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Jet and jet substructure

Outline

I Jets
I hard probes of quark-gluon plasma
I precision jet substructure and grooming
I Soft Collinear Effective Theory (SCET)

I Hard and soft jet substructure
I splitting function and subjet distribution
I groomed jet mass with small jet radius

I Conclusion
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Jet and jet substructure

The creation of the Quark Gluon Plasma (QGP)

I A hot and dense medium is created during heavy ion collisions
I The medium quickly thermalizes and allows a hydrodynamic description of its

spacetime evolution, eventually turning into soft hadrons
I Energetic jets are also produced abundantly in the medium
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Jet and jet substructure

Jets and QCD

I Jets are collimated particles observed at high
energy colliders

I They are manifestations of underlying partons
and defined using jet algorithms with radius R

I Jet physics gets the richest in heavy ion
collisions

I Thousands of particles are produced and the
underlying event backgrounds are enormous
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Jet and jet substructure

Jet algorithm

kT anti kT

β = 1: kT β = 0, C/A β = −1, anti-kT

I Jet clustering algorithms merge pairs of closest particles until the angular resolution R

I The distance dij between particles i and j is defined as dij = min(p2β
ti , p

2β
tj )∆R2

ij/R2
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Jet and jet substructure

Jets are quenched and modified in heavy ion collisions

I Jets are not only embedded in an enormous underlying event background but also
significantly modified

I Because of the huge background, one needs to do both background subtraction and jet
grooming and measure jets with small radii (0.2 < R < 0.4)

I Dramatic suppression of jets and momentum imbalance is observed
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Jet and jet substructure

Hadron and jet cross section suppression

I RAA < 1 is the ratio of the cross sections in AA and pp collisions

ATLAS

sNN = 2.76 TeV
R = 0.4, È Η È < 2
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Jet and jet substructure

Jet spectroscopy of the QGP

ΨJ(r) =

∑
ri<r ET i∑
ri<R ET i

〈Ψ〉 =
1

NJ

NJ∑
J

ΨJ(r,R)

ρ(r) =
d〈Ψ〉

dr

I Jets have become essential tools to probe the quark-gluon
plasma produced in heavy ion collisions

I One typically evaluates the observable modification by the
ratio of the curves in AA and pp collisions O

AA

Opp

I With detailed understanding of jets and their structures we can
relate their modifications to the medium properties: the need
of precise jet substructure studies
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Jet and jet substructure

Jet substructure calculation and resummation

I Jet shapes probe the averaged energy distribution inside a jet
I The infrared structure of QCD induces Sudakov logarithms
I Fixed order calculation breaks down at small r

I Large logarithms of the form αn
s logm r/R (m ≤ 2n), n = 1, ...,∞ need to be resummed

I Sensitive to the partonic origin of jets and the quark/gluon jet fraction
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Jet and jet substructure

QCD and effective field theory

Systematically decompose QCD radiations
I Resolve jets at different energy scales

I A jet is not simply a parton but with sequential branching and splitting
I Substructure measurements allow us to study the jet formation mechanism at various

energy scales

I The dominant contributions to jet observables come from radiations which are
I Energetic, collinear
I Soft, ubiquitous (not necessarily collinear)

I Power counting by systematically defining collinearity and softness
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Jet and jet substructure

Resummation and effective field theory

THE BASIC IDEA
I Logarithms of scale ratios appear in perturbative calculations

I Logarithms become large when scales become hierarchical

log
r
R

= log
scale 1
scale 2

I In effective field theories, logarithms are resummed using renormalization group evolution
between characteristic scales

I To resum all the logarithms we need to identify all the relevant scales in EFT
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Jet and jet substructure

Resummation using Soft-Collinear Effective Theory (SCET)

I Effective field theory techniques are most useful when there is
hierarchy between characteristic energy scales

I SCET factorizes physical degrees of freedom in QCD by a
systematic expansion in power counting

I Match SCET with QCD at the hard scale by integrating out
the hard modes

I Integrating out the off-shell modes gives collinear Wilson lines
which describe the collinear radiation

I The soft sector is described by soft Wilson lines along the jet
directions

QCD

SCET

Soft cross talk

n n̄

R

r

µjR ≈ EJ × R

µjr ≈ EJ × r

µ Renormalization group evolution
between µjr and µjR resums
logµjr/µjR = log r/R

(Chien et al 1405.4293)
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Jet and jet substructure

Power counting in SCET

I The scaling of modes in lightcone coordinates (n̄ · p, n · p, p⊥)
where n = (1, 0, 0, 1) and n̄ = (1, 0, 0,−1):

ph : EJ(1, 1, 1), pc : EJ(1, λ2, λ) and ps : Es(1,R2,R)

