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Abstract 
 

In recent years, with growing interests to Photonic Crystals (PhCs) and 

their applications, many researchers have studied PhCs. 2-Dimensional 

PhC laser is one of the interesting research topics due to its strong light 

confinement in a small wavelength-scale volume.  

 Liquid Crystal (LC) infiltrated 2D PhC laser has also been investigated for 

the laser wavelength tuning, yet its theoretical study seems insufficient. 

Thus, in this research, we developed 3D Finite-Difference Time-Domain 

(FDTD) program which can simulate the light propagation in LCs, and 

analyzed the characteristics of LC infiltrated 2D PhC laser. 

 In several characteristic PhC structures, the lasing wavelength shift of a 

single mode, the degeneracy splitting, the lasing mode change and the 

quality factor (Q-factor) change are found as the arrangement of LCs 

changes. Moreover, by properly designing the defect, we can expect the 

intrinsic polarization of the lasing mode. 
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Chapter 1. 

Introduction 

 

 Since the concept of the photonic crystal (PhC) [1] has originated, many researchers 

have studied its characteristics and interest in PhCs has steadily grown in recent years as 

discovering a lot of applications, such as waveguides [2], optical filters [3], compact 

lasers [4,5], and quantum information processing [6,7]. 

 The electrical tuning of photonic band gap (PBG) using liquid crystals (LCs) is one of 

the important topics in PhC research and this specific field has been studied both 

theoretically and experimentally [8-11]. 

 In this chapter, we will introduce the concept of the LC infiltrated tunable 2D PhC 

laser [10,11]. For this purpose, we will briefly review the basics of PhCs, 2D PhC lasers 

and LCs in advance.  

 

1.1. Photonic Crystal and 2D Photonic Crystal Laser 

1.1.1. Photonic Crystal  

 

The idea of photonic crystals (PhCs) was born in 1986 by Eli Yablonovitch while he 

was working at Bell Communications Research in New Jersey. The first PhC structures 

made by Yablonovitch which is called “Yablonovite” was milli-meter size. Since then, 

many researchers have studied PhCs both theoretically and experimentally. 

 In recent years, by the development of submicron fabrication technology, we could 

make PhCs of submicron lattice constant and PhCs become essential to many optics 
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fields.  

Like all other crystals, PhCs are structures of regularly repeating elements. However, 

the elements in PhCs are dielectric materials, while those in conventional crystals are 

atoms or molecules [Table 1.1]. Because of this periodicity of PhCs and multiple Bragg 

reflection effect, “photonic band gap (PBG)”, which is an anology of electronic band 

gap in solid state physics, appears in the PhC structures [12]. In Figure 1.2, we can see 

the photonic band structure of a certain PhC structure.  

 

 

Table 1.1  Conventional crystals vs. Photonic crystals [12] 

 Conventional crystals Photonic crystals 

Master equation Schrödinger equation Maxwell equation 

Periodicity The potential: ( ) ( )V r V r R= + The dielectric: ( ) ( )r r Rε ε= +

Natural lenth scale Usually exist Not exist (scalable) 

Interaction between 
normal modes 

Exist (electron-electron repulsive 

interactions) 

Not exist 
(In the linear regime) 

Band above the gap Conduction band Air band 

Band below the gap Valence band Dielectric band 

Defect Donor atoms pull states from the 
conduction band into the gap; 

acceptor atoms pull states from 
the valence band into the gap 

Dielectric defects pull states 
from the air band into the gap; 
air defects pull states from the 

dielectric band into the gap 

Applications Electrical devices Optical devices 
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Figure 1.1  2D PhC structure and its photonic band structure 

 

Since lights with the wavelength in the PBG can not propagate in the PhC stuructures, 

we can control the flow of light using this property of PhCs. Thus, PhCs are suitable 

structures for making waveguides [2], optical filters [3], compact lasers [4,5], and 

quantum information processing [6,7]. 
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1.1.2. 2D photonic crystal laser 

 

Owing to the easy fabrication with its strong light confinement in a small volume 

(wavelength scale), two-dimensional photonic crystal laser (2D PhC laser) is one of the 

popular topics among the PhC research fields. 

The concept of 2D PhC laser is simple and can be easily understood in Figure 1.2. In 

this figure, the light propagating in-plane direction with certain range of wavelength is 

confined in the defect of 2D slab because of PBG effect. Moreover, the total internal 

reflection (TIR) in the slab/air interfaces confines the light in the slab material. 

Therefore, the light generated by the quantum well slab material is confined in the 

suitably designed PhC defect and the resonant mode occurs.  

 In the 2D PhC laser, there are some critical parameters, such as the dielectric index of 

the slab material, the lattice constant of the PhC structure, the air hole radius, and the 

shape of the defect. As these parameters are changed, the PBG structure, the resonant 

mode (lasing mode), and the quality factor (Q factor) also change [13,14]. Thus, the 

structure need to be well-designed for specific purposes. 

 

 

Figure 1.2  The principle of the 2D PhC laser and the basic free-standing structure. 
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1.2. Liquid Crystal 

 

Liquid crystal (LC) is a state of matter that is intermediate between the crystalline 

solid and the amorphous liquid. This intermediate state was first observed in 1888 in 

cholesteryl benzoate, a crystalline solid, and thousand of LC materials are known 

nowadays [15]. 

