Topological crystalline insulator: from symmetry indicators to material discovery

Department of physics, National Cheng Kung University, Taiwan (國立成功大學 物理系) Tay-Rong Chang (張泰榕) 2018/Dec./6

Outline

2

slides

number

1. Topology in condensed matter physics

Basic concepts and properties of topological band structure Example: Bi_2Se_3

2. Topological crystalline insulator

Recent prediction: Ca₂As family

3. Type-II nodal line semimetal

Recent prediction: Mg₃Bi₂

Topology in condensed matter physics

Phys => momentum space

物理雙月刊 藏在邊緣的物理:拓樸材料與拓樸能帶理論 http://pb.ps-taiwan.org/catalog/ins.php?index_m1_id=5&index_id=235

Topology in condensed matter physics

wavefunction is NOT smoothly

wavefunction is smoothly

Topology in condensed matter physics

Calculating invariant number

Topology in condensed matter physics (bulk-edge correspondence)

The gapless surface state is the hallmark of topological phase.

M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. **82**, 3045 (2010) X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. **83**, 1057 (2011)

Topological insulator: Bi₂Se₃

Bulk: insulating gap topological Z₂ invariant odd/even number surface states Surface: gapless surface states spin-momentum locked

Y. Xia et al. Nature Physics **5**, 398 (2009) D. Hsieh et al. Nature **460**, 1101 (2009)

0.4

Topological crystalline insulator

Topological crystalline insulator

SnTe: mirror symmetry

11

Even number of times band inversion + additional crystalline symmetry

Mirror Chern number
$$n_M = (n_{+i} - n_{-i})/2$$

where $n_{\mp i}$ = mirror eigenvalue

TCI: mirror and glide mirror

12

T. H. Hsieh et al., Nature Commun. **3**, 1192 (2012) S.-Y. Xu et al., Nature Commun. **3**, 982 (2012)

SnTe => mirror

Z. Wang et al., Nature **532**, 189 (2016)

J. Ma et al., Science Advances 3, e1602415 (2017)

KHgX(X=As,Sb,Bi) => glide mirror

TCI beyond (glide) mirror symmetry ?

TCI: rotational symmetry

New TCI: protected by the N-fold rotational symmetries

Chen Fang and Liang Fu, arXiv:1709.01929 (2017).

Topological invariant number is not convenient to calculate from DFT.

Real material ???

TCI: symmetry indicator

ARTICLE

DOI: 10.1038/s41467-017-00133-2 OPEN

Symmetry-based indicators of band topology in the 230 space groups (symmetry indicator)

Hoi Chun Po^{1,2}, Ashvin Vishwanath^{1,2} & Haruki Watanabe³

How to implement on first-principle?

TCI: symmetry indicator

15

Systematic method (Fu-Kane-like formula) for searching TCI based on symmetry indicator Zhida Song, Tiantian Zhang, Zhong Fang, Chen Fang: *Nature Communications* **9**, 3530 (2018)

when certain additional symmetry Y is present, topological invariants of TCIs protected by symmetry X can be inferred by the Y -symmetry eigenvalues of energy band.

TCI: candidate material Ca₂As

16

Ca₂As: body-centered tetragonal lattice

Ca₂As: symmetry indicator

Ca₂As: symmetry indicator

	$(\mathcal{Z}_2\mathcal{Z}_8)$
Ca_2As and Ca_2Sb	(04)

Step-2	mirror					gli	rotation				I4/mmm (#139)							
	$\mathbb{Z}_{2,8}$	weak	$m^{001}_{(4)}$	$m_{(2)}^{1ar{1}0}$	$m_{(2)}^{100}$	$g^{001}_{rac{1}{2}rac{1}{2}0}$	$g^{1ar{1}0}_{rac{1}{2}rac{1}{2}0}$	$g^{100}_{0rac{1}{2}rac{1}{2}}$	2^{001}	2^{100}	2^{110}	4^{001}	i	2_1^{001}	2_1^{100}	2_1^{110}	4_2^{001}	$\bar{4}^{001}$
	00	000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	00	000	0	2	2	0	1	1	0	1	1	0	0	0	1	1	0	0
	00	000	4	0	2	0	0	1	0	1	0	1	0	0	1	0	1	1
	00	000	4	2	0	0	1	0	0	0	1	1	0	0	0	1	1	1
	04	000	0	0	2	0	0	1	0	1	0	1	0	0	1	0	1	1
	04	000	0	2	0	0	1	0	0	0	1	1	0	0	0	1	1	1
	04	000	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	04	000	4	2	2	0	1	1	0	1	1	0	0	0	1	1	0	0
	12	111	2	0	0	0	0	1	0	1	1	0	1	1	0	0	1	1
	12	111	2	2	2	0	1	0	0	0	0	0	1	1	1	1	1	1
	12	111	$\overline{2}$	0	2	0	0	0	0	0	1	1	1	1	1	0	0	0
	12	111	$\overline{2}$	2	0	0	1	1	0	1	0	1	1	1	0	1	0	0

