

RIKEN interdisciplinary Theoretical & Mathematical Sciences

Topology and Chiral Physics in Atomic, Molecular, and Optical systems

Tomoki Ozawa RIKEN iTHEMS, Japan

@ Workshop on "Recent Developments in Chiral Matter and Topology", Dec 8, 2018

Topology in various systems

In this conference, we cover:

- Nuclear physics / High energy physics
- Solid-state physics

✓ Physical Review B

✓ Physical Review A

Which Physical Review?

✓ Physical Review C & Physical Review D

• Atomic, molecular and optical (AMO) physics

How about Physical Review E? • • • Topological soft matter, Topological origami

What is AMO?

AMO physics studies atoms, molecules, and light using laser

High controllability of system parameters allows one to realize various Hamiltonians

• ultracold atoms

• exciton-polaritons

• photonics

Outline

- 1. Topological physics in ultracold atomic gases
- 2. Topological physics in photonics
- 3. Synthetic dimensions and higher dimensional topological effects

Quantum simulation - ultracold atoms

1995 : Realization of BEC - Colorado, Rice, MIT
1999 : Realization of degenerate Fermi gas - Colorado
1998, 2004 : Feshbach resonance - MIT, Colorado
2002 : Superfluid - Mott insulator transition - Max-Planck

[Bloch, Nat. Phys. 1, 23 (2005)]

[Bloch group website @ MPQ, Munich]

Extreme controllability of the system:

Can choose bosons, fermions, or both

Can change interaction, underlying confinement (trap, lattice, box, etc...), spins, number of species, density, temperature, dimensionality, etc...

Quantum simulation of topological models?

How can one simulate topologically nontrivial models?

How can one simulate quantum Hall effect?

How can one simulate an effect of a magnetic field at all?

Example: rotate the system

Artificial magnetic field

Consider when the internal degrees of freedom of an atom $|\chi(\mathbf{r})\rangle$ depends on position The total state is $\psi(\mathbf{r}, t) |\chi(\mathbf{r})\rangle$ where $\psi(\mathbf{r}, t)$ is the center-of-mass wavefunction Assuming that the center-of-mass motion is adiabatic enough so that one stays in $|\chi(\mathbf{r})\rangle$

Lin, Compton, Jiménez-García, Porto, and Spielman (NIST), Nature 462, 628 (2009)

Artificial magnetic fields on lattice

In the presence of a periodic potential, when the lattice is sufficiently deep

V(x)

Topological lattices in ultracold atoms

• Harper-Hofstadter model

Bloch group @ Munich

Aidelsburger *et al.*, PRL **111**, 185301 (2013) Aidelsburger *et al.*, Nature Physics **11**, 162 (2015)

Ketterle group @ MIT

Miyake *et al.*, PRL **111**, 185302 (2013) Kennedy *et al.*, Nature Physics **11**, 859 (2015) • Haldane model

Esslinger group @ ETH Jotzu *et al.*, Nature **515**, 237 (2014)

Topological physics with ultracold gases

• Measurement of Chern number

Aidelsburger et al. (Munich), Nature Physics 11, 162 (2015).

Measurement of Zak phase, Berry phase

Atala et al. (Munich), Nature Physics 9, 795 (2013); Duca et al. (Munich), Science 347, 288 (2015)

Detection of chiral edge state

Mancini et al (Florence)., Science 349, 1510 (2015); Stuhl et al (Maryland)., Science 349, 1514 (2015).

Measurement of Berry curvature

Li et al. (Munich), Science 352, 1094 (2016); Fläschner, et al. (Hamburg), Science 352, 1091 (2016).

• Realization of Su-Schrieffer-Heeger model

Meier et al. (Urbana), Nature communications 7, 13986 (2016).

Topological charge pumping

Nakajima, et al. (Kyoto), Nature Physics 12, 296 (2016); Lohse et al. (Munich), Nature Physics 12, 350 (2016).

Observation of quantized circular dichroism

Asteria et al. (Hamburg), arXiv:1805.11077.

