Matrix Product States and 1+1 dimensional Thirring model

arXiv:1710.09993 (LATTICE 2017)

C.-J. David Lin National Chiao-Tung University, Taiwan

QCD and QFT workshop 10/11/2017, NTU

Collaborators

- Mari-Carmen Banuls (MPI Munich)
- Krzysztof Cichy (Mickiewicz U., Poznan)
- Ying-Jer Kao (National Taiwan U.)
- Yu-Ping Lin (U. of Colorado, Boulder)
- David T.-L. Tan (Nat'l Chiao-Tung U.)

Outline

- Motivation.
- Thirring model as a quantum spin chains.
- Methods for spin chains:
 1. Density matrix renormalisation group.
- Methods for spin chains:
 2. Matrix product states.
- Exploratory results for Kosterlitz-Thouless phase transition.
- Remarks and outlook.

Motivation

Interests in tensor-network methods

- Hamiltonian formalism, real-time dynamics.
- No sign problem.
- Future quantum simulations?
- New for lattice practirioners.
- Investigating topological aspects of QFT.

A forward-looking method for computational QFT.

The 1+1 dimensional Thirring model and its representations as scalar models

$$S_{\rm Th} \left[\psi, \bar{\psi} \right] = \int d^2 x \left[\bar{\psi} i \gamma^{\mu} \partial_{\mu} \psi - m_0 \bar{\psi} \psi - \frac{g}{2} \left(\bar{\psi} \gamma_{\mu} \psi \right)^2 \right]$$

$$S_{\rm SG} \left[\phi \right] = \int d^2 x \left[\frac{1}{2} \partial_{\mu} \phi(x) \partial^{\mu} \phi(x) + \frac{\alpha_0}{\kappa^2} \cos\left(\kappa \phi(x)\right) \right]$$

$$\xrightarrow{\phi \to \phi/\kappa, \text{ and } \kappa^2 = t}_{\rm Euclidean} \xrightarrow{1} t \int d^2 x \left[\frac{1}{2} \partial_{\mu} \phi(x) \partial^{\mu} \phi(x) - \alpha_0 \cos\left(\phi(x)\right) \right]$$

$$\begin{array}{c} \text{high-low temperature duality} \\ \frac{H_{\rm XY}}{T} = \frac{-K}{T} \sum_{\langle i,j \rangle} \cos\left(\theta_i - \theta_j\right) \\ \end{array}$$

$$\left(\text{Topological phase transition, critical phase,...} \right)$$

Summary of the dualities

Thirring	sine-Gordon	XY
g	$\frac{4\pi^2}{t} - \pi$	$\frac{T}{K} - \pi$

★ The K-T phase transition at $T \sim K\pi/2$ in the XY model.

The phase boundary at $t \sim 8\pi$ in the sine-Gordon theory. The cosine term becomes relevant or irrelevant.

Thirring	sine-Gordon
$ar{\psi}\gamma_\mu\psi$	$\frac{1}{2\pi}\epsilon_{\mu\nu}\partial_{\nu}\phi$
$ar{\psi}\psi$	$\frac{\Lambda}{\pi}cos\phi$

Thirring model as a spin chain

Staggering the Thirring model

• The continuum Hamiltonian

$$\gamma_0=\sigma_3,\,\gamma_1=i\sigma_2$$
 , $\psi=\left(egin{array}{c}\psi_1\\psi_2\end{array}
ight)$

 $H_{\rm Th} = \int dx \left\{ -i \left(\psi_2^* \partial_x \psi_1 + \psi_1^* \partial_x \psi_2 \right) + m_0 \left(\psi_1^* \psi_1 - \psi_2^* \psi_2 \right) + 2g \left(\psi_1^* \psi_1 \psi_2^* \psi_2 \right) \right\}$