 Generally speaking, there are two types of LCs ; thermotropic LCs, which is formed 

by the temperature change, and lyotropic LCs, which is formed by the concentration 

change within a solvent [16]. Here, we will only focus on the thermotropic LCs. 

There are three phases of thermotropic LCs, known as the smectic phase, the nematic 

phase, and the cholesteric phase, which are illustrated in Figure 1.3. For the sake of 

clarity, we assume that the liquid crystals are made of rodlike molecules [15].  

 

       

            (a)                 (b)                (c) 

Figure 1.3  The phases of thermotropic LC. (a) nematic phase  

  (b) smectic phase (c) cholesteric phase 

 

Nematic phase has only a long range orientational order of the molecular axes. 

Smectic phase has one dimensional translational order as well as orientational order. 

Cholesteric phase which is also a nematic type of LCs appears when the LC molecules 
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are chiral, and the spontaneous twist about a helical axis normal to the LC director (The 

definition of LC director is shown in Figure 1.4) can be seen in this phase [15]. 

 

 

Figure 1.4  The definition of LC director 

 

Generally, LCs arise under certain conditions in organic substances having sharply 

anisotropic molecules, that is, highly elongated (rodlike) molecules or flat (disklike) 

molecules. Due to this anisotropic molecular structure, LCs have several characteristics 

such as dielectic and optical anisotropy [15]. 

Under proper treatments, a slab of nematic LC can be obtained with a uniform 

alignment of the LC director. Such a sample exhibits uniaxial optical symmetry with 

two principal refractive indices on  and en . The ordinary refractive index on  is for 

light with electric field polarization perpendicular to the director and the extraordinary 

refractive index en  is for light with electric field polarization parallel to the LC 

director [15]. If the incident light is polarized at an angle theta with respect to the LC 

director, we can define the effective refractive index effn  as follows : 
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2 2 2 2
( )

cos sin
e o

eff

o e

n nn
n n

θ
θ θ

=
+

                   (1.1) 

Here, the birefringence (or optical anisotropy) is defined as  

e on n n∆ = −                          (1.2) 

If o en n< , the LC is said to be positive birefringent, whereas if e on n< , it is said to be 

negative birefringent. Most LCs with rodlike molecules exhibit positive birefringence 

ranging from 0.05 to 0.45 [15]. 
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1.3. Liquid Crystal Infiltrated Tunable Photonic Crystal Laser 

 

Once PhC structures are constructed, both the PBG structure and lasing mode are 

decided and are not changeable. However, if we infiltrate LCs into the air holes of the 

PhC structure, the dielectric constant configuration changes as the LC arrangement 

changes. Consequently, the PBG structure and lasing mode also change [8]. 

 In recent years, the LC infiltrated tunable 2D PhC laser has been studied both 

theoretically and experimentally [10,11]. In these researches, the laser wavelength shift, 

lasing mode and quality factor change were reported.  

Until now, two kinds of methods in changing LC arrangement, which are electrical 

and optical, have been reported [10,11]. Two different types of tuning are illustrated in 

the Figure 1.5. In the electrical tuning method, electric fields are applied 

perpendicularly through the 2D PhC slab, and the arrangement of LCs changes. In the 

optical tuning method, the reorientation of LCs occurs by triggering photo addressable 

polymer (PAP) film using PAP writing laser [11].  

 Compared to the experimental progress, the computational simulations of LC 

infiltrated tunable PhC laser are disappointing since they are commonly assuming LCs 

as optically isotropic materials with their effective refractive indices. Due to this rough 

assumption, the exact analysis was not possible and there were possibilities of missing 

important properties.  

 Therefore, we’ve developed the FDTD program which can simulate the light 

propagation in LC medium. Using this, we will analyze the characteristics of LC 

infiltrated tunable PhC laser. 
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(a) electrical tuning 

 

 

(b) optical tuning (Figure from reference [11]) 

 

Figure 1.5  Two kinds of the tuning method 
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Chapter 2.  

Simulation of Light Propagation using Finite-

Difference Time-Domain method 
 

 

To simulate the light propagation in the LC infiltrated 2D PhC laser structure, we will 

use the Finite-Difference Time-Domain (FDTD) method. “Finite-Difference Time-

Domain method” is the method which can simulate electromagnetic phenomena using 

finite-difference expressions of Maxwell Equation. This method is widely used to 

simulate the electromagnetic phenomena from atomic levels to microwave levels [1]. 

In this chapter, we will briefly introduce the principle of FDTD method used in our 

simulation. And using this FDTD method, we will analyze the light propagation in both 

non-birefringent materials and birefringent materials to test the reliability of the method 

before simulating LC infiltrated 2D PhC laser. 

 

2.1. Finite-Difference Time-Domain (FDTD) Method 

 

To simulate the light propagation in discrete computation domain, we need to know 

the first principle of the light propagation, which is called “Maxwell equations”, and 

convert them into the finite-difference expressions.  