Review: Cooper, Dalibard, & Spielman, "Topological Bands for Ultracold Atoms," arXiv:1803.00249

Outline

- 1. Topological physics in ultracold atomic gases
- 2. Topological physics in photonics
- 3. Synthetic dimensions and higher dimensional topological effects

Band structure can be classically realized

Tight-binding model can be realized classically. For example, consider a two-site model

$$\hat{H} = J\hat{c}_{2}^{\dagger}\hat{c}_{1} + J\hat{c}_{1}^{\dagger}\hat{c}_{2} + V_{1}\hat{c}_{1}^{\dagger}\hat{c}_{1} + V_{2}\hat{c}_{2}^{\dagger}\hat{c}_{2}$$

$$= (\hat{c}_{1}^{\dagger} \quad \hat{c}_{2}^{\dagger}) \begin{bmatrix} V_{1} & J \\ J & V_{2} \end{bmatrix} \begin{pmatrix} \hat{c}_{1} \\ \hat{c}_{2} \end{bmatrix}$$
Eigen-energies are determined by the eigenvalues of this matrix
Consider two pendula coupled via a spring
$$m\frac{d^{2}x_{1}}{dt^{2}} = -m\omega_{1}^{2}x_{1} + \kappa(x_{2} - x_{1})$$

$$m\frac{d^{2}x_{2}}{dt^{2}} = -m\omega_{2}^{2}x_{2} + \kappa(x_{1} - x_{2})$$

$$\frac{d^{2}}{dt^{2}}\begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{bmatrix} -\omega_{1}^{2} - \kappa/m & \kappa/m \\ \kappa/m & -\omega_{2}^{2} - \kappa/m \end{bmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}$$
Eigenfrequencies are determined by the eigenvalues of this matrix 12/25

Optical resonators and tight-binding model

Tight-binding models naturally appear in photonic resonators

Assume each resonator hosts localized mode ${f E}_0({f r})$

Align resonators in positions \mathbf{R}_i to form a lattice The total electromagnetic field can be written as

$$\mathbf{E}(\mathbf{r},t) = \sum_{\mathbf{R}_i} a_i(t) \mathbf{E}_0(\mathbf{r} - \mathbf{R}_i)$$

The coefficients a_i(t) evolve in time with suitable coupling constants:

$$i\frac{\partial a_i(t)}{\partial t} = -\sum_{\mathbf{R}_j} t_{ij} a_j(t)$$

This is exactly the Heisenberg equation of motion of "quantum mechanical" tight-binding model

$$\hat{H} = -\sum_{i,j} t_{ij} \hat{a}_i^{\dagger} \hat{a}_j$$
13/25

Harper-Hofstadter model with light

Hafezi, et al. (JQI), Nature Photonics 7, 907 (2011).

Quantum Hall effect with drive and dissipation

Since photonic systems have dissipation, (Hall) current is usually not a good quantity to look at.

Instead, one can look at the **steady-state** reached as a result of drive and dissipation

TO & Carusotto, PRL **112**, 133902 (2014)

Topological laser

St-Jean, et al. (Marcoussis), Nature Photonics 11, 651 (2017)

nature photonics ARTICLES DOI: 10.1038/s41566-017-0006-2

Lasing in topological edge states of a one-dimensional lattice

P. St-Jean^{1*}, V. Goblot¹, E. Galopin¹, A. Lemaître¹, T. Ozawa², L. Le Gratiet¹, I. Sagnes¹, J. Bloch¹ and A. Amo¹

CONTROL C

2D Topological laser

Science

Bahari, et al. (UC San Diego), Science 358, 636 (2017)

REPORTS

Cite as: B. Bahari *et al.*, *Science* 10.1126/science.aao4551 (2017).

Nonreciprocal lasing in topological cavities of arbitrary geometries

Babak Bahari, Abdoulaye Ndao, Felipe Vallini, Abdelkrim El Amili, Yeshaiahu Fainman, Boubacar Kanté*

Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA.

Principle of an arbitrarily-shaped and integrated topological cavity. The topological cavity is an

Topological physics with photons

- ✓ Detection of chiral edge state
- ✓Landau levels of photons
- ✓Measurement of Zak phase & Berry curvature
- ✓ Realization of anomalous Floquet topological insulators
- ✓ Realization of Su-Schrieffer-Heeger model
- ✓Observation of three-dimensional Weyl dispersion
- ✓Topological charge pumping
- Bosons instead of fermions
- More control on realizing various Hamiltonians
- Photons are lossy; sometimes one needs non-Hermitian Hamiltonians

Outline

- 1. Topological physics in ultracold atomic gases
- 2. Topological physics in photonics
- 3. Synthetic dimensions and higher dimensional topological effects

