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The long-range operators for Hartree–Fock exchange from two recently proposed long-range corrected
hybrid functionals, xB97 and xB97X [J.-D. Chai, M. Head-Gordon, J. Chem. Phys. 128 (2008) 084106],
are discussed. A conserved property is found in the middle-range region of the operator from xB97X.
We argue that the fine details of the Hartree–Fock exchange mixing in this region are responsible for
the accuracy of the long-range corrected hybrid functionals in thermochemistry and barrier heights.
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In the last two decades, Kohn–Sham density-functional theory
(KS-DFT) [1,2] has been the most popular quantum-chemical
method for calculations on large-scale ground-state systems [3–
5]. As a result, developing an accurate exchange-correlation energy
functional Exc[q], continues being the subject of intense current
interest.

Semi-local density functionals based on the local spin density
approximation (LSDA) and generalized gradient approximations
(GGAs) (commonly denoted as DFAs for density-functional approx-
imations) are computationally favorable for large systems and
have been shown to be successful in diverse quantum-chemical
applications [3–5]. However, in circumstances where an accurate
treatment of the non-locality of the exchange-correlation (XC) hole
is crucial, DFAs can and do produce qualitatively incorrect results
[6–15].

On the other hand, hybrid density functionals, combining den-
sity functionals with the exact Hartree–Fock (HF) exchange EHF

x ,
provide cost-effective ways of including the non-local effects of
the XC hole. The concept of a hybrid scheme can be deduced from
the adiabatic connection formalism for Exc [16]. The most widely
used hybrid density functionals at present are global hybrids,
which can be written as linear combinations of EHF

x and EDFA
xc :

Exc ¼ cxE
HF
x þ ð1$ cxÞEDFA

x þ EDFA
c ð1Þ

where cx is a small fractional number whose optimal value depends
on the systems of interest [5].

Unlike the global hybrid functionals, the long-range corrected
(LC) hybrid functionals [14,15,17–32] employ 100% HF exchange
for a long-range (LR) part of the interelectron repulsion operator
L(r)/r, DFA exchange for the complementary short-range (SR)

operator [1 $ L(r)]/r, and DFA correlation for the entire Coulomb
operator 1/r:

ELC
xc ¼ ELR-HF

x þ ESR-DFA
x þ EDFA

c ð2Þ

where L(r) is a fraction of HF exchange at r.
There are, however, two important issues relevant to the overall

accuracy of the LC hybrid functionals. One is to develop accurate
DFAs for the SR exchange and correlation, and the other is to seek
optimal LR operators for the partition. For the first issue, an accu-
rate DFA for SR exchange may be the main concern, as accurate
DFAs for correlation are widely available [3–5]. Although the LSDA
for SR exchange ESR-LSDA

x has been available [24,25], the resulting LC
hybrid LSDA functional is insufficiently accurate for typical quan-
tum-chemical applications [26]. To make progress, Hirao and
co-workers have proposed an ansatz for the generalization of any
EDFA
x to ESR-DFA

x [27,28]. Although their LC hybrid GGA functionals
outperform the LC hybrid LSDA functional, they are still inferior
to global hybrid GGA functionals for properties such as
thermochemistry.

Recently, we have also proposed a simple ansatz to extend any
EDFA
x to ESR-DFA

x , as long as the SR operator has considerable spatial
extent [14]. With the use of flexible DFAs, our LC hybrid functionals
outperform the corresponding global hybrid functionals, which
must be attributed to the difference of the operators used for HF
exchange in these functionals (i.e. the second issue). Note that
the operator cx/r is effectively used for the HF exchange mixing
in the global hybrid functionals. This outcome seems quite puz-
zling, as the constraint of being LC was thought to be the main rea-
son limiting the accuracy of the LC hybrid functionals, as the
Coulomb tails have been shown to contribute insignificantly to rel-
ative energies, such as atomization energies [33].

In this Letter, we try to unlock the above mystery by searching
for a distinctive common feature of the optimized LR operators
used for HF exchange mixing in xB97 and xB97X [14]. Upon
uncovering such a feature, we then also compare to other proposed
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SR/LR partitions and comment on the prospects for future develop-
ment of optimal LR operators.