Ca₂As: symmetry indicator

Topological surface states

Topological surface states

TCI: rotational symmetry protected

Topological phase transition

Conclusion (TCI)

24

(1) Searching TCI by using symmetry indicator for the first time

 n_3^-

LA LA	Ca ₂ As (Z ₂ ,Z ₈)=(0,4)									
			$n_{\frac{1}{2}}^{+}$	$n(E_{\frac{1}{2}g}^{\Gamma}) + n(E_{\frac{1}{2}g}^{M}) + n(E_{\frac{1}{2}g}^{X}) + 2n(E_{\frac{1}{2}g}^{N}) + n(E_{\frac{1}{2}}^{P})$						
	Tetragonal	87 (139, 140) ^a	$n_{\frac{1}{2}}$	$n(E_{\frac{1}{2}u}^{\Gamma}) + n(E_{\frac{1}{2}u}^{M}) + n(E_{\frac{1}{2}u}^{X}) + 2n(E_{\frac{1}{2}u}^{N}) + n(E_{\frac{3}{2}}^{P})$						
\mathbf{v}	body-centred		$n_{\frac{3}{2}}^{+}$	$n(E_{\frac{3}{2}q}^{\Gamma}) + n(E_{\frac{3}{2}q}^{M}) + n(E_{\frac{1}{2}q}^{X}) + 2n(E_{\frac{1}{2}q}^{N}) + n(E_{\frac{3}{2}}^{P})$						

(2) Topological surface states are protected by multi topological invariant numbers

(3) It is first time that the Topological surface states are protected by rotational symmetry $B_{\text{Breaking }\mathcal{M}_{(110)}}$

arXiv:1805.05215 (2018) X. Zhou et al., Phys. Rev. B 98, 241104(R) (2018)

 $n(E_{\frac{3}{2}u}^{\Gamma}) + n(E_{\frac{3}{2}u}^{M}) + n(E_{\frac{1}{2}u}^{X}) + 2n(E_{\frac{1}{2}u}^{N}) + n(E_{\frac{1}{2}}^{P})$

Nodal-line semimetal (節線半金屬)

Nodal-line semimetal

PbTaSe₂

G. Bian et al., Nature Commun. 7, 10556 (2016) *G. Bian et al., Phys. Rev. B* 93, 12113(*R*) (2016)

Type-I vs Type-II

Type-II Weyl: A. A. Soluyanov et al., Nature volume **527**, 495 (2016) *Type-II Dirac: T.-R. Chang et al., Phys. Rev. Lett.* **119**, 026404 (2017)

Type-II Nodal-line semimetal

T.-R. Chang et al., Advanced Science (2018), DOI: 10.1002/advs.201800897

Acknowledgements (TCI)

29

Dr. Xiaoting Zhou (NCKU)

Chuang-Han Hsu (NUS)

Dr. Su-Yang Xu (MIT)

Prof. Liang Fu (MIT)

X. Zhou et al., Phys. Rev. B 98, 241104(R) (2018)

MOST(Taiwan) Young Scholar Fellowship: MOST Grant for the Columbus Program

Acknowledgements (Nodal-line)

Prof. R. J. Cava (Princeton U.)

Prof. Weiwei Xie (Louisiana State U.)

Prof. Guang Bian (University of Missouri)

T.-R. Chang et al., Advanced Science (2018), DOI: 10.1002/advs.201800897

MOST(Taiwan) Young Scholar Fellowship: MOST Grant for the Columbus Program

To see a world in a grain of sand ... -William Blake

Thank you !