• Staggered regularisation a'la Kogut and Susskind

$$\psi_{u} \to \frac{1}{\sqrt{a}}c_{2n}, \ \psi_{d} \to \frac{1}{\sqrt{a}}c_{2n+1}$$

$$H_{\text{Th}}^{(\text{latt})} = -\frac{i}{2a}\sum_{n=0}^{N-2} \left(c_{n}^{\dagger}c_{n+1} - c_{n+1}^{\dagger}c_{n}\right) + m_{0}\sum_{n=0}^{N-1} (-1)^{n}c_{n}^{\dagger}c_{n} + \frac{2g}{a}\sum_{n=0}^{\frac{N}{2}-1} c_{2n}^{\dagger}c_{2n}c_{2n+1}^{\dagger}c_{2n+1}$$

$$- No \ \text{doubler}$$

The Jordan-Wigner transformation

• The fermion fields satisfy

$$\{c_n, c_m\} = \{c_n^{\dagger}, c_m^{\dagger}\} = 0, \ \{c_n, c_m^{\dagger}\} = \delta_{n,m}.$$

• The Jordan-Wigner transformation

$$c_n = \exp\left(i\pi\sum_{j=1}^{n-1}S_j^z\right)S_n^-, \ c_n^{\dagger} = S_n^+ \exp\left(-i\pi\sum_{j=1}^{n-1}S_j^z\right)$$

expresses the the fermions fields in spins,

$$S_j^{\pm} = S_j^x \pm i S_j^y, \quad \left[S_i^a, S_j^b\right] = i \delta_{i,j} \epsilon^{abc} S_i^c$$

Thirring model as a quantum spin chain

• JW transformation on the Thirring model gives

$$H_{spin} = -\frac{1}{2a} \sum_{n} \left(S_n^+ S_{n+1}^- + S_{n+1}^+ S_n^- \right) + m_0 \sum_{n} \left(-1 \right)^n \left(S_n^z + \frac{1}{2} \right) \\ + \frac{2g}{a} \sum_{n} \left(S_{2n}^z + \frac{1}{2} \right) \left(S_{2n+1}^z + \frac{1}{2} \right) .$$

XXZ model with two external fields)

• The "penalty term"

$$H_{spin}^{(penalty)} = H_{spin} + \left(\lambda \left(\sum_{n=0}^{N-1} S_n^z - S_{target} \right)^2 \right)$$

projected to a sector of total spin
JW-trans of the total fermion number,
Bosonise to topological index in the SG theory.

Density matrix RG

The large Hilbert space

Size of the Hilbert space increases exponentially when the chain grows.

Challenging to diagonalise the Hamiltonian and look for the ground state.

Issue with numerical RG

The key idea behind DMRG

Redistribute the entanglement between the system and the environment, and minimise the loss of information when truncating the Hilbert space.

The singular value decomposition

$$\left|\Psi\right\rangle = \sum_{i=1}^{D_A} \sum_{j=1}^{D_B} \Psi_{i,j} |i\rangle \otimes |j\rangle$$

 $\Psi_{i,j}$ can be regarded as elements of a $D_A \times D_B$ (assuming $(D_A \ge D_B)$ matrix. SVD

$$\Psi_{i,j} = \sum_{\alpha}^{D_B} U_{i,\alpha} \lambda_{\alpha} \left(V^{\dagger} \right)_{\alpha,j}$$
$$U^{\dagger} U = 1, V V^{\dagger} = 1$$

Discard small singular values

$$\Psi_{i,j} = \sum_{\alpha}^{D'_B < D_B} U_{i,\alpha} \lambda_\alpha \left(V^{\dagger} \right)_{\alpha,j}$$

Schmidt decomposition and entanglement

* Truncating the Hilbert space by omitting small singular values ——— Throwing away small-entanglement states

DMRG practical

- Grow the chain until the Hilbert space size exceeds the imposed upper limit.
- Diagonalise the full Hamiltonian and obtain the ground state $|\Psi\rangle = \sum_{i=1}^{D_A} \sum_{j=1}^{D_B} \Psi_{i,j} |i\rangle \otimes |j\rangle$.
- Compute the reduced density matrix of one of the blocks, and truncate.
- Express the Hamiltonian in the new basis.
- Add two more sites and keep growing.

