $V(\phi)$ $iS = \int d^4x \Big[\phi_A^{\dagger}(-\partial_0^2 + \nabla^2 - \gamma \partial_0)\varphi_R - 2\lambda |\varphi_R|^2 \varphi_R - A\varphi_A^{\dagger} \varphi_A \Big] + \cdots$

 φ_R / A two component complex field $\varphi_R = (\pi_1 + i\pi_2, v + h + i\pi_3)$



Linear analysis $(\partial_0^2 + \gamma \partial_0 - \nabla^2)\pi_a = 0 \text{ NG type-A mode}$ $-\omega^2 - i\gamma\omega + k^2 = 0$ $\omega = \frac{-i\gamma}{2} \pm \frac{i}{2}\sqrt{\gamma^2 - 4k^2} \sim -\frac{i}{\gamma}k^2, -i\gamma + \frac{i}{\gamma}k^2$ diffusion mode

Spontaneous symmetry breaking Ex2) SU(2)xU(1)model Type-B with chemical potential µ $iS = \int d^4x \left[\phi_A^{\dagger} (-(\partial_0 + i\mu)^2 + \nabla^2 - \gamma \partial_0) \varphi_R - 2\lambda |\varphi_R|^2 \varphi_R - A\varphi_A^{\dagger} \varphi_A \right] + \cdots$ $V(\phi)$ $\begin{pmatrix} -\partial_0^2 - \gamma \partial_0 + \nabla^2 & 2\mu \partial_0 \\ -2\mu \partial_0 & -\partial_0^2 - \gamma \partial_0 + \nabla^2 \end{pmatrix} \begin{pmatrix} \pi_1 \\ \pi_2 \end{pmatrix} = 0,$ $\omega = \frac{k^2}{4\mu^2 + \gamma^2} (\pm 2\mu - i\gamma)$ quadratic dispersion $\langle [iQ_A^1, Q_R^2] \rangle \neq 0$ Type-B

Spontaneous symmetry breaking Ex3) SU(2)xU(1)model Type-B with complex potential

 $iS = \int d^4x \Big(i\varphi_A^{\dagger} ((-\partial_0^2 + \nabla^2 - (\gamma + 2i\mu)\partial_0 - m_{\rm r}^2 - im_{\rm i}^2)\varphi_R \Big)$

 $-2(\lambda_{\rm r}+i\lambda_{\rm i})(\varphi_R^{\dagger}\varphi_R)\varphi_R)-A\varphi_A^{\dagger}\varphi_A\Big)+\cdots$

Assuming $\varphi_R = (0, ve^{-i\omega_0 t})$ **Gap equation**

 $(\omega_0^2 - 2\mu\omega_0 - m_r^2 - 2\lambda_r v^2 + i(\gamma\omega_0 - m_i^2 - 2\lambda_i v^2))v = 0$

Symmetric phase v = 0Broken phase $v \neq 0, \quad \omega_0 \neq 0$

Spontaneous symmetry breaking Minami, YH ('17) Ex3) SU(2)xU(1)model Type-B with complex potential Linear analysis

 $\begin{pmatrix} -\partial_0^2 - \gamma \partial_0 + \nabla^2 & 2(\mu - \omega_0)\partial_0 \\ -2(\mu - \omega_0)\partial_0 & -\partial_0^2 - \gamma \partial_0 + \nabla^2 \end{pmatrix} \begin{pmatrix} \pi_1 \\ \pi_2 \end{pmatrix} = 0,$

 $\omega = \frac{k^2}{4(\mu - \omega_0)^2 + \gamma^2} (\pm 2(\mu - \omega_0) - i\gamma)$ We still have quadratic dispersion Similarly, we find

$$\omega = -i \frac{\kappa}{\gamma + 2(\mu - \omega_0)\lambda_i/\lambda_r}$$

Diffusive mode for type-A

Inverse propagator and dispersion

Minami, YH ('17)

$$[G_{\pi}^{-1}(k)]^{\beta\alpha} = iC^{\mu;\beta\alpha}k_{\mu} + C^{\mu\nu;\beta\alpha}k_{\mu}k_{\nu} + \cdots$$

Hamiltopian system

 $C^{\mu;\beta\alpha} = -\langle [iQ_R^{\alpha}, j_A^{\beta\mu}(0)] \rangle$

$$-i \int d^D x \langle [iQ_R^{\alpha}, \mathcal{L}_{12}(x)] j_A^{\beta\mu}(0) \rangle_{\pi c}$$

$$C^{\mu\nu;\beta\alpha} = i \int d^D x \langle j_R^{\alpha\mu}(x) j_A^{\beta\nu}(0) \rangle_{\pi c} - \lim_{k \to 0} \frac{\partial}{\partial k_{\nu}} i \int d^D x e^{ik_{\rho}x^{\rho}} \langle [iQ_R^{\alpha}, \mathcal{L}_{12}(x)] j_A^{\beta\mu}(0) \rangle_{\pi c}$$

Our result is too general Need to impose symmetry of S₁₂ Ex)'Standard' Fokker-Plank eq. **Type-A mode Type-B mode** Diffusive $\omega = -ik^2\Gamma$ $\omega = ak^2 - ik^2\Gamma'$ $N_B = \frac{1}{2} \operatorname{rank} \langle [iQ_R^{\alpha}, Q_A^{\beta}] \rangle$ $\overline{N}_A = \overline{N}_{\rm BS} - \operatorname{rank}\langle [iQ_B^{\alpha}, Q_A^{\beta}] \rangle$

Next step: classification

Summary

Spontaneous breaking of
symmetry of Dynamic actionTwo-type of diffusive NG modesType-A modeType-B modeDiffusive $\omega = -ik^2\Gamma$ $\omega = ak^2 - ik^2\Gamma'$

Next step: classification

What is the condition satisfying this table?

Type	Dispersion		Conserved charge	Examples
	Re	Im		
A	k	k ²	$Q_{A,} Q_{R}$	Superfluid, etc.
	0	k 2	QA	flock of birds, Exciton-polariton condensates
	k ²	k ⁴	Q _A , Q _R	Ferromagnet
B <[Qa, Qr]>≠0	k 2	k 2	QA	Spinor BEC in open quantum system? Magnetotactic bacteria?

Possible active matter with type B modes? Collective motion of Magnetotactic bacteria