In the non-absorptive, non-magnetic and currentless medium ( 0J = , 0σ = , 

0µ µ= ), Maxwell equations are expressed as following equations:  
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EH
t

ε ∂
∇× =

∂
               (Ampere’s Law) 

0
HE
t

µ ∂
∇× = −

∂
             (Faraday’s Law) 

D ρ∇ • =  

0B∇ • =                                        (2.1) 

 

To convert these equations into finite-difference expressions, we assume a discrete 

computational domain whose unit cell size is x∆ , y∆ , z∆ , t∆  in x, y, z spatial 

directions and a time direction, respectively. Now we can denote every space-time grid 

point as (i,j,k;n), which represents (i x∆ ,j y∆ ,k z∆ ; n t∆ ) (i,j,k are integer). 

Here, We adopt well-known Yee Grid [1]. Yee Grid assumes that the E fields and H 

fields in (i,j,k;n) unit cell represents the values at the points illustrated in Figure 2.1 and 

they are mismatched by 1/2 time step (i.e. E-fields are defined only at (n+1/2) t∆ , while 

H-fields are defined only at n t∆ ). 

 

 

Figure 2.1  Yee Grid 
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Furthermore, the spatial size of each side in unit cells should be less than 1/10 of 

wavelength for the rigorous calculation and one time step should be less than 

2 2 2

1
(1/ ) (1/ ) (1/ )c x y z∆ + ∆ + ∆

 for numerical stability [1]. In this research, we set 

2 3
x xt
c c

∆ ∆
∆ = ≤  assuming x y z∆ = ∆ = ∆ . 

In addition to Yee Grid, we will use the following two approximation equations.[1]  

 

1. Central difference expressions 

, , 1/ 2, , 1/ 2, , 2[( ) ]
n n n

i j k i j k i j k
u u u

O x
x x

+ −
∂ −

= + ∆
∂ ∆

        

1/ 2 1/ 2

, , , , , , 2[( ) ]
n n n

i j k i j k i j k
u u u

O t
t t

+ −∂ −
= + ∆

∂ ∆
                            (2.2) 

2. Semi-implicit approximation  

1/ 2 1/ 2

, , , ,
, , 2

n n
n i j k i j k
i j k

u u
u

+ −+
=                                        (2.3) 

where 
, ,

( , , , )n

i j k
u u i x j y k z n t≡ ∆ ∆ ∆ ∆ , any functions of space and time 

evaluated at a discrete point in the grid and at a discrete point in time.  

 

Now, we can change Maxwell equations (Ampere’s law and Faraday’s law) into the 

finite-difference expressions as following. 
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(Ampere’s Law) 

1/ 2 1/ 2

, 1/ 2, 1/ 2 , 1/ 2, 1/ 2 , 1, 1/ 2 , , 1/ 2 , 1/ 2, 1 , 1/ 2,1
, 1/ 2, 1/ 2

n nn n n n
y yx x z zi j k i j k i j k i j k i j k i j k

i j k

H HE E H H

t y z
ε

+ −

+ + + + + + + + + +−
+ +

⎡ ⎤−− −⎢ ⎥= −⎢ ⎥∆ ∆ ∆
⎢ ⎥⎣ ⎦

1/ 2 1/ 2

1/ 2, 1, 1/ 2 1/ 2, 1, 1/ 2 1/ 2, 1, 1 1/ 2, 1, , 1, 1/ 2 1, 1, 1/ 21
1/ 2, 1, 1/ 2

n n n n n n
y y x x z zi j k i j k i j k i j k i j k i j k

i j k

E E H H H H

t z x
ε

+ −

− + + − + + − + + − + + + − + +−
− + +

⎡ ⎤− − −
⎢ ⎥= −

∆ ∆ ∆⎢ ⎥⎣ ⎦

1/ 2 1/ 2

1/ 2, 1/ 2, 1 1/ 2, 1/ 2, 1 , 1/ 2, 1 1, 1/ 2, 1 1/ 2, 1, 1 1/ 2, , 11
1/ 2, 1/ 2, 1

n nn n n n
y yz z x xi j k i j k i j k i j k i j k i j k

i j k

H HE E H H

t x y
ε

+ −

− + + − + + + + − + + − + + − +−
− + +

⎡ ⎤−− −⎢ ⎥= −⎢ ⎥∆ ∆ ∆
⎢ ⎥⎣ ⎦

 

                                                                   (2.4) 

(Faraday’s Law) 