Finite-size DMRG

Matrix product states

Constructing canonical states: pictures

Constructing canonical states: details

$$|\psi\rangle = \sum_{\sigma_{1},...,\sigma_{L}} c_{\sigma_{1},...,\sigma_{L}} |\sigma_{1},...,\sigma_{L}\rangle$$
Reshape, SVD, then reshape.
Choose to keep only the largest SV's
Bond dimension
$$c_{\sigma_{1},...,\sigma_{L}} = \Psi_{\sigma_{1},(\sigma_{2},...,\sigma_{L})} = \sum_{a_{1}}^{r_{1}} U_{\sigma_{1},a_{1}} S_{a_{1},a_{1}}(V^{\dagger})_{a_{1},(\sigma_{2},...,\sigma_{L})} \equiv \sum_{a_{1}}^{r_{1}} U_{\sigma_{1},a_{1}} c_{a_{1}\sigma_{2},...,\sigma_{L}}$$
Rename and reshape $U_{\sigma_{1},a_{1}} = A_{a_{1}}^{\sigma_{1}}$

$$c_{\sigma_{1},...,\sigma_{L}} = \sum_{a_{1}}^{r_{1}} \sum_{a_{2}}^{r_{2}} A_{a_{1}}^{\sigma_{1}} U_{(a_{1}\sigma_{2}),a_{2}} S_{a_{2},a_{2}}(V^{\dagger})_{a_{2},(\sigma_{3},...,\sigma_{L})}$$

$$(\text{Rename and reshape } U_{(a_{1}\sigma_{2}),a_{2}} = A_{a_{1}}^{\sigma_{1}} A_{a_{1},a_{2}}^{\sigma_{2}} \Psi_{(a_{2}\sigma_{3}),(\sigma_{4},...,\sigma_{L})}$$

$$(\text{Rename and reshape } U_{(a_{1}\sigma_{2}),a_{2}} = A_{a_{1},a_{2}}^{\sigma_{2}}$$

Matrix Product Operator

It is simple to compute local operator matrix elements with canonical states.

MPO for the Thirring model Hamiltonian

$$M_n = \begin{pmatrix} 1 & -\frac{1}{2a}S^+ & -\frac{1}{2a}S^- & 2\lambda S^z & \frac{2g}{a}S^z \,\delta_{0,n\%2} & \beta_n S^z + \gamma \mathbb{1} \\ 0 & 0 & 0 & 0 & 0 & S^- \\ 0 & 0 & 0 & 0 & 0 & S^+ \\ 0 & 0 & 0 & 1 & 0 & S^z \\ 0 & 0 & 0 & 0 & 0 & S^z \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix},$$

where

$$\beta_n = \frac{g}{a} + \left((-1)^n m_0 + \mu \right) - 2\lambda S_{target}$$
$$\gamma = \lambda \left(\frac{1}{4} + \frac{S_{target}^2}{N} \right) + \frac{g}{4a} + \frac{\mu}{2} \,.$$

Practice of MPS for DMRG

• Reshape the free indices of this tensor to form a matrix

$$(T)_{a_{l-1},a_{l},a_{l-1}',a_{l}'}^{\sigma_{l},\sigma_{l}'} \longrightarrow (T)_{\sigma_{l}a_{l-1}a_{l},\sigma_{l}'a_{l-1}'a_{l}'}$$

- Obtain the lowest-lying eigenvector $v_{\sigma_l a_{l-1}a_l}$.
- Reshape $v_{\sigma_l a_{l-1} a_l} \longrightarrow M_{\sigma_l a_{l-1}, a_l}$

SVD on $M_{\sigma_l a_{l-1},a_l}$, and then reshape.

Practice of MPS for DMRG

Heisenberg spin chain

Spin-spin correlators in the XY model

Recap: what do we expect?

- Compute $G(|a b|) = \langle e^{i(\theta(a) \theta(b))} \rangle$ in the XY model.
- High-T: $G(r) = A' e^{-r/\xi}$. Low-T: $G(r) = A r^{-T/2\pi K}$.

Thirring sine-Gordon XY
$$g \quad \frac{4\pi^2}{t} - \pi \quad \frac{T}{K} - \pi$$

Phase transition at $T_c \sim K\pi/2$, $g_c \sim -\pi/2$. •

The operator and the correlator

Results

 $N = 1000, D = 100, m_0 a = 0.5$

Results

 $N = 1000, D = 100, m_0 a = 0.5$

Results

 $N = 1000, D = 100, m_0 a = 0.5$

Remarks and outlook

- We constructed MPO and MPS for the Thirring model.
- Promising exploratory results on the KT-phase transition.
 Finite-size scaling analysis is desirable.
- Better simulations: larger system size & bond dimension.
 Precise determination of the K-T critical temperature.
- Future: other aspects of topological phase transitions.
 Real-time dynamics?