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Non-empirically tuning the range-separation parameter (ω) of
long-range corrected (LC) hybrid functionals in improving the
accuracy of vertical ionization potentials (IPs), vertical electron
affinities (EAs), and fundamental gaps (FGs) is investigated. Use
of default ω values gives the best overall property predictions
employing the Δ self-consistent field (ΔSCF) approach, if suffi-
ciently large basis set is used. Upon tuning, IP (HOMO) (i.e., the
IP estimated from the negative of HOMO energy via DFT Koop-
mans’ theorem) with the IP (ΔSCF) (i.e., the IP obtained from

the ΔSCF approach) the accuracy of IP (HOMO) significantly
improves however a reciprocal phenomenon is not observed.
An interesting observation is that EA (LUMO) (i.e., the EA esti-
mated from the negative of LUMO energy) is more accurate
than EA (ΔSCF), if the ω value is in the range of 0.30 to
0.50 bohr−1. © 2018 Wiley Periodicals, Inc.

DOI:10.1002/jcc.25575

Introduction

Organic materials are making inroads in our day-to-day life in
the form of smart phones, computer displays, lightening devices,
and so forth. These materials are gradually replacing the tradi-
tional materials (e.g., their inorganic counterparts) in different
fields that have been dominating the markets over the past few
decades. The function and performance of these materials
depends heavily on their optoelectronic properties, including
the vertical ionization potentials (IPs), vertical electron affinities
(EAs), fundamental gaps (FGs), optical gaps, and so forth.[1–3] For
example, organic light emitting diodes contain several layers of
different stacked organic films, and there exists an energy bar-
rier to the flow of charge between these layers[1], therefore, the
knowledge of transport energy levels is required along with IPs,
EAs, and FGs that can help in optimizing and designing the
devices with higher efficiencies. However, the prediction of IPs,
EAs, and FGs with reasonable and consistent accuracy has been
a long standing challenge for computational material science.[4]

Accurate IPs, EAs, and FGs can be obtained from the
CCSD(T)[5,6] (coupled-cluster theory with iterative singles and
doubles and perturbative treatment of triple substitutions) cal-
culations. However, owing to the very high computational cost
involved, CCSD(T) is applicable only to small molecules, prohi-
biting its usage in studying medium- to large-sized molecules
that may possess interesting practical applications. On the
other hand, density functional theory[7] (DFT) based on the
Kohn–Sham approach can serve as an alternative in this regard,
as it provides reasonable accuracy with feasible computational
cost. The routinely followed procedure to evaluate the IP
(EA) of a neutral molecule is the Δ self-consistent field (ΔSCF)
approach, where the IP (EA) is determined by the total energy
difference of cation and neutral (neutral and anion) molecules
at the optimized neutral geometry, and the FG is calculated as
the difference between the IP and EA. According to the

Koopmans IP-theorem[8–10], for the exact Kohn–Sham theory,
the negative of the highest occupied molecular orbital (HOMO)
energy of a neutral molecule is the same as the IP of the
neutral molecule. Unfortunately, there is no known exact
exchange-correlation (XC) functional, and the commonly
used semilocal and hybrid XC functionals do not obey the
IP-theorem. Therefore, the negative of HOMO energy
obtained from a conventional XC functional can be a poor
approximation to IP.[11] Hence, in DFT, the conventional
ΔSCF approach is widely used to evaluate the IPs, EAs, and
FGs of neutral molecules.

Hybrid functionals generally outperform pure density func-
tionals (e.g., those based on the local density approximation and
generalized gradient approximations [GGAs]) in evaluating IPs,
EAs, and FGs.[11–13] Our recent investigations concluded that
among the various types of XC functionals available (e.g., global
hybrid, long-range corrected (LC) hybrid, and double-hybrid func-
tionals), the performance of LC hybrid functionals[14] is superior
and consistent for the IPs, EAs, and FGs of neutral molecules.[2]