By the SR/LR partition, Eq. (2) can be re-written as

ELC
xc ¼ ESR-DFA

xc þ ðELR-HF
x þ ELR-DFA

c Þ: ð3Þ

A DFA XC hole is used for the SR operator, while the HF (exact)
exchange hole and a DFA correlation hole are used for the LR oper-
ator. Due to its semi-local nature, a DFA XC hole is known to be rea-
sonably accurate for small inter-electronic separations from the
reference electron, but becomes inaccurate for large inter-elec-
tronic separations [34–37]. As a result, a DFA performs far better
for the SR operator than does for the LR one. One thus expects only
a small fraction of HF exchange is needed for the region where the
DFA XC hole is already a good description of the exact XC hole.
Therefore, L(r) should be small for the SR region, and it should ap-
proach unity asymptotically. The standard error function, erf(xr),
provides a smooth transition between these two extremes, and is
the preferred L(r) in many LC hybrid functionals, such as xB97
[14], because it facilitates efficient evaluation of the exact ex-
change LR matrix elements over Gaussian basis functions [38].

Based on optimization over a large and diverse training set, the
optimal parameter for the partition,x, is found to be 0.4 Bohr$1 for
xB97 [14], in agreement with the work of Vydrov et al. [29,30]. We
thus expect that erf(xr) is optimal at x = 0.4 Bohr$1 for the LC hy-
brid functionals with flexible and accurate GGAs.

To improve uponxB97, we have previously proposed to include
a small fraction of ESR-HF

x , as this should still be important for reduc-
ing the remaining self-interaction-error of ESR-DFA

xc [14]. Instead of
using the erf operator, we effectively use the following LR operator
(denoted as erfx) in Eq. (2)

erfxðr;x; cxÞ ¼ erfðxrÞ þ cxerfcðxrÞ ð4Þ

where cx is a small fractional number.
This erfx operator has been shown to be superior to the erf

operator [14], as the root-mean-square (RMS) errors of the training
set for xB97X (with erfx) are significantly reduced (by 0.5 kcal/
mol), when compared with xB97 (with erf). The RMS errors of
the training set for xB97X optimized at different values of x are
plotted in Fig. 1. At x = 0.3 Bohr$1, the optimization is done self-
consistently, while at other values of x, non-self-consistent orbi-
tals are used. At x = 0.0, 0.1, and 0.5 Bohr$1, the corresponding
RSHXLDA orbitals [26] are used, and at x = 0.2 and 0.4 Bohr$1,
the xB97X-D [15] (a re-optimized xB97X with empirical atom–

atom dispersion corrections) and xB97 orbitals [14] are used
respectively. We have previously demonstrated that these results
should only change insignificantly with the self-consistent orbitals
[14]. Another type of operator that effectively includes short-range
Hartree–Fock exchange has been developed with similar argu-
ments [39,40].

To investigate which part of the erfx operator is responsible for
this improvement, the optimal erfx operators for xB97X [14] at
different values of x (0.2, 0.3, 0.4, and 0.5 Bohr$1) are plotted in
Fig. 2. Surprisingly, all of the operators almost intersect at one
point (r ’ 0.8 Bohr), which implies that the values of cx in this
range of x values are strongly dependent on x (indeed cx becomes
negative at x = 0.5 Bohr$1). This also indicates that these operators
must not change significantly in the middle-range (MR) region in
order to achieve good balanced performance for thermochemistry
and barrier heights.

As the RMS errors still show strong x-dependence, the fine de-
tails of the MR region of the operators are clearly crucial. The diver-
sity of behavior of these operators in the SR region (r[ 0.5 Bohr)
and in the LR region (r J 1.5 Bohr) implies that exact exchange
in these two regions is relatively insignificant for thermochemistry
and barrier heights. Similar conclusions for the importance of MR
region of operators have also been presented by Henderson et al.
[41] using different arguments.

The exact exchange contribution from the SR region is expected
to be unimportant for properties that do not involve changes in the
core contributions to Exc, such as thermochemistry and barrier
heights, where their effects on relative energies nearly cancel.
However, for properties sensitive to the core contributions, such
as atomic energies and core excitation energies, the details of HF
exchange mixing in the SR region could still be important.

