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Spontaneously induced magnetic anisotropy
in an ultrathin Co/MoS2 heterojunction†

Chun-I Lu, ab Chih-Heng Huang,ac Kui-Hon Ou Yang,d

Kristan Bryan Simbulan, b Kai-Shin Li,e Feng Li,f Junjie Qi, f Matteo Jugovac, g

Iulia Cojocariu,g Vitaliy Feyer, g Christian Tusche,g Minn-Tsong Lin,hi

Tzu-Hung Chuang,a Yann-Wen Lan *b and Der-Hsin Wei *a

Magnetic anisotropy (MA) is a material preference that involves

magnetization aligned along a specific direction and provides a

basis for spintronic devices. Here we report the first observation

of strong MA in a cobalt–molybdenum disulfide (Co/MoS2)

heterojunction. Element-specific magnetic images recorded with

an X-ray photoemission electron microscope (PEEM) reveal that

ultrathin Co films, of thickness 5 monolayers (ML) and above,

form micrometer (lm)-sized domains on monolayer MoS2 flakes

of size tens of lm. Image analysis shows that the magnetization

of these Co domains is oriented not randomly but in directions

apparently correlated with the crystal structure of the underlying

MoS2. Evidence from micro-area X-ray photoelectron spectra

(l-XPS) further indicates that a small amount of charge is

donated from cobalt to sulfur upon direct contact between Co

and MoS2. As the ferromagnetic behavior found for Co/MoS2 is in

sharp contrast with that reported earlier for non-reactive

Fe/MoS2, we suggest that orbital hybridization at the interface

is what makes Co/MoS2 different. Our report provides micro-

magnetic and micro-spectral evidence that consolidates the

knowledge required to build functional heterojunctions based

on two-dimensional (2D) materials.

Introduction

After the discovery of graphene, monolayer MoS2 – a layered
van der Waals (vdW) semiconducting transition-metal dichalco-
genide (TMD)1–4 – has emerged as another 2D material proto-
type, which can be obtained by exfoliation ex situ or chemical
vapor deposition (CVD)5,6 in situ. Bulk MoS2 has an indirect
bandgap, which would become a direct bandgap when its
thickness decreases to a monolayer.5,7,8 This exotic property
has enabled few-layer MoS2 to have applications of various
types, such as field-effect transistors, light-emitting diodes,
and solar cells.9–12 Moreover, because of the strong spin–orbit
coupling and the absence of inversion symmetry in the mono-
layer regime, spin splitting arises at the boundaries of the
surface Brillouin zone, specifically, at points K and �K, to
conserve the time-reversal symmetry.13–15 Such a unique band
structure provides a possibility to encode information through the
material valley pseudospin. Valley-based electronics is described
as valleytronics, a name inspired after another famous field,
spintronics.16–19

MoS2 can also serve as a spacer in a spin-valve device to
exploit its semiconducting nature and its stable spin polariza-
tion in the out-of-plane direction.20,21 Magnetoresistance (MR)
of 0.73% at 20 K and 0.23% at 240 K has been demonstrated in
a NiFe/MoS2/NiFe structure.22 MR denotes the change of electrical
resistance when two ferromagnetic (FM) electrodes sandwiching
a MoS2 layer switch their magnetization alignment from parallel
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New concepts
The new concept in this work is the observation of spontaneously induced
magnetic anisotropy in monolayer MoS2 due to charge donation at the
interface of the Co/MoS2 heterojunction. In this way, monolayer transi-
tion metal dichalcogenide (TMD) materials can be magnetized by simply
attaching a suitable material, instead of doping them, to avoid damaging
the atomic structure. Furthermore, the magnetic properties of TMDs
could be fine-tuned by choosing different materials, which involves
different orbital hybridization at the interface.
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to anti-parallel. The confirmation of a spin-valve effect in a MoS2-
based heterostructure is encouraging, but the large discrepancy
between measurement (MR less than 1%)22 and prediction (MR as
large as 300%)23 indicates that we have yet to identify all players
relevant to the spin-dependent transport in TMD-based spin
valves.

Direct investigation of the fundamental magnetic properties
of FM–TMD heterojunctions is believed to be informative but
remains scattered. A recent experimental study of a Fe/MoS2

heterojunction found that deposited Fe aggregates into nano-
particles with no sign of magnetic coupling to MoS2. Neither is
there charge transfer between Fe and MoS2, according to
measurements of their X-ray photoemission spectra (XPS).24,25

In contrast, Co/MoS2 was suggested to be different. According
to a first-principles calculation reported by Garandel et al., the
energetically favored Co–S bonding at the Co/MoS2 interface
would lead to a spin imbalance on the MoS2 side.26 We thus
expect Co/MoS2 to exhibit magnetic properties different from
those of Fe/MoS2.