Similar conclusions were also made in earlier studies.[11–13] Baer
et al.[15–17] proposed a scheme that restores the IP-theorem by
non-empirically tuning the range-separation parameter (ω) of LC
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hybrid functionals, yielding accurate results for various properties,
including IPs, FGs, charge-transfer excitations, and so forth. Wong
et al.[18] employed the tuning scheme to evaluate quasiparticle
properties (HOMO-LUMO gaps) and excitation energies of five
DNA and RNA nucleobases. They[18] observed that the non-
empirically tuned LC-BLYP functional[19] accurately reproduces
experimental IPs, FGs, and excitation energies. In addition, they
compared the tuned HOMO energies, tuned LUMO energies, and
their energy gaps with the benchmark CASPT2[20] (complete-
active-space second-order perturbation theory) results, where the
mean absolute errors (MAEs) are 0.12, 0.18, and 0.06 eV, respec-
tively, which are on par with the computationally expensive
many-body GW results. Recently, Gallandi et al.[4] have performed
benchmarking studies on a set of 24 organic acceptor molecules
with respect to the CCSD(T) results, and observed that the non-
empirically tuned LC-ωPBE functional outperforms the default LC-
ωPBE functional[21,22] (which employs a constant range-separation
parameter). The MAEs of HOMO energies were found to decrease
from 0.41 to 0.24 eV after tuning. For the LUMO energies, the
MAEs remained constant at 0.16 eV, and the MAEs of FGs
decreased from 0.54 to 0.38 eV after tuning.[4]

For semilocal and global hybrid functionals, the negative of
HOMO energy is a poor approximation to IP due to the self-
interaction errors associated with the functionals.[23] In general, to
avoid this problem, the IPs and EAs of neutral molecules are
routinely calculated employing the ΔSCF procedure, rather than
considering the frontier orbital energies. Although tuning the
range-separation parameter of LC hybrid functionals and enfor-
cing the IP-theorem has led to improvement in the accuracy of
HOMO energies for some cases,[15,16] it is not clear how well this
methodology is superior to the conventional ΔSCF approach for
obtaining IPs and EAs. In addition, there is also no clarity on the
improvement of LUMO energies with the tuning scheme. More
importantly, it is not clear whether the conclusion is of general
validity for different LC hybrid functionals. Most of the previous
studies focused on comparing the HOMO and LUMO energies
obtained from the default and tuned LC hybrid func-
tionals.[4,17,18,24] Hence, we perform a benchmarking study to eval-
uate the significance of tuning scheme in improving the accuracy
of IPs, EAs, and FGs. We mainly adopt LC-ωPBE (i.e., a popular LC
hybrid functional) to evaluate the IPs, EAs, and FGs of 30 organic
molecules of different types, employing both the default and
tuned range-separation parameters, where the reference data
were obtained from the highly accurate CCSD(T) calculations in
our previous study.[2] In this manuscript, we also examine the
reliability of tuning scheme with two other popular LC hybrid
functionals, LC-BLYP and ωB97X-D[25], for comparisons.

Computational Methodology

A major drawback associated with a global hybrid functional
(i.e., a functional with a fixed percentage of Hartree–Fock
[HF] exchange) is that the functional needs to find a good bal-
ance between the fraction of semilocal exchange and the frac-
tion of HF exchange[26]. For example, the B3LYP[27,28]

functional employs 20% HF exchange and 80% semilocal
exchange. However, the use of 100% HF exchange is required

for a complete correction of self-interaction and the correct
XC potential in the asymptotic region of any atom or mole-
cule.[29] However, a semilocal exchange functional is found to
mimic short-range correlation effects, well describing the
chemical bond.[26]

Accordingly, a LC hybrid functional can combine both these
advantages with the range-separation scheme, allowing for a
self-interaction-free description at the long range (based on the
full HF exchange), whereas maintaining a balanced description
of XC effects at the short range (based on a semilocal XC func-
tional).[30] The basic principle on which a LC hybrid functional
relies upon is the splitting of Coulomb operator into the short-
range (SR) and long-range (LR) components, which is attained
with the help of the standard error function (erf).