The LR region of Coulomb operators contributes insignificantly
to relative energies, like atomization energies, as demonstrated
by Adamson et al. [33]. Of course, for the properties sensitive to
these tail contributions, such as dissociation of cations with odd
number of electrons [6–10,14,15] and long-range charge-transfer
excitation energies [11–15], the details of exact exchange mixing
in the LR region are crucial.

Finally, a GGA XC hole seem to be reasonably accurate even in
the MR region (0.5 Bohr[r[ 1.5 Bohr), although less accurate
than in the SR region. From the values of the optimal erfx operator
used inxB97X, only 30% HF exchange is needed at r = 0.5 Bohr, and
56% HF exchange is needed at r = 1.5 Bohr, which reflects the
decreasing appropriateness of the underlying GGA XC hole with in-
ter-electronic distance. We infer that the constraint of having zero
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Fig. 1. The root-mean-square (RMS) errors of the training set for xB97X optimized
at different values of x. At x = 0.3 Bohr$1, the optimization is done self-
consistently, while at other values of x, non-self-consistent orbitals are used (see
text).
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slope in the operator used for the HF exchange mixing in a global
hybrid functional results in its inferior performance to a corre-
sponding LC hybrid functional.

To test the transferability of the above observations and argu-
ments, and demonstrate the importance of the MR region of the
operator used for exact exchange, we consider another LR operator,
the erfgau operator [32,42]:

erfgauðr;x; k; aÞ ¼ erfðxrÞ $ k
2xrffiffiffiffi
p

p e$ð1=aÞx2r2 ð5Þ

The erfgau operator has a sharper separation (with positive k
and a) between the LR and SR region than the erf operator. In the
work of Toulouse et al. [32], k = 1 and a = 3 are chosen to ensure
the value of erfgau(r)/r and its first derivative vanish at r = 0. Re-
cently, Song et al. have found that this operator gives poor results
for atomization energies and barrier heights [31], with an opti-
mized x (=2.6 Bohr$1). Their results are greatly improved by opti-
mizing all the three parameters (x, k, and a) of the erfgau operator.
They have found that a negative k is essential for good atomization
energies and barrier heights. To see the significance of their find-
ings, the three optimal erfgau operators in their work are plotted
in Fig. 3, and are compared with the optimal erf operator used
for xB97, as well as the optimal erfx operators used for xB97X
[14], and for the corresponding global hybrid (at x = 0.0 Bohr$1).

As can be seen, the original erfgau(x = 2.60 Bohr$1, k = 1.00,
a = 3.00) has a very sharp transition in the MR region, while their
newly proposed erfgau(x = 0.39 Bohr$1, k = $16.4, and a = 0.013)
and erfgau(x = 0.42 Bohr$1, k = $18.0, and a = 0.011) resemble
the optimal erf operator of xB97 [14] in that region, which should
be responsible for their improvements upon the original erfgau
operator. In the SR and LR regions, all operators differ significantly,
which supports our arguments that these are relatively unimpor-
tant regions for thermochemistry and barrier heights.

Of course, functionals modeled on other types of LR operators
can also be considered [43], and we believe that the MR region
of operators is the most important. Interestingly, it has been previ-
ously suggested that Coulomb-attenuated functionals cannot be
simultaneously optimized for good thermochemistry and charge-
transfer excitation energies [44]. Since we have shown that the for-
mer is controlled by the MR region, and the latter is likely con-
trolled by the LR region, it seems worthwhile to revisit this
question in the future.

In conclusion, we have found a conserved feature of the optimal
erfx operators for xB97X at different values of x. On this basis, we

argue that the MR region (r = 0.5 to 1.5 Bohr) of the partitioning
operators seems to be crucial for thermochemistry and barrier
heights. The fine details of the MR region of the operators for the
HF exchange mixing in the LC hybrid functionals are responsible
for their improved performance over the corresponding global hy-
brid functionals. The MR regions of the optimal LR operators of
xB97 andxB97X [14], erf(x = 0.4 Bohr$1) and erfx(x = 0.3 Bohr$1,
cx = 0.157706) respectively, can be used an initial criterion for
devising new and improved LR operators. As the LR region is found
to be unimportant for thermochemistry and barrier heights, one
may devise new LR operators that approach to unity faster (better
for the LR properties) than the optimal erf and erfx operators, with-
out reducing the accuracy in thermochemistry and barrier heights.
We are now investigating this possibility.
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