This work began with the deposition of ultrathin films of Co
onto flakes of SiO2-supported monolayer MoS2,6 followed by an
examination of the magnetic domain configuration with
a photoemission electron microscope (PEEM)27 and chemical
states with m-XPS.28 Element-specific images revealed that, with
Co covering both MoS2 and SiO2, the magnetic domains
appeared only at the area of Co/MoS2. Furthermore, the direc-
tion of magnetization of Co domains seems to correlate with
the underlying MoS2 lattice structure. m-XPS measurements28

on Co/MoS2 disclose further that a small charge transfer,
induced by the formation of a covalent bond between S and
Co atoms, occurs after the deposition of Co. Our observation of
magnetic domains with preferred directions of magnetization
is solid proof of magnetic anisotropy at a Co/MoS2 (monolayer)
heterojunction. The charge transfer identified with m-XPS
indicates that a high spin-injection efficiency at this particular
interface might be possible.

Results and discussion

Fig. 1 shows optical images of MoS2 islands on a SiO2 substrate
after CVD growth. The surface is composed of flakes of various
shapes, for example, star-like or triangular. The consistent
transparency among MoS2 flakes indicates their high thickness
uniformity. The collective photoluminescence (PL) and Raman
spectra, shown in Fig. 1(b) and (c), respectively, indicate that
most MoS2 flakes are monolayers. This condition is revealed by
a separation of 21 cm�1 between the two dominant peaks, E1

2g at
383.8 cm�1 and A1g at 404.1 cm�1, in the Raman spectra, as well
as by an intense and sharp peak located at 1.8 eV in the PL
spectra.5,29

A schematic band structure of a typical FM 3d-transition
metal is drawn in Fig. 2(a), in which a net magnetic moment
originates from the asymmetric nature of the 3d band. According
to the selection rules, an incident energetic photon beam with
either right or left circular polarization (RCP or LCP) can excite
electrons that fulfill the transition conditions: Ds = 0 and Dm =�1.
The probabilities of each pair of corresponding transitions from

the occupied 2p core-level up to the empty 3d band are, however,
unequal for the majority and minority spin channels because each
channel has a different number of empty states available for a
transition. A schematic diagram of the experimental setup
appears in Fig. 2(b), which shows an incident circularly polarized
beam illuminating the sample – a Co ultrathin film on MoS2 – at
an angle of 251 of grazing incidence. The spatial distribution of
the photo-emitted electrons under the X-ray magnetic-circular-
dichroism (XMCD) effect30,31 is resolved with the PEEM, allowing
the observation of magnetic domains in the Co layer. Fig. 2(c)
shows an XMCD image recorded from a Co film (9 ML) deposited
on monolayer MoS2. In that image, two regions of distinct
contrast are labeled as regions A and B. From there, we extracted
two micro-area spectra according to their intensity variation as a
function of photon energy. As the difference of these two spectra
in Fig. 2(d) shows a typical XMCD signature – opposite enhance-
ment at Co L3 and L2 resonances – the contrast seen in Fig. 2(c)
has indeed a magnetic origin.

Fig. 3(a)–(c) show XMCD images of Co films at thicknesses
5, 7, and 9 ML. After recording the first XMCD image from a Co
film at thickness 5 ML, the images in succeeding sets were
acquired after each subsequent deposition. After comparing
the series of images, we concluded that the additional Co
deposition would only enhance the magnetic contrast of the
existing domains. The XMCD image can be conceived as an
inner product of the sample magnetization (

-

M) and the beam
polarization (~s), i.e. I p

-

M�~s.33 Under the conditions of fixed
incident angle and beam polarization, the XMCD image is
effectively a measure of the spatial distribution of magnetiza-
tion directions with respect to the polarization of the photon
beam. In our study, the thickness of Co was assumed to
be uniform on MoS2,34,35 and likewise the magnitude of its
magnetization. The fact that we observed only several distinct
contrasts in Fig. 3 indicates that the localized magnetizations
are somehow oriented into selected directions. To explain the
directions of magnetization clearly, we plotted the contrast
levels of domain images into histograms. The greyscale shown