1
r12

! "
¼ erfc ωr12ð Þ

r12
+
erf ωr12ð Þ

r12
ð1Þ

Here, erfc is the complementary error function, r12 is the
interelectronic distance, and ω is the range-separation parame-
ter. Note that 1/ω is the characteristic distance for the transition
between the SR (r12≲1/ω) and LR (r12≳1/ω) regimes. The first
term on the right-hand side of eq. (1) corresponds to the SR
operator, and the second term to the LR operator. Treating the
SR and LR electron–electron interactions on a different note, a
LC hybrid functional employs the full HF exchange associated
with the LR operator, a semilocal exchange functional associ-
ated with the SR operator, and a semilocal correlation func-
tional associated with the entire Coulomb operator.
Alternatively, the above equation can also be generalized using
one extra parameter α as[31]

1
r12

! "
¼ 1−αð Þ erfc ωr12ð Þ

r12
+
α erfc ωr12ð Þ+ erf ωr12ð Þ

r12
ð2Þ

The modification of eq. (1) into eq. (2) with the inclusion of α
makes the SR electron–electron interactions a hybrid of HF and
semilocal exchange, with α quantifying the fraction of HF
exchange and (1−α) the fraction of semilocal exchange at the SR
limit (r12 = 0), whereas retraining the full HF exchange at the LR
limit (r12 ! ∞). When α = 0, eq. (2) reduces to eq. (1). In the cur-
rent article, we consider three popular LC hybrid functionals: LC-
ωPBE, LC-BLYP, and ωB97X-D. Note that LC-ωPBE and LC-BLYP are
built upon eq. (1) with the default range-separation parameters
ω = 0.40 and 0.47 bohr−1, respectively. On the other hand,
ωB97X-D is based on eq. (2) with the default ω = 0.20 bohr−1 and
α = 0.222036. Note also that LC-ωPBE has one empirical parame-
ter ω, LC-BLYP has a few (i.e., less than 10) empirical parameters,
and ωB97X-D has 15 empirical parameters. However, in contrast
to LC-ωPBE and LC-BLYP, the GGA expansion coefficients adopted
in ωB97X-D are fixed (i.e., ω-independent), and hence, they are
optimized only for the default range-separation parameter
(ω = 0.20 bohr−1). In addition, as discussed by Chai and Head-Gor-
don[32], the ω values of ωB97X-D and related LC hybrid functionals
(ωB97X[31] and ωB97X-D3[33]) are also correlated with the α values.
However, in this work, we fix the α value in the tuning scheme
just for simplicity. Therefore, if the tuned ω values of ωB97X-D are
very different from the default ω value, our results and conclusion
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for ωB97X-D can be biased and should be taken with caution,
partly due to the fact that the GGA parts and the α values of
ωB97X-D are not consistently optimized with the tuned ω values.
Nonetheless, as our emphasis is mainly on the non-empirical tun-
ing scheme, LC-ωPBE is favorable (as its sole parameter ω can be
non-empirically determined by the tuning scheme!). Therefore,
our discussions and conclusion are mainly based on the results of
LC-ωPBE, and hence the results presented are mainly obtained
from LC-ωPBE, unless noted otherwise.

Tuning Procedure

To obtain an accurate range-separation parameter for a LC hybrid
functional, a prerequisite condition, which needs to be obeyed, is
the satisfaction of Koopmans theorem. Livshits and Baer sug-
gested[15] an approach to obtain an accurate range-separation
parameter for each system non-empirically. In this approach, the
IP of a neutral molecule is evaluated at the range-separation
parameter ω, where ΔIP (see eq. (3)), the difference between IP
(HOMO) (i.e., the IP determined by the negative of the HOMO
energy of the neutral molecule) and IP (ΔSCF) (i.e., the IP deter-
mined by the total energy difference of cation and neutral mole-
cules at the optimized neutral geometry), is minimal.

ΔIP ¼ −EωHOMO Neutral

# $
− EωCation−E

ω
Neutral

# $%% %% ð3Þ

Similarly, the EA of a neutral molecule is evaluated at the
range-separation parameter ω, where ΔEA (see eq. (4)), the dif-
ference between EA (LUMO) (i.e., the EA determined by the
negative of the LUMO energy of the neutral molecule) and EA
(ΔSCF) (i.e., the EA determined by the total energy difference of
neutral and anion molecules at the optimized neutral geome-
try), is minimal.

