

Cryogenic Focused Ultrasound Therapy Apparatus

Chih-Yu Chao

NTU Department of Physics NTU Molecular Imaging Center

Physical Principle of HIFU

Thermal effect

Cavitation

Mechanical effect

Disadvantage of Traditional HIFU

Restriction of Treatment

 Damage of Thermal Effect to Normal Tissue

 Traveling Path of the Ultrasonic Causes Tissue Damage

Cryogenic Focused Ultrasound Apparatus

Beat Frequency

Resonance

Doppler Cooler System

Beat Frequency

High Frequency 1

Beat

High Frequency 2

Amplitude

Resonance

Doppler Cooling System

Advantage of Our Apparatus

 Using Beat Frequency to Avoid Cavitation Damage

 Avoid Thermal Damage to Normal Tissue

 To Overcome the Limitations of Treatment like Brain Tumors

Current Progress

Experiment:
 Cancer Tissue & Cell Test

- IP:
 - 1. US Patent Application NO.: 14/306,235
 - 2. US Patent Application NO.: 14/013,997
 - 3. TW Patent Application NO.: 102145633
 - 4. TW Patent Application NO.: 103113449

Cancer Cell Treatment

BEFORE AFTER

Cancer Cell Treatment

BEFORE AFTER

Stimulated neuron differentiation

BEFORE AFTER

國立臺灣大

Future Work: Brain Treatment