1/ 2 1/ 21 1/ 2 1/ 2

1/ 2, 1, 1 1/ 2, 1, 1 1/ 2, 1, 3/ 2 1/ 2, 1, 1/ 2 1/ 2, 3/ 2, 1 1/ 2, 1/ 2, 11
0

n nn n n n
y yx x z zi j k i j k i j k i j k i j k i j k

E EH H E E

t z y
µ

+ ++ + +

− + + − + + − + + − + + − + + − + +−
⎡ ⎤−− −⎢ ⎥= −⎢ ⎥∆ ∆ ∆
⎢ ⎥⎣ ⎦

1 1/ 2 1/ 2 1/ 2 1/ 2

, 1/ 2, 1 , 1/ 2, 1 1/ 2, 1/ 2, 1 1/ 2, 1/ 2, 1 , 1/ 2, 3/ 2 , 1/ 2, 1/ 21
0

n n n n n n
y y z z x xi j k i j k i j k i j k i j k i j k

H H E E E E

t x z
µ

+ + + + +

+ + + + + + + − + + + + + +−
⎡ ⎤− − −
⎢ ⎥= −

∆ ∆ ∆⎢ ⎥⎣ ⎦

1/ 2 1/ 21 1/ 2 1/ 2

, 1, 1/ 2 , 1, 1/ 2 , 3/ 2, 1/ 2 , 1/ 2, 1/ 2 1/ 2, 1, 1/ 2 1/ 2, 1, 1/ 21
0

n nn n n n
y yz z x xi j k i j k i j k i j k i j k i j k

E EH H E E

t y x
µ

+ ++ + +

+ + + + + + + + + + + − + +−
⎡ ⎤−− −⎢ ⎥= −⎢ ⎥∆ ∆ ∆
⎢ ⎥⎣ ⎦

 

                                                                   (2.5) 

 

From eq. (2.4) and eq. (2.5), we can get the update equations for the electromagnetic 

wave propagation. 

 

(Update Equations) 

{ }1/ 2
, 1, 1/ 2 , , 1/ 2 , 1/ 2, 1 , 1/ 2,, 1/ 2, 1/ 2

11/ 2

1/ 2, 1, 1 1/ 2, 1, , 1, 1/ 2 1, 1,1/ 2, 1, 1/ 2

1/ 2

1/ 2, 1/ 2, 1

n nn nn
z z y yi j k i j kx i j k i j ki j k

n n n n
y x x z zi j k i j k i j k i j ki j k

n
z i j k

H H H HE
tE H H H H

x
E

ε

+
+ + + + + ++ +

−
+

− + + − + + + − + +− + +

+

− + +

⎡ ⎤ − − −
⎢ ⎥

∆⎢ ⎥ = − − −⎢ ⎥ ∆
⎢ ⎥
⎢ ⎥⎣ ⎦

{ }
{ }

1/ 2

1/ 2, 1, 1 1/ 2, , 1, 1/ 2, 1 1, 1/ 2, 1

n

n n n n
y y x xi j k i j ki j k i j k

H H H H
− + + − ++ + − + +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− − −
⎢ ⎥⎣ ⎦

             (2.6) 
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{ }1/ 2 1/ 2 1/ 2 1/ 21
1/ 2, 3/ 2, 1 1/ 2, 1/ 2, 11/ 2, 1, 1 1/ 2, 1, 3/ 2 1/ 2, 1, 1/ 2

11 1/ 20
1/ 2, 1/ 2, 1 1/ 2, 1/ 2, 1/ 2, 1

1

, 1, 1/ 2

n n n nn
y y z zx i j k i j ki j k i j k i j k

n n
y z zi j k i ji j k

n
z i j k

E E E EH
tH E E

x
H

µ

+ + + ++

− + + − + +− + + − + + − + +
−

+ +

+ + + − ++ +

+

+ +

⎡ ⎤ − − −
⎢ ⎥

∆⎢ ⎥ = −⎢ ⎥ ∆
⎢ ⎥
⎢ ⎥⎣ ⎦

{ }
{ }

1/ 2 1/ 2 1/ 2

, 1 , 1/ 2, 3/ 2 , 1/ 2, 1/ 2

1/ 2 1/ 21/ 2 1/ 2

, 3/ 2, 1/ 2 , 1/ 2, 1/ 2 1/ 2, 1, 1/ 2 1/ 2, 1, 1/ 2

n n n
x xk i j k i j k

n nn n
x x y yi j k i j k i j k i j k

E E

E E E E

+ + +

+ + + + +

+ ++ +

+ + + + + + + − + +

⎡ ⎤
⎢ ⎥
⎢ ⎥

− −⎢ ⎥
⎢ ⎥
⎢ ⎥− − −⎢ ⎥⎣ ⎦

        (2.7) 

 

Especially, in the birefringent materials such as LCs, dielectric tensor has off-

diagonal terms. The dielectric tensor of nematic (uniaxial) LCs given in the laboratory 

(x,y,z) coordinate system is as follows [2].   

 

xx xy xz

yx yy yz

zx zy zz

ε ε ε
ε ε ε ε

ε ε ε

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

                          (2.8) 

 

( )
( )
( )
( )
( )

( )

2 2 2 2 2

2 2 2

2 2

2 2 2 2 2

2 2

2 2 2 2

sin cos

sin sin cos

sin cos cos

sin sin

sin cos sin

cos
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where on  and en  are the ordinary and extraordinary indices of refraction of the LC 

medium, cθ  is the angle between the LC director and the z axis, and cφ  is the angle 

between the projection of the LC director on the xy plane and the x axis (Figure 1.4) 

Therefore, the update equations for the LC medium become eq. (2.9) and eq. (2.10) in 

the next page.  
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Here, if we know the H-fields at t n t= ∆ , we can obtain E-fields at ( 1/ 2)t n t= + ∆  

by eq. (2.9). Similarly, if we know the E fields at ( 1/ 2)t n t= + ∆ , we can obtain the H-

fields at ( 1)t n t= + ∆  by eq. (2.10). In this way, we can get E-fields and H-fields at 

every space-time grid point as t  increases. Figure 2.2 illustrates this algorithm.  
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Figure 2.2  Space-time chart of Yee Algorithm for 1D wave propagation 
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2.2. Simulation of Light Propagation  

 

In the previous section, we have seen the basics of Finite-Difference Time-Domain 

(FDTD) method. In order to confirm the reliability of this simulation method, we will 

analyze the simulation results of light propagation in air and LC medium.  