ΔEA ¼ −EωLUMO Neutral

# $
− EωNeutral −E

ω
Anion

# $%% %% ð4Þ

The FG of a neutral molecule is evaluated at the range-
separation parameter ω, where ΔFG (see eq. (5)) is minimal. In
eq. (5), ΔIP and ΔEA are defined in eqs. (3) and (4), respectively.
Note that the FG of the neutral molecule can be calculated as
either FG (ΔSCF) = IP (ΔSCF)−EA (ΔSCF) or FG (LUMO–HOMO)-
= IP (HOMO)−EA (LUMO).

ΔFG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2
IP +Δ2

EA

q
ð5Þ

Results and Discussion

For 30 organic molecules of different types (e.g., electron donors,
acceptors, and linkers), the IPs, EAs, and FGs were obtained from
the highly accurate CCSD(T) calculations in our earlier studies,[2]

which are used in the current study as reference to benchmark
the tuning approach. Our benchmarking CCSD(T) results employ-
ing the aug-cc-pVTZ basis set (aTZ) are in good accordance with
the NIST (National Institute of Standards and Technology) data.[2]

All the molecular structures are optimized with LC-ωPBE using the
aTZ basis set (i.e., LC-ωPBE//aTZ). All calculations are performed
with the Gaussian 09 package[34] using the default SCF

convergence criteria (density matrix converged to at least 10−8)
and the default numerical integration grid (i.e., grid = fine, for
75 radial and 302 angular points). During the process of tuning,
the neutral molecular geometries are optimized at the corre-
sponding range-separation parameter ω. Single-point energies
are performed for the respective cation and anion molecules at
the optimized neutral molecular geometries to evaluate IP (ΔSCF)
and EA (ΔSCF), respectively, and FG (ΔSCF) = IP (ΔSCF)−EA
(ΔSCF). In addition, at the optimized neutral molecular geome-
tries, the negative of the HOMO and LUMO energies of the neu-
tral molecules are IP (HOMO) and EA (LUMO), respectively, and FG
(LUMO-HOMO) = IP (HOMO)−EA (LUMO). We present the results
of tuning approach employing LC-ωPBE, using eqs. (3), (4), and
(5), respectively, and the value of ω is varied at an increment of
0.01 bohr−1 to meet the proposed criteria (as shown in eqs. (3),
(4), and (5)).

Statistical errors for the default IP (ΔSCF) and tuned IP (ΔSCF)
(eq. (3)) are shown in Figure 1. The mean sign errors (MSEs) are
found to change slightly from 0.01 to −0.07 eV upon tuning,
yielding an increasing underestimation of IP (ΔSCF) with tuning.
In addition, the MAEs increase from 0.09 to 0.14 eV, the standard
deviations (STDs) remain unchanged (0.11 eV), and the maximum
deviations (Max DEVs) increase from 0.42 to 0.51 eV upon tuning.

To tune EA, eq. (4) is employed. However, even for the exact
DFT, a difference exists between the negative of LUMO energy
and EA due to the derivative discontinuity (DD) of the XC func-
tional. Note that a hybrid functional, which contains a fraction of
the nonlocal HF exchange, belongs to the generalized Kohn–
Sham (GKS) method, the corresponding GKS orbital energies
incorporate part of the DD. A recent study[18] shows that DD is
close to zero for LC hybrid functionals, and hence the negative of
LUMO energy calculated by LC hybrid functionals should be close
to EA. Alternatively, on the basis of the definitions of IP and EA,
the EA of a neutral molecule is identical to the IP of the anion
molecule, and hence identical to the negative of the HOMO
energy of the anion molecule (based on the IP-theorem). Conse-
quently, eq. (4) can also be slightly modified as eq. (6).

Figure 1. Deviation with respect to CCSD(T)//aTZ in IP (ΔSCF), calculated
employing the default and tuning (eq. (3)) schemes based on
30 compounds using LC-ωPBE//aTZ. [Color figure can be viewed at
wileyonlinelibrary.com]
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ΔEA2¼ −EωHOMO Anion

# $
− EωNeutral−E

ω
Anion

# $%% %% ð6Þ

Here, the EA of a neutral molecule is evaluated at the range-
separation parameter ω, where ΔEA2 (see eq. (6)), the difference
between the negative of the HOMO energy of the anion mole-
cule (which is the same as the IP of the anion molecule for the
exact Kohn–Sham theory based on the IP-theorem) and EA
(ΔSCF) (which is the same as the IP of the anion molecule
based on the definitions of IP and EA), is minimal. Note that the
anion molecule is at the optimized neutral molecular geometry.

