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Chiral magnetic effect (Vilenkin, Phys Rev D 22, 3080, 1980)

• Quark-gluon plasma in heavy ion collision

• Relativistic plasma in astrophysics

• Weyl semimetal

• …

CME BJ Bα= −
r r

Figs from Dobrin Nature 2017, Chernodub arXiv 1002.1473, 

Vazifeh PRL 2013

Note: need to break space-inversion symmetry



Monopole in Weyl semimetal

• Berry flux (or monopole charge)    

of a Weyl node is quantized

• Nielsen-Ninomiya theorem requires 

Weyl monopole (in a BZ) to appear in 

pairs with opposite chiralities

Weyl monopole

• The sign of a monopole charge Qna

depends on band-n and node-a

Dirac magnetic monopole

• A Weyl node is a monopole 

in momentum space

n=+

n=−

a = L R
Opposite Q

Opposite Q



Hall  effect
2b 2b0

Chiral magnetic effect in 

Weyl semimetal 
(Zyuzin and Burkov, Phys Rev B 2012) 
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momentum 

separation

energy 

separation

• Low-energy effective theory 

for a pair of Weyl nodes
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Chiral magnetic effect

• Effective electromagnetic action

• Current density
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(Relativistic covariance requires AHE 

and CME to both exist)



Results against (static) CME

• Semiclassical analysis (Zhou et al, Chinese Phys Lett 2013)

• Numerical work on lattice (Vazifeh and Franz, PRL 2013)

• And more …
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Opposite monopole charges

Opposite 

Berry 

curvatures

Berry flux over an       

iso-energy surface

(a-th node in n-th band)

Energy-integrated 

Berry flux

Berry curvature

CME BJ Bα= −
r r

However,

Same Berry flux



(Basar, Kharzeev, and Yee, PRB 2014)

Argument against (static) CME

can be > 0 or < 0

Can extract energy out of equilibrium state!

BJ Bα= −
r r

• Work done by field on charges



To resolve this issue, we propose

• A minimum model with two bands

• Use linear response theory

• Consider both orders of taking the limits

What we found (for a clean and infinite system)

• Static limit: 

• uniform limit:
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The usual DC conductivity 

is calculated using this 

limit (see, e.g., Mahan)

Chang and Yang, Phys Rev B 2015 

Goswami and Tewari, 1311.1506

If there are impurities, the conclusion might change 

(later)
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Quantities related to Berry curvature in Weyl semimetal

Hall conductivity

Berry flux through Fermi surface

(� chiral anomaly)

Energy-integrated Berry flux

(� static CME)

m-flux

(� dynamic CME)

“Not related to topology”

•

•
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CME coefficient: linear response theory

• Uniform limit

• static limit 
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2-band model
0
( ) ( )H k d kε σ= + ⋅
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• Not zero (for a clean and infinite system)

• Later, semiclassical analysis shows that this should be 

interpreted as dynamic CME, instead of static CME 

Ω← Φ
(energy-

integrated)

Equilibrium

Non-equilibrium



( )

1
cos '

(sin sin sin )

' 2 cos cos

z so

so so x x y y z z

x y z

H k H H

H t k k k

H k

t

m k

σ σ σ

σ

= + +

= + +

= + − −

A two-band model

2m 2t1

Data from 

static limit

Saturation since 

at large t1, 
1

1

1

z

z

v t

t
−

≈

Ω ≈

1
tα ∝

• No energy separation (between nodes), no CME

• Filled bands (insulator) don’t have CME

• In this model, if no Weyl nodes, then no CME 



AHE

CME

m=0.5

Chang and Yang, Phys Rev B 2015

Phase diagram and number of Weyl nodes

However, in other 2-band models, we found 

CME in the absence of Weyl node

Note: chiral anomaly still requires Weyl nodes.



Semiclassical analysis (Xiao et al, Rev Mod Phys 2010)

• E and B can oscillate in space/time

• Easier to consider finite q, ω, and include relaxation τ

Non-Abelian generalization:           

J.W. Chen et al, Phys Rev D 2014

(quantities with ~ are 

modified by a m.B term)

AHE static CME

Chiral anomaly
Density of (x,k)

phase space
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Equations of motion:



Boltzmann equation (with relaxation)

nδ

τ
− k

• Consider dynamic electromagnetic field

1ωτ <<

• Finite τ removes the non-analyticity of α(0,0)
• No static CME under both limits (in equilibrium)
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Chiral magnetic effect (E=0, finite τ):

Ω← Φ
(energy 

integrated)

Intraband (dominated by intravalley)



1ωτ >> (high frequency, or clean)

Dynamic CME, or Gyrotrpic Magnetic Effect
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Magnetic moment 

of a Bloch electron2/3 in LRT

• Dynamic B field induces an E field

(Need to put E back, and redo the semiclassical calculation)
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magnetoelectric

effect

Thus, current is doubled.

Semiclassical

analysis gives

Also, see Kharzeev et al, Phys Rev D 2017



Summary: Different versions of CME

Basar et al, Phys Rev B 2014

Zhong et al, Phys Rev Lett 2016

• Same chemical potential

• Static B field: no current

• Dynamic B field (non-equilibrium):                

can have CME current

(related to natural gyrotropic effect)

2

2

e
J B

h
µ= ∆

r r

Negative magneto-resistance

Magnitude:   J ~ 0.01 (A/mm2) 

if ∆µ=0.01 meV, B=0.1 T

(Zhang et al, Nature Comm 2015)

• Different chemical potentials
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Dynamic CME and natural optical gyrotropy
(Ma and Pesin, Phys Rev B 2015; Zhong et al, PRL 2016)

Tsirkin, Puente, and Souza, Phys Rev B 2018

Landau and Lifshitz, Electrodynamics of continuous media

• Antisymmetric part ( , ) ( ,0 )) (
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(Faraday rotation) (natural optical rotation)

• Cubic symmetry,  

or higher
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• Dielectric function 

(totally antisymmetric)

• Rotary power
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for 2 Weyl nodes with

∆ε=0.1 eV (e.g. SrSi2) 

(dynamical CME)



• No CME at static B field

• CME from dynamic B field  

• Dynamic CME: No Weyl node required, but need Fermi surface  

(also, need to break space-inversion symmetry)

• Connection between dynamic CME and optical gyrotropy
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