Fig. 1 Monolayer of MoS2. (a) OM image of CVD-grown MoS2 islands on
SiO2. The dashed square indicates a triangular MoS2 sample, which is also
featured in Fig. 3. (b) The Raman spectrum of the sample shows two
dominant Raman modes at 383 and 404 cm�1 of separation 21 cm�1.
(c) The PL spectrum of the sample indicates that the photoluminescence
peak energy is equal to 1.83 eV. These two spectra indicate that the MoS2

islands are monolayers.
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at the bottom of the histogram indicates the range of contrast
levels taken from images, whereas the intensity of the histogram

represents the frequency of finding a specific contrast level
from the image pixels. In the hypothetical case of out-of-plane

Fig. 2 XMCD. (a) Schematic diagram describing the principle of XMCD. The excitations of spin-up and spin-down electrons from the 2p band are
distinct when a circularly polarized beam is applied along with a particular magnetic domain. This absorption, and the resulting photoelectron emission,
asymmetry is reversed with the beam focused on the domain in the opposite magnetization. (b) Schematic diagram illustrating the experimental setup.
The incident circularly polarized soft X-ray beam has an angle of 251 with respect to the sample surface. Due to the effect of XMCD, opposite magnetic
domains respond differently when the photon energy of the incident beam is resonant with the Co L3 and L2 edges. The emitted photoelectrons are collected
with the PEEM to map spatially the domains in varied directions of magnetization. (c) XMCD image of cobalt (9 ML) on monolayer MoS2. The inset shows the
direction of incident light. (d) The corresponding m-XAS of regions A and B, the positions of which are marked in (c), are shown. The bottom spectrum
represents the asymmetric nature of spectra A and B, which proves that the grey-scale contrast in (c) is a consequence of the XMCD effect.

Fig. 3 Dependence on the thickness of Co. XMCD images of Co of thicknesses (a) 5, (b) 7 and (c) 9 ML. The histograms below each image measure the
grey-scale distribution in the region enclosed with the dashed squares in each histogram corresponding to the XMCD images. The domains in (a), (b) and
(c) tend to be identical but the color contrast increases. The greyscale is limited to the range 0 to 255; the three chosen squares have the same area.
The presence of several peaks in the histogram implies the magnetization to be in-plane.
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magnetization, only two contrast levels would be possible,
inward-pointing normal and outward-pointing normal. As all
histograms in Fig. 3 display more than two contrast levels
within a finite greyscale, we conclude that the magnetizations
of Co domains not only lie either in-plane or canted but also
have preferred orientations.

Our next task was to examine the relevance of the MoS2

crystalline structure for the domain formation. Fig. 4(a) and (b)
display the domain images of a Co film (9 ML) grown on a
single crystalline monolayer MoS2 flake and a polycrystalline
monolayer MoS2 film, respectively.34 By controlling the degree
of crystallinity in monolayer MoS2, we were able to adjust
the lateral dimensions of the magnetic domains from tens of
micrometers to sub-micrometers. In addition, as Fig. 4(b)
shows a broader spread of greyscale, the Co domains on a
polycrystalline surface are believed to be less aligned. Another
observation worthy of mention concerns the domain bound-
aries on triangular MoS2 flakes. As displayed in Fig. 4(c), the
paths of the domain boundary are not arbitrary but follow a
particular crystalline axis of MoS2. Considering that CVD-grown
triangular MoS2 flakes are typically treated as a single crystal-
line grain, and that the edge of the grain is in either an
armchair or zig-zag configuration as illustrated in Fig. 4(d),36

it seems that well-defined crystallinity in the MoS2 layer would
not only promote the magnetization alignment in a Co layer but
also affect how the domains are divided. We emphasize here

that the same behavior was found repeatedly on other flakes of
MoS2 covered with Co.

Finally, we examined the electronic structure of Co/MoS2

(flake) with m-XPS. Fig. 5 shows the m-XPS recorded from the
Co(4 ML)/SiO2 and the Co(4 ML)/MoS2 regions, respectively.
As the Co layer was prepared in situ, under UHV conditions,
the Co 2p core levels acquired in the two separate areas contain
contributions mainly from Co(0) (2p3/2 = 778.3 eV),37 which
corresponds to the metallic state of Co. Moreover, apart from a
broad spectral feature corresponding to the Auger emission of
S atoms in MoS2, there are noticeable differences between the
two spectra displayed in Fig. 5. A fit of the Co 2p spectrum of
Co/MoS2 (flake) produces two additional spectral features,
namely Co(II) (2p3/2 = 781.5 eV) and Co(III) (2p3/2 = 779.7 eV).37,38

As Co(III) has an emission energy similar to that of Co oxidization
found in Co/SiO2,39 we suggest that both Co(II) and Co(III) found on
Co/MoS2 (flake) are the result of charge transfer from Co to MoS2.
The spectra shown in Fig. 5 are inconsistent with the concept of
chemical doping, which is generally accompanied by chemical
shifts in XPS.40 Instead, the absence of an energy shift of all major
emission peaks – Co(0), Mo 3d, and S 2p (Fig. S6, ESI†) – implies a
small net extent of charge transfer.