We observe that the tuned EA (ΔSCF) values obtained with
eq. (4) and eq. (6) are very similar or the same in most of the
cases. This finding is consistent with the recent finding[35] that
the LUMO energy of a neutral molecule is close to the HOMO
energy of the anion molecule for LC hybrid functionals. How-
ever, in very few cases, different results are found. For example,
in the case of Furan, the tuned EA (ΔSCF) is −0.79 eV at a very
large ω = 0.90 bohr−1 using eq. (4), and is −0.71 eV at a very
small ω = 0.14 bohr−1 using eq. (6). We present the data of
26 molecules out of 30, where the tuned EA (ΔSCF) values
obtained with eq. (4) and eq. (6) are the same.

Statistical errors for the default EA (ΔSCF) values are also
shown in Figure 2. No significant change in accuracy is
observed upon tuning, and we observe that the deviations
slightly increase upon tuning; the MSEs, MAEs, and Max DEVs
are found to increase from 0.17 to 0.21 eV, 0.17 to 0.22 eV, and
0.57 to 0.64 eV, respectively, upon tuning. The STDs slightly
decrease from 0.16 to 0.14 eV upon tuning.

We also evaluate IP (ΔSCF), EA (ΔSCF), and FG (ΔSCF)
employing the tuning approach with eq. (5), that is, the FG-
tuned equation. Statistical errors for the default and tuned IP
(ΔSCF), EA (ΔSCF), and FG (ΔSCF) are shown in Figure 3.

No significant improvement is observed after tuning in evalu-
ating IP (ΔSCF), EA (ΔSCF), and FG (ΔSCF) from the histogram
shown in Figure 3. For IP (ΔSCF), the MAEs increase from 0.09
to 0.14 eV, the Max DEVs increase from 0.42 to 0.51 eV, and the
STDs remain unchanged (0.11 eV) upon tuning. Compared to IP

(ΔSCF), the changes of EA (ΔSCF) are minimal upon tuning,
with the MAEs slightly increasing from 0.15 to 0.16 eV, the STDs
from 0.15 to 0.16 eV, and the Max DEVs from 0.57 to 0.64 eV
upon tuning. The trend of FG (ΔSCF) is similar to that of IP
(ΔSCF) upon tuning, with the MAEs increasing from 0.15 to
0.24 eV, the STDs from 0.15 to 0.20 eV, and the Max DEVs from
0.56 to 0.73 eV upon tuning. We also observe that the MSEs of
FG (ΔSCF) decrease from −0.11 to −0.21 eV, yielding an increas-
ing underestimation of FG (ΔSCF).

Tuning either with the IP (using eq. (3)) or FG (using eq. (5))
equation yields similar or the same results (see the supporting
information). From Figure 3, it is obvious that the conventional
approach of calculating IP (ΔSCF), EA (ΔSCF), and FG (ΔSCF)
using LC-ωPBE with the default range-separation parameter
(ω = 0.40 bohr−1) is still superior to the tuning scheme, and can
provide reasonably accurate results with the MAEs ranging from
0.10 to 0.15 eV, which are on par with the computationally more
demanding GW calculations.[4] However, it has to be noted that
a sufficiently large basis set (aTZ or the larger basis set) is
required for the accurate results, especially for EA (ΔSCF).

To investigate the impact of basis set on the tuning
approach, we also adopt the aug-cc-pVDZ basis set (aDZ) (i.e., a
smaller basis set) to evaluate IP (ΔSCF), EA (ΔSCF), and FG
(ΔSCF) employing the tuning approach with eq. (5). Statistical
errors for the default and tuned IP (ΔSCF), EA (ΔSCF), and FG
(ΔSCF) are shown in Figure 4.