Here, the spatial grid size is 22.5x nm∆ =  which is about the molecular length of 

liquid crystals and the corresponding time step size, determined by the numerical 

stability condition of FDTD method, is 173.75 10t s−∆ = × . 

 

2.2.1 Light propagation in air 

 

First, let’ s see the simulation results of the light propagation in air. The refractive 

index of the air is 1 (n=1) and it is optically isotropic. As we can see in Figure 2.3, the 

sine wave has the wavelength of 1550nm ( 1550airn nm= × ) and propagates 

4.5 mµ (
83 10 / 15

1.0eff

c m st fs
n

×
≈ ∆ = × ) in 15 fs , which agrees with the real light 

propagation properties.   
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Figure 2.3  Light propagation in air 

 

2.2.2 Light propagation in Nematic Liquid Crystal 

 

 Now, let’s see the light propagation in nematic LC. In our simulation, we assume the 

LC has 1.5on = , 1.8en = , and the propagating wave has the wavelength of 1550nm. 

 Figure 2.4-(a) shows the propagation of the light, which is polarized parallel to the LC 

director, i.e. eff en n= . We can notice that the wave has the wavelength of 1550nm 

( 860en nm≈ × ) and propagates 2.5 mµ  (
83 10 / 15

1.8eff

c m st fs
n

×
≈ ∆ = × ) in 15 fs .  

 In the case of Figure 2.4-(b), the light is polarized perpendicular to the LC director and 

the effective refractive index becomes eff on n= . Again, we can notice that the wave has 

the wavelength of 1550nm ( 1035on nm≈ × ) and propagates 3.0 mµ  

(
83 10 / 15

1.5eff

c m st fs
n

×
≈ ∆ = × ) in 15 fs . These simulation results well agrees with the 
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known light propagating properties in LC medium. 
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(b) eff on n=  

Figure 2.4  Light propagation in nematic LC 
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2.2.3. Light propagation in Twisted Nematic Liquid Crystal 

 

 For the last step of testing our FDTD simulator, we simulate the light propagation 

through the 90° twisted nematic LC cell (90° TN cell). Here, we assume Ex polarized 

wave propagates from left to right, and the nematic LCs with en =1.6, on =1.5 are 

uniformly twisted in the 2 mµ -90° TN LC cell as illustrated in Figure 2.5. 

 Before the wave reached at the 90° TN LC cell (t=0 fs ), there is only Ex fields on the 

left of the 90° TN LC cell (Figure 2.5). As the wave propagates through the 90° TN 

LC cell (t=5.625 fs , 11.25 fs ), Ey fields are generated. After the wave passes Ey 

Analyzer (t=26.25 fs ), only Ey fields exist on the right of the 90° TN LC cell, and there 

is reflected wave propagating to the left in the 90° TN LC cell. 
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Figure 2.5  Light propagation through the 90° TN LC cell 
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Chapter 3.  

Design of the Liquid Crystal Infiltrated Photonic 

Crystal Laser 
 

 

Before LC infiltrated PhC laser can be constructed, several parameters must be 

carefully designed. In this chapter, we’ll discuss the choice of the proper LC and several 

PhC slab parameters, such as a lattice constant ( a ), air hole radius ( r ), slab thickness 

( t ) and defect shape. 

 

3.1. Choice of the Liquid Crystal 

 

LCs with larger birefringence gives larger refractive index tuning ranges. However, 

infiltrating LCs into the air holes of 2D PhC slab decreases the refractive index contrast 

of the system, and this lowering of refractive index contrast narrows the PBG. Thus, 

both in-plane and vertical confinement of the light decrease, which means the reduction 

of the cavity’s quality (Q) factor. Moreover, their large birefringence can scatter light if 

LCs are not aligned uniformly [1]. Therefore, we have to choose a LC that is well-

ordered nematic LC for good uniformity and has relatively low refractive index with 

modest birefringence. 

After this considerations about LCs, the LC chosen for this simulation is Merck E-7 

which is nematic at room temperature and has en =1.75, on =1.5231. at λ =577nm 

(Table 3.1). 
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Table 3.1  Merck E7 

λ  (nm) en  on  

577 1.75 1.5231 

589.3 1.7462 1.5216 

632.8 1.7371 1.5183 

 

Since we are interested in the 2D PhC laser near the communicational wavelength of 

1550nm, we need en  and on  values at 1550nm. By using Cauchy’s formula, we can 

easily obtain these values approximately [2,3]. 

 

(Cauchy’s Formula)   2
o

o o
Bn A
λ

= +  , 2
e

e e
Bn A
λ

= +               (3.1) 

 

Inserting the values at three different wavelengths (table 3.1) into the above formula, 

we can calculate the coefficients eA , eB , oA , oB , and the obtained refractive indices 

at λ =1550nm are 1.6841en ≈ , 1.4986on ≈ . 