Based on our experimental observations, we confirm that an
ultrathin Co film deposited on monolayer MoS2 is able to form
micrometer-sized ferromagnetic domains. Furthermore, the
magnetization and the boundaries of domains have preferred
directions or paths that are parallel to either the zig-zag or
armchair directions of the MoS2 crystal structure. The presence
of magnetic order and magnetic anisotropy in Co/MoS2 (flake)
proves the possibility of using two-dimensional materials of
monolayer thickness to evoke the anisotropy of a magnetic
layer deposited thereon.

Fig. 4 Magnetic anisotropy. XMCD images of (a) a Co film (9 ML) on
a single grain monolayer MoS2 flake and (b) a Co film (9 ML) on poly-
crystalline monolayer MoS2. The inset in (a) shows a de-magnified image
with a scale bar set at 30 mm. The domains are larger on single grain
MoS2 than on polycrystalline MoS2 (c). The domain boundaries present
preferential directions, parallel to either the zig-zag (red) or armchair (blue)
direction as clearly seen in the corresponding MoS2 ball models, A and B,
drawn in (d).

Fig. 5 m-XPS evidence of charge transfer in Co. Co 2p m-XPS recorded for
Co/SiO2 (upper) and Co/MoS2 (lower).
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The crystal structure of Co offers the most straightforward
explanation of the observed MA, because an ultrathin metallic
film under a lattice strain can display properties different from
those found in its pristine structure. An effective example to
show what a lattice strain can do to the magnetic properties of a
material is Co/GaAs(110); the Co layer stabilized on the body-
center-cubic (BCC) structure displays an a-Fe-like behavior.41

However, as the low energy electron diffraction (LEED) results
on Co/MoS2 (bulk crystal) failed to produce a sharp pattern,
we suspect that Co/MoS2 (flake) might not be epitaxial in
nature; in fact, the Co layer grown on the MoS2 surface seems
amorphous (Fig. S7, ESI†). Although we lack the appropriate
tool to determine the crystal structure of Co/MoS2 (flake), we
know that the shape anisotropy can play no major role because
of the non-comparable thickness between the Co layer and the
area of the MoS2 flake (several nm vs. tens of mm2).

Readers might curious about the absence of magnetic
domains in the part Co/SiO2. The uniformity of the Co layer
could cause such a difference. However, with our Co deposition
known to vary by at most a few percent within a diameter of
6 mm on the specimen and the confirmation of having the
same Co L-edge intensity measured from Co/MoS2 and Co/SiO2

(Fig. S11, ESI†), we believe that the thickness of the Co layer is
not responsible for the observed difference in domain con-
figurations. Also, the AFM image (Fig. S12, ESI†) of a Pd
protected Co film on the substrate shows that nanoclusters
form on both MoS2 and SiO2. The absence of magnetic domains
of Co/SiO2 means that the orientations of spin are in a high
symmetry phase whose orientations have equal probabilities of
pointing in every direction. This could be the reason why
XMCD-PEEM cannot observe the magnetic domain, although
Co is a ferromagnetic material. In contrast, the presence of
magnetic domains is a signature of symmetry lowering in
which spins are grouped and oriented into selected directions.

Regarding the XPS evidence of charge transfer from Co
to MoS2, we find it consistent with the theoretical work of
Garandel et al. that indicates that Co atoms at the interface
bond covalently with the topmost S atoms of MoS2.26 According
to that reported work,26 the charge transfer at Co/MoS2 would
result in a spin-polarized metallic interface and facilitate effi-
cient spin injection. Another reason motivating us to look into
the electronic structures of Co/MoS2 and Co/SiO2 is the distinct
behavior recently reported in Fe/MoS2 (Fig. S8 (ESI†), and
ref. 24); neither magnetic domains nor charge transfer between
Fe and MoS2 was found.