I EJ is the hard scale which is the energy of the jet
I λ is the power counting parameter (λ < R)
I EJλ is the jet scale which is significantly lower than EJ
I The relevant soft scales depend on observables

I QCD = O(λ0) +O(λ1) + · · · in SCET

I Leading-power contribution in SCET is a very good
approximation

p+

p−

soft

collinear

hard

ultrasoft

SCETII

SCETI
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Jet and jet substructure

Multiple scattering in a medium and QCD bremsstrahlung

I Coherent multiple scattering and
induced bremsstrahlung are the
qualitatively new ingredients in the
medium parton shower

I Interplay between multiple
characteristic scales:

I Debye screening scale µ
I Parton mean free path λ
I Radiation formation time τ

µ

∆Z L

I Jet-medium interaction using SCET with background
Glauber gluon fields SCETG (Glauber-collinear: Majumder
et al, Vitev et al. Glauber-soft: work in progress)

I Leading-order medium induced splitting functions
Pmed

i→jl(x, k⊥) were calculated using SCETG (Vitev et al)

∆z

x, k⊥

q⊥ 1− x, − k⊥
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Jet and jet substructure

First quantitative understanding of jet shape modification

I Cold nuclear matter effect is negligible
I Jet quenching increases the quark jet fraction
I Jet-by-jet the shape is broadened
I Chien et al 1509.07257 and CMS data 1310.0878
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Jet grooming

How do we isolate physics and distinguish jet quenching models?

I Jets are multi-scaled objects with rich information about the physics across the entire
energy spectrum

I Jet observables have different sensitivities to physics at different energy scales
I Through a series of jet measurements we can map out the whole jet formation history

I Whether the model relies on the low scale physics corresponds to two rough pictures of jet
quenching

I Yes. Parton showers are not affected much until the later stages. The medium
depletes the partons out of the jet

I No. The medium effects open up more channels in the jet formation process, all the
way from the hard process through hadronization

I Can we test the two pictures and the role of medium response?
I We are able to dissect radiations and pick out the components of interest
I The idea: come up with an observable as insensitive to low scale physics as possible
I The tool: jet grooming
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Jet grooming

Jet grooming is actually artificial jet quenching

I It is a controlled way to remove soft radiation

I How does a jet quenching model confront with jet grooming?

I Do they add up or interfere?
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Jet grooming

Groomed momentum fraction zg

dropped

θ

z

I Soft Drop: a tree-based procedure to drop soft radiation (Larkoski et al 1402.2657)
I Recluster a jet using C/A algorithm: angular ordered
I For each branching, consider the pT of each branch and the angle θ
I Drop the soft branch if z < zcut θβ , where z =

min(pT,1,pT,2)

pT,1+pT,2
I CMS used β = 0, zcut = 0.1, R = 0.4, ∆R12 > ∆ = 0.1 and measured zg

I zg: the momentum fraction of the soft branch. rg: the angle between the branches
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Jet grooming

zg and splitting functions

x, k⊥

1− x, − k⊥

P (x, k⊥) ∝ 1
x k⊥ ∆z

x, k⊥

q⊥ 1− x, − k⊥

I In vacuum, the soft branch kinematics is closely related to the Altarelli-Parisi splitting
function

I In the medium, the bremsstrahlung component modifies the soft branch kinematics
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Jet grooming

Analysis of zg

0 1/2 1
x

k⊥

θ = R

θ = ∆

x = zcut x = 1− zcut

x 1− x

θ x, k⊥

k⊥ = ω tan θ
2 x(1− x)

ω

I The partonic phase space is constrained by R (jet algorithm), ∆ (jet selection) and zcut (jet
grooming)

I At leading order, the 1→ 2 branching probability directly affects the subjet distribution
Pi→jl(x, k⊥) = Pvac

i→jl(x, k⊥) + Pmed
i→jl(x, k⊥)

I The distributions of zg and rg are calculated (P(x) = P(x) + P(1− x))

pi(zg) =

∫ kR
k∆

dk⊥P i(zg, k⊥)∫ 1/2
zcut

dx
∫ kR

k∆
dk⊥P i(x, k⊥)

, pi(rg) =

∫ 1/2
zcut

dx pT x(1− x)P i(x, k⊥(rg, x))∫ 1/2
zcut

dx
∫ kR

k∆
dk⊥P i(x, k⊥)
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Jet grooming

Theory calculation of zg

I The medium enhances the small zg and suppresses the large zg regions, and the effect
becomes smaller for higher pT jets

I Cutting on the angle between branches selects a special subset of the jet sample
I Jets with a two prong structure not typical for QCD jets
I The scale of this subjet branching is high: hard jet substructure
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Jet grooming

Theory calculation of zg
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I Quantitatively agreeing with the CMS data
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Jet grooming