 

3.2. Design of the 2D Photonic Crystal Slab 

 

In this section, we will consider several important parameters of the 2D PhC slab 

structure. Here, we assume the slab material is InGaAsP quantum well material whose 

effective dielectric constant is 11.56 at its resonant wavelength 1550nm and the 

triangular lattice is used for the PhC structure.  
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3.2.1 Slab thickness 

 

The slab thickness t  is one of the important parameters determining the property of 

the lasing modes. In general, as t  increases, the Q factor and the volume of the modes 

increase together. Thus, to satisfy the single-mode condition and the high Q-factor 

simultaneously, t  should be optimized and ~ 0.5t a  is the optimum condition [4].  

Since we will fill LCs into the air holes of 2D PhC slab, there is another problem 

about LC anchoring on the slab [1,5]. To minimize this problem, we should make the 

slab as thin as possible. 

Therefore, considering the single-mode condition, the high Q-factor and the LC 

anchoring problem, the slab thickness of ~ 0.45t a  is suitable and will be used 

throughout this research. 

 

3.2.2 Hole Radius 

 

If the hole radius is too small, LCs in the hole are hard to change their arrangement 

due to the size of the LC molecules and anchoring energy between LC molecules and 

InGaAsP slab material [1]. Thus, in order to optimize the hole radius, we will compare 

only three large radius cases, 0.3r a= , 0.35r a= , 0.4r a= , using 3D Plane Wave 

Expansion (PWE) method.  

 In Figure 3.1, the calculated photonic band structures for three different hole radii are 

given. In the figure (b)~(d), two TE-like photonic band structures, which are 

representing the cases that the LCs are regarded as non-birefringent materials of 

eff en n=  and eff on n= , are drawn together. PBG and the gap-midgap ratio are defined 
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in this hybrid band structure. Here, we assume slab thickness 0.45t a=  and the TM-

like mode is excluded due to its low gap-midgap ratio. 

              

                  (a)                                  (b) 

     

(c)                                   (d) 

          

(e)                                   (f) 

Fig. 3.1  Photonic band structures at different hole radii and effn  
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Table 3.2  PBG ranges and gap-midgap ratios at the TE-like mode 

 PBG range at eff on n=

( unit : /a λ ) 

PBG range eff en n=

( unit : /a λ ) 

Gap-midgap ratio 

(
midgap

f
f
∆ ) 

0.3r a=  0.27263~0.31072 0.26816~0.29241 0.07 

0.35r a=  0.28587~0.33773 0.27992~0.31168 0.08639 

0.4r a=  0.30988~0.36219 0.30048~0.32797 0.05672 

 

From the Figure 3.2 and Table 3.2, we could notice 0.35r a=  with the largest gap-

midgap ratio is the optimum condition among the three different radii. Here, since the 

dielectric constant contrast is decreased by infiltrated LCs, gap-midgap ratios are small 

compared to ordinary air-hole PhC structures. However, the real gap-midgap ratios are 

larger than the calculated value since we assumed two extreme cases of eff on n=  and 

eff en n= . In the figure (e) and (f), TM-like photonic band structures are shown for 

reference. 

 

3.2.3 Lattice Constant 

 

When 0.35r a= , the optimum condition as mentioned above, the PBG appears 

between /a λ =0.28587 and /a λ =0.31168. Since we are interesting in the wavelength 

of ~1550nm, 460a nm=  is considered the optimum lattice constant, which lies at the 

center of the PBG. 
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3.2.4 Defect design 

 

 From the previous sections, we determined several important parameters such as slab 

thickness ( 0.45t a= ), hole radius ( 0.35r a= ) and lattice constant ( 460a nm= ). 

 In this section, we will design the shape of the defect. Only single defect is considered 

due to its small modal volume and simpleness. 

 

 

Figure 3.2 Modified parameters d  and r′  

 

 Modified parameters are shown in Figure 3.2. The radius of the nearest neighbor holes 

from the single defect is changed to r′  and they are pushed away from the defect by 

d . 

 Using the PWE method, we found many defect shapes in which resonant modes 

(Figure 3.3) appear near 1550nm. Among them, three characteristic defect designs 

(Figure 3.4) are found by the FDTD simulation and only these three defect designs are 
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discussed in the next chapter.  

 

      
(a) Degenerate dipole modes                         (b) Monopole mode 

      
(c) Degenerate quadrupole modes                (d) Hexapole mode 

       Figure 3.3  Various fundamental resonant mode modes ( d =0.1a, r′ =0.25a ) 

Design A                        Design B                       Design C  

     

Figure 3.4  Charateristic defect designs : Design A ( 0.25r a′ = , 0.13d a= ),  

            Design B ( 0.25r a′ = , 0d = ), Design C ( 0.25r a′ = , 0.17d a= ) 
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Chapter 4.  

Characteristics of the Liquid Crystal Infiltrated 

Tunable Photonic Crystal Laser 
 

 

In this chapter, we will analyze the simulation results of LC infiltrated tunable 2D 

PhC laser. Simulation conditions are introduced first and various characteristics in three 

defect designs, such as single mode laser wavelength shift and laser mode change, are 

analyzed.  