Conclusion

In conclusion, we have proved that a CVD-grown monolayer
MoS2 flake can promote domain formation in a subsequently
deposited Co layer. Furthermore, it is possible to fine-tune the
magnetic behavior of Co/MoS2 through the crystallinity of
MoS2. Finally, according to the XPS evidence of charge dona-
tion at Co/MoS2, we suggest that the orbital hybridization at the
interface is what distinguishes the magnetic properties of

Co/MoS2 here and Fe/MoS2 reported earlier.24,25 The interplay
between Co and MoS2 is electronically originated, and such an
interplay has resulted in a spontaneously induced magnetic
anisotropy in an ultrathin Co/MoS2 heterojunction.

Methods

High-quality single-crystal monolayer MoS2 flakes were grown
inside a tubular furnace equipped with a silica tube (diameter
30 mm). SiO2 (90 nm)/Si(001) substrates were cleaned according to
a standard procedure and then soaked in a H2SO4/H2O2 (3 : 1)
solution for 2 h. MoO3 powder (0.01 g) was then positioned on a
silver silica boat located at the heating zone of the furnace. The
SiO2/Si substrate (size 2 cm � 2 cm) was placed face down above
the MoO3 powder. Sulfur powder was placed in a separate ceramic
boat located at the upper stream of the furnace at a temperature of
about 170 1C. A flow of ultrahigh-purity Ar gas carried both S and
MoO3�x vapors onto the target substrate. The temperature of the
furnace was initially raised to 120 1C (500 sccm) for 30 min, and
then ramped up to 850 1C at a rate of 20 1C min�1 (200 sccm),
allowing the CVD growth of MoS2. The sample was kept in the
environment described above for a further 30 min before passive
cooling to B25 1C.

The MoS2 samples grown on the SiO2(90 nm)/Si(001) sub-
strates were loaded into TLS endstation 05B2 and heated at
150 1C for 6 h under ultra-high vacuum (UHV) conditions for
outgassing. The Co layers were grown with a commercial EFM3;
their thickness was defined in units of monolayer (ML). The
rate of Co deposition was calibrated with the medium-energy
electron-diffraction (MEED) oscillation recorded during the
deposition of Co onto a Cu(001) single crystal. Note that it is
necessary to check the structural stability of a 2D layer in
a heterojunction. For that, we examine the micro-area XPS
spectra taken from Co/MoS2/SiO2 (Fig. S6, ESI†). Compared to
previous publications with ones acquired from CVD growth of
MoS2, ref. 29, and Co-doped MoS2, ref. 40, the molybdenum Mo
3d and sulfur S 2p spectra reported in this work are in great
resemblance to the ones acquired from a single layer of MoS2.
We conclude that the chemical bond of monolayer MoS2 is
preserved after Co deposition. Our argument above can be
strengthened further by the nature of the strong covalent bonds
within MoS2, whose melting point is 2375 1C. As the Co deposition
(whose melting point is 1495 1C) is accomplished via an EFM3
evaporator at a slow deposition rate (## ML per minute), we believe
the way we deposited Co is not likely to damage the atomic
structure of MoS2.

After the Co deposition, the sample was transferred into the
PEEM chamber27 under UHV conditions for XMCD imaging.
We enhanced the domain images (or XMCD images) by the
absorption asymmetry, IA = (IL3 � IL2)/(IL3 + IL2); that is, each
XMCD image (IA) was actually an asymmetric superposition of
two images, IL2 and IL3, recorded at L2 and L3, respectively.
As this image processing can eliminate geometric inhomogeneity,
the contrast in the IA image served to recognize the magnetic
domains of varied magnetization directions.32,33 The exact
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magnetization direction of the domains could not be determined
as it was not possible to rotate the sample in situ or to apply an
external magnetic field in the PEEM experimental chamber. The
system is hence sensitive only to whether the magnetic domains
are parallel (brighter) or antiparallel (darker) with respect to the
incident light. The XMCD images were leveled by subtracting the
polynomial background, which is supposedly a consequence of a
shift of the beam spot caused by a change in the photon energy.
The micro-area X-ray absorption spectra (m-XAS) recorded on
A and B domains (displayed in Fig. 2(d)) were extracted from a
stack of images recorded at a step of 0.2 eV from hn = 750 eV to
810 eV, across the Co L2,3 edges.

The m-XPS measurements were performed at beamline 1.2L
NanoESCA at the Elettra Synchrotron (Trieste, Italy).28 Before
the deposition of cobalt, the MoS2/SiO2 samples were outgassed
at 250 1C in a UHV preparation chamber for 2 h. Co 2p spectra
were recorded using an s-polarized photon energy of 950 eV.
Because of the decreased beam spot size on the sample
(o20 mm) it was possible to record m-XPS selectively from the
Co/MoS2 flakes and Co/SiO2 regions.
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