Synthetic dimensions

Simulate higher-dimensions by regarding internal degrees of freedom as dimensions

- Choose degrees of freedom you want to use as synthetic dimensions
 - Example : Hyperfine degrees of freedom of ultracold atoms Modes of photons in resonators

• Induce hopping (kinetic energy) along the synthetic dimension

Experimental realization in ultracold gases

Synthetic dimensions with photons

Synthetic dimensions with photons in a ring resonator

- Use different angular momentum modes as a synthetic dimension
- Couple modes via external modulations of refractive index [cf. Yuan, et al., Opt. Lett. 41, 741 (2016)])

The resulting single-site effective Hamiltonian:

$$H = -\sum_{w} \mathcal{J}e^{i\theta}b_{w+1}^{\dagger}b_{w} + h.c.$$

- 1D tight-binding Hamiltonian with hopping phases -

Spatially aligning resonators, one can build up to 4D Hamiltonian

<u>TO</u>, Price, Goldman, Zilberberg, Carusotto, PRA **93**, 043827 (2016) <u>TO</u> & Carusotto, PRL **118**, 013601 (2017) Price, <u>TO</u>, & Goldman, PRA **95**, 023607 (2017)

 \mathcal{Z}

Harmonic potential eigenstates as synthetic dimensions

- Hopping among different states can be introduced by shaking the lattice
- In principle, one can simulate up to 6D (3 real dimensions + 3 harmonic potential directions)

$$H_0 = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2 = \sum_{\lambda=0}^{\infty} \omega\lambda |\lambda\rangle\langle\lambda|$$

$$H = H_0 + V(t) \rightarrow \sum_{\lambda} \kappa \sqrt{\frac{\lambda}{8m\omega}} \left(|\lambda - 1\rangle \langle \lambda | e^{i\phi} + h.c. \right)$$

Price, <u>TO</u>, & Goldman, PRA **95**, 023607 (2017) cf. Lustig, *et al.*, arXiv:1807.01983 for photonic realization

23/25

Four-dimensional quantum Hall effect

Quantum Hall effect occurs in any even dimensions (2, 4, 6, etc...), and characterized by the n-th Chern number: C_n cf. Sugawa et al., Science **360**, 1429 (2018)

2D:
$$j^y = -rac{e^2}{h} \mathcal{C}_1 E_x$$

4D:
$$j^w = -\frac{e^3}{h^2} \mathcal{C}_2 E_x B_{yz}$$

4D quantum Hall effect can be explored with synthetic dimensions

$$\mathcal{H} = -J \sum_{x,y,z,w} \left(c_{\mathbf{r}+\hat{e}_x}^{\dagger} c_{\mathbf{r}} + c_{\mathbf{r}+\hat{e}_y}^{\dagger} c_{\mathbf{r}} + e^{iB_{xz}x} c_{\mathbf{r}+\hat{e}_z}^{\dagger} c_{\mathbf{r}} + e^{iB_{yw}y} c_{\mathbf{r}+\hat{e}_w}^{\dagger} c_{\mathbf{r}} + \mathbf{h.c.} \right)$$

Simulated wavepacket dynamics in the above Hamiltonian to look for 4D quantum Hall effect

Extracted 2nd Chern number = -0.98

Cold atom: Price, Zilberberg, <u>TO</u>, Carusotto, Goldman, PRL **115**, 195303 (2015) ; PRB **93**, 245113 (2016) Photonics: <u>TO</u>, Price, Goldman, Zilberberg, Carusotto, PRA **93**, 043827 (2016)

cf. Charge pumping: Lohse et al. (Munich), Nature 553, 55 (2018); Zilberberg et al. (Penn State), Nature 553, 59 (2018)

Summary

- Atomic, molecular, and optical systems provide powerful platforms to explore topological physics
- Ultracold gases are good for exploring many-particle and quantum properties
- Photons are good for exploring single-particle non-equilibrium properties
- They are both often bosons and often lossy
- Interaction effects?
- Non-Hermitian topological physics?
- Higher dimensional topology?

Review: Cooper, Dalibard, & Spielman, "Topological Bands for Ultracold Atoms," arXiv:1803.00249 Review: <u>Ozawa</u> *et al.* "Topological Photonics," arXiv:1802.04173 Both accepted for publication in Rev. Mod. Phys.