 

4.1 Simulation Conditions 

 

The simulation domain used in this research is illustrated in Figure 4.1. As mentioned 

in the previous chapter, InGaAsP quantum well material ( 11.56ε =  at 1550 nmλ = ) is 

employed as the slab material. Lattice constant ( a ) is 460 nm  and slab thickness is 

0.45a . The hole radius is 0.35a  except the nearest neighbor holes from the defect. 

Due to the lack of computing power, we used the simple structure which has 5 hole 

layers around the center defect. The domain size is 12.5 11 5a a a× ×  and the spatial and 

time steps are assumed to be 23 x nm∆ =  and 173.83 10t s−∆ = × , respectively. At the 

boundaries of the simulation domain, uniaxial perfectly matched layers (UPML) are 

placed as an appropriate boundary condition. 

LCs are placed at the white part in Figure 4.1. The LC alignment is defined by θ  

and φ  in the right inset of Figure 4.1. At the interface of LC medium and the slab 
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Figure 4.1  The structure of Design A in the simulation domain whose size is 12.5 11 5a a a× × . The 

alignment of LCs are defined by θ  and φ . 

 

 

 

Figure 4.2  Isotropic interface region  

x ( -KΓ ) 

y ( -MΓ ) 

x 

z 

UPML 
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material, gradual dielectric change is imposed. This makes the diameter of the tunable 

LC holes decreased by ~ 100 nm  as shown in Figure 4.2. This isotropic interface 

region could be regarded as LC anchoring region, yet it is quite rough approximation. In 

the LC medium excluding the isotropic interface region, LCs are assumed to be 

uniformly aligned.  

The spontaneous dipole emission centered at 1550 nm  with FWHM 20 nm  is 

assumed as shown in Figure 4.3 (a), and these dipole sources with random phases are 

randomly distributed over the slab material in the center circle of diameter 5a  (Figure 

4.3 (b)) 

All the simulation conditions are same except the defect designs of 2D PhC slab. 
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Figure 4.3  (a) The spontaneous dipole emission centered at 1550 nm  with FWHM 20nm  (b) 
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4.2. Several Characteristics of the Liquid Crystal Infiltrated 

Photonic Crystal Laser 

 

 In this section, we will analyze the simulation results from the three different defect 

designs (Section 3.2.4) ; Design A ( 0.25r a′ = , 0.13d a= ), Design B ( 0.25r a′ = , 

0d = ), Design C ( 0.25r a′ = , 0.17d a= ). 

 

4.2.1. Lasing Wavelength Shift of Single Mode (Design A)  

 

In Design A, as shown in Figure 4.4, the lasing wavelength shifts toward shorter 

wavelength region (from 1558 nm  to 1537 nm ) as θ  changes from 90°  to 0° . It 

seems reasonable compared with the experimental results [1]. We also can notice that 

the lasing wavelength shift and Q-factor change are not linear to the change of θ . The 

theoretical Q-factor is 343 when 90θ = , 0φ = , and 539 when 0θ = , 0φ = . It is 

reasonable that Q-factor increases as θ  changes from 90°  to 0°  since in-plane effn  

decreases as the LC director rotates from x-axis to z-axis. 

 From the Hz field profiles in Figure 4.5, we can find that the lasing mode is the 

hexapole mode at all the differentθ . However, there are differences between the modes. 

In Figure 4.6, Ex field profile at 90θ =  is mainly (b), yet there is also another mode 

which can be known from the oscillation between (c) and (d), while Ex field profile at 

0θ =  does not. This is attributed to the liquid crystal effect by which Ex-polarized 

light experiences eff en n=  when LCs are aligned parallel to the x-axis ( 90θ = , 0φ = ), 
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eff on n=  when LCs are aligned parallel to the z-axis ( 0θ = ). The same Ey field 

profiles at (e) and (f) confirm it again.  
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Figure 4.4  Power spectrum (resolution limit : 2.5 nm ) 
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(a) 90θ = , 0φ =                         (b) 60θ = , 0φ =  

 

     
(c) 30θ = , 0φ =                             (d) 0θ = , 0φ =  

 

Figure 4.5  Hz-field profiles 
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(a) Ex ( 0θ = , 0φ = )                          (b) Ex ( 90θ = , 0φ = )   

      
(c) Ex ( 90θ = , 0φ = )                 (d) Ex ( 90θ = , 0φ = ) 

     
(e) Ey ( 90θ = , 0φ = )                        (f) Ey ( 0θ = , 0φ = )            

 
Figure 4.6  Transverse electric field profiles 
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(a) Top view ( 0z = )                     (b) Side view ( 0x = ) 

Figure 4.7  Electric field intensity profiles of the hexapole mode ( 0θ = , 0φ = ) 

 

This LC effect can also be confirmed by comparing with the FDTD simulation which 

can handle only non-birefringent materials (Figure 4.8). In this conventional FDTD 

simulation, the lasing mode at 1537 nm  and 1558 nm  can be found when effn  is 

1.4986 and 1.5833, respectively. 1.5833effn =  is the refractive index when the light 

propagating in-plane direction is mean angle 45° -polarized with respect to the LC 

director. Thus, we can conclude that the conventional FDTD simulation well-predicts 

the lasing wavelength. However, It fails to predict the oscillation in the Ex-polarized 

light mode as shown Figure 4.6 (b)-(d). Here, we can also notice that there exists the 

quadrupole mode at 1545 nmλ =  when 1.6841effn = , which actually doesn’t occur. 
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(a) Mean-polarized angle              (b) Power spectrum (resolution limit : 2.5 nm ) 