Theory prediction for rg

I The subjet angular distribution will reveal the nature of QCD bremsstrahlung
I It will be a direct probe of the medium scale
I The next step is the groomed jet mass
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Jet grooming

Groomed jet mass

I Invariant mass of soft-dropped jet: m2 = (
∑

pi)2

I Factorization in SCET

0 1/2 1
x

k⊥

θ = R

θ = ∆

x = zcut x = 1− zcut

θ x, k⊥

k⊥ = ω tan θ
2 x(1− x)

ω

m2 =
k2⊥

x(1−x)

µh ≈ EJ

µhc ≈ EJ R

µs ≈ EJ R zcut

µc ≈ m

µsc ≈ m
√
zcut
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Jet grooming

Power counting of modes

I Factorization and resummation:
I In-jet soft mode

ps = EJzcut(1,R2,R), with µs = EJRzcut

I Collinear mode

pc = (EJ ,
m2

EJ
,m), with µj = m

I Soft-collinear mode respecting the measurement xθ2 ∼ m2/E2
J and jet grooming

zcut ∼ x(θ/R)−β

psc = (EJzcut

( m
EJR
√

zcut

) 2β
2+β

,
m2

EJ
,m
√

zcut

( m
EJR
√

zcut

) β
2+β

), with µsc = m
√

zcut

( m
EJR
√

zcut

) β
2+β

I Hard collinear mode from pure jet reconstruction

pjR = EJ(1,R2,R), with µjR = EJR
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Jet grooming

Groomed jet mass function

I The process-independent groomed jet mass function J/sM(m2, µ) captures all the
soft-collinear radiation inside jets (i = q, g)

Ji/s
M (m2, µ) =

∫
dp2dkJi(p2, µ)S/si (k,R, zcut, µ)δ(m2 − p2 − 2EJk)

where S/si (k,R, zcut, µ) = SC
i (k,R, zcut, µ)SIN

i (R, zcut, µ)

I Medium-induced splitting functions are used to calculate the modification of J/sM(m2, µ). At
O(αs),

Ji/s
M (m2, µ) =

∑
j,k

∫
PS

dxdk⊥Pi→jk(x, k⊥)δ(m2 −M2(x, k⊥))Θalg.Θ/s

M2(x, k⊥) =
k2
⊥

x(1−x) , ΘkT = Θ(EJRx(1− x)− k⊥), Θ/s = Θ(EJRx(1− x)
(

x
zcut

)1/β
− k⊥).

I The full jet mass distribution can be calculated by weighing the groomed jet mass functions
with jet cross sections

dσ
dm2

=
∑

i=q,g

∫
PS

dpT dy
dσi

dpT dy
P/si (m2, µ), where P/si (m2, µ) =

Ji/s
M (m2, µ)

Ji
un(µ)
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Jet grooming

Resummed groomed jet mass function

I Each function is calculated at 1-loop and depends on a single scale

I P/si (m2, µ) is manifestly renormalization group invariant. Logs are resummed using the RG
evolution of each function.

P/si (m2, µ)

= exp
[

2
2 + β

1 + β
CiS(µsc, µs)− 4CiS(µj, µs) + 2CiS(µjR , µs) + 2AJi (µj, µjR ) + 2ASi (µsc, µjR )

]

×
( µ2

j z
1

1+β
cut

µ
2+β
1+β
sc (2EJ tan R

2 )
β

1+β

)2CiAΓ(µs,µsc)
(2EJ tan R

2

µjR

)2CiAΓ(µs,µjR ) SIN
i (µs)

m2Ji
un(µjR )

J̃i(∂η, µj)S̃C
i (∂η + ln

µ2
j z

1
1+β
cut

µ
2+β
1+β
sc (2EJ tan R

2 )
β

1+β

, µsc)
(m2

µ2
j

)η e−γEη

Γ(η)
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Jet grooming

Preliminary results
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I The ∆R12 > 0.1 cut cuts out the Sudakov peak and eliminates the quark/gluon difference
I The lower and upper limits of jet mass are essentially dictated by kinematics. rg and jet

mass are highly correlated
I The medium lowest-order perturbative contribution enhances the small mass region
I Hard splitting can "shield" inner soft radiations from being soft-dropped
I Soft contributions (anything softer: modification of subjets, pp smearing, etc) and

hadronization effects are still under examination
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Conclusion and discussion

Conclusion

I What we have learned: flavor dependence of jet quenching and the role of quark/gluon jet
fraction in jet substructures

I Subjet distribution provides an opportunity to test the modification of hard splitting within jets
I Groomed jet mass is resummed with small radius, and the medium lowest-order

perturbative contribution enhances the small mass region (preliminary)
I Effective field theory techniques allow systematically improvable jet quenching studies
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