 

  1.4986effn =             1.5833effn =               1.6841effn =  

(c) Hz field profiles 

        

(d) Ex (left) and Ey (right) field profiles when 1.5833effn =  

Figure 4.8  Conventional FDTD simulation results 
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4.2.2. Degeneracy Splitting (Design B) 

 

 From the Design B, we can get the dipole mode as shown in Figure 4.9. Since the 

dipole mode is doubly degerated, two degenerate modes are expected to appear in the 

ordinary air-hole 2D PhC slab structure [2]. However, if LCs are infiltrated into the air-

holes and LC director is aligned parallel to x-axis ( 90θ =  0φ = ) or y-axis ( 90θ =  

90φ = ), the degeneracy disappears as shown in Figure 4.9 (b)-(c). This is attributed to 

the symmetry breaking caused by LC alignment.  

From Figure 4.10, we can notice that this is due to the partial polarization of in-plane 

electric fields. If we suitably design the defect, we expect that the intrinsic polarization 

of the lasing mode can be changed by LC alignment change. The electric field intensity 

profiles for each case are shown in Figure 4.11. 

 

 

 

 

(a) 0θ = , 0φ =             (b) 90θ = , 0φ =            (c) 90θ = , 90φ =     

Figure 4.9  Hz field profiles 

 

 



 

 44

 

 

     
(a) Ex ( 90θ = , 0φ = )                          (b) Ey ( 90θ = , 0φ = ) 

 

       

(c) Ex ( 90θ = , 90φ = )                        (d) Ey ( 90θ = , 90φ = ) 

 

Figure 4.10  Transverse electric field profiles 
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(a) Top view ( 90θ = , 0φ = )                   (b) Top view ( 90θ = , 90φ = ) 

 

     

(c) Side view ( 90θ = , 0φ = , 0x = )           (d) Side view ( 90θ = , 90φ = , 0x = ) 

 

      

(e) Side view ( 90θ = , 0φ = , 0y = )            (f) Side view ( 90θ = , 90φ = , 0y = ) 

 

Figure 4.11  Electric field intensity profiles 
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4.2.3. Lasing Mode Change (Design C) 

 

In Figure 4.12, we can see the lasing wavelength shift. As θ  changes from 90°  to 

60° , the lasing wavelength shifts toward shorter wavelength region (from 1540 nm  to 

1534 nm ). When θ  changes from 60°  to 30° , the lasing wavelength shifts toward 

longer wavelength region, which looks strange. However, when θ  changes from 30°  

to 0° , the lasing wavelength shifts from 1563 nm  to 1558 nm , again toward shorter 

wavelength region . 
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Figure 4.12  Power spectrum (resolution limit : 2.5 nm ) 

 

Here, we can guess, when θ  changes from 60°  to 30° , the lasing mode is 

switched to another lasing mode. We can confirm it by analyzing the Hz field profiles at 

different θ . 

 From the Figure 4.13 (a) and (d), we can notice that the quadrupole mode of Q-factor 

295 appears at 1540 nm  when 90θ =  0φ = , and the hexapole mode of Q-factor 
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476 appears at 1558 nm  when 0θ =  0φ =  

When 60θ = , 0φ = , the quadrupole mode appears at 1534 nm , yet the mode 

profile slightly deforms like Figure 4.13-(b). When 30θ = , 0φ = , the deformed 

hexapole mode is dominant (Figure 4.13-(c)). These deformed modes are probably 

attributed to the multiple mode mixing. 

 

 

 

     
(a) 90θ =  0φ =                               (b) 60θ = , 0φ =    

     
(c) 30θ = , 0φ =                               (d) 0θ =  0φ =  

Figure 4.13 Hz field profiles 
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(a) Top view ( 0z = )                             (b) Side view ( 0x = ) 

 

Figure 4.14  Electric field intensity profiles of the quadrupole mode ( 90θ =  0φ = ) 
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Chapter 5. 

Conclusions 
 

In this dissertation, we have developed the FDTD simulator which can handle the 

light propagation in LC medium, and have analyzed the characteristics of LC infiltrated 

tunable 2D PhC laser.  

Merck E7, which is nematic LC at room temperature, is choosed as the suitable LC 

for its low refractive index and modest birefringence. Using Plane Wave Expansion 

(PWE) method, the 2D PhC slab is designed in consideration of the single mode 

condition, high Q-factor and the LC anchoring problem. 

Only modified single-defect 2D PhC laser structures are considered due to the 

simplicity. Among the various defect designs, only three characteristic defect designs 

are discussed. In each defect design, the single mode lasing wavelength shift of ~20  

nm (Design A), the degeneracy splitting (Design B), the lasing mode change (Design C) 

and the quality factor change are found as the arrangement of LCs changes. Moreover, 

the intrinsic laser polarization change by the LC alignment could be expected by 

suitable design. 

 With further refinement of our FDTD simulator, such as introducing Freedeticksz 

transition for the LC alignment, we hope that the method could be used to predict the 

characteristics of LC infiltrated tunable 2D PhC laser.  

 

 

 