From Figures 3 and 4, it is evident that the accuracy of IP
(ΔSCF) remains passive with respect to the basis sets adopted
and the tuning scheme. The MAEs of default IP (ΔSCF) with aDZ
and aTZ remain unchanged (0.09 eV), indicating that the impact
of basis set on IP (ΔSCF) is minimal, and accurate IP (ΔSCF) can
be obtained with the smaller basis set (i.e., aDZ). The MAEs of IP
(ΔSCF) increase from 0.09 to about 0.15 eV upon tuning (with
either aDZ or aTZ), showing that the tuning scheme deteriorates
the accuracy of IP (ΔSCF). In contrast to default IP (ΔSCF), the
accuracy of default EA (ΔSCF) decrease with the smaller basis set,

Figure 2. Deviation with respect to CCSD(T)//aTZ in EA (ΔSCF), calculated
employing the default and tuning (eq. (4)) schemes based on
26 compounds using LC-ωPBE//aTZ. [Color figure can be viewed at
wileyonlinelibrary.com]

Figure 3. Deviation with respect to CCSD(T)//aTZ in IP (ΔSCF), EA (ΔSCF),
and FG (ΔSCF), calculated employing the default and tuning (eq. (5))
schemes based on 30 compounds using LC-ωPBE//aTZ. [Color figure can be
viewed at wileyonlinelibrary.com]
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with the MAE of 0.24 eV (with aDZ). Relative to the default EA
(ΔSCF), the impact of tuning scheme is minimal on EA (ΔSCF)
with a marginal change of MAE to 0.23 eV (with aDZ). The trend
of FG (ΔSCF) is similar to that of IP (ΔSCF) with respect to the
basis sets adopted and the tuning scheme.

From the above findings, it is clear that the default scheme
of calculating IP (ΔSCF), EA (ΔSCF), and FG (ΔSCF) is still an effi-
cient and accurate scheme, compared to the tuning scheme. If
the negative of HOMO and LUMO energies are approximated
as IP and EA, respectively, the tuning scheme can indeed
improve the accuracy of IP (HOMO); however, the accuracy of
tuned IP (HOMO) is found to be lower than that of default IP
(ΔSCF). To see this, statistical errors for IP (HOMO), EA (LUMO),
and FG (LUMO-HOMO), calculated employing the default and
tuning (eq. (5)) schemes, are presented in Figure 5. As shown,
the tuning scheme indeed improves the accuracy of IP (HOMO)
in all the four parameters (MSE, MAE, STD, and MAX DEV); the
MAEs decrease from 0.35 to 0.15 eV, and the STDs decrease
from 0.14 to 0.12 eV upon tuning. This is in accordance with
the earlier findings, where the tuned IP (HOMO) is a very good
approximation to IP, compared to the default IP (HOMO).[4,16–18]

In addition, it has been reported that the accuracy of orbital
energies becomes worse as the system size increases and this
also causes the increasing deviations of the excitation energies
when using conventional LC hybrid functionals with a fixed
range-separation parameter.[36] Accordingly, the tuning scheme
is expected to reduce the errors of orbital energies, for exam-
ple, IP (HOMO) as evident from Figure 5.

Unlike IP (HOMO), we do not observe an improvement in the
trend of EA (LUMO). The tuning scheme yields the slight deteri-
oration of accuracy of EA (LUMO) with the MAEs increasing
from 0.12 to 0.16 eV, the STDs from 0.09 to 0.13 eV, and the
MAX DEVs from 0.29 to 0.59 eV upon tuning. We notice that
the default IP (HOMO) is a poor approximation to IP, and the
tuning approach significantly improves the accuracy of IP
(HOMO). However, the accuracy of tuned IP (HOMO) is still

lower than that of default IP (ΔSCF). On the other hand, con-
trast conclusions are observed in the case of EA (LUMO), com-
pared to IP (HOMO). Interestingly, the default EA (LUMO) is
found to be a very good approximation to EA. In fact, the accu-
racy of default EA (LUMO) is better than the accuracy of tuned
EA (LUMO) and default EA (ΔSCF). Similar to IP (HOMO), we also
observe an improvement in the accuracy of FG (LUMO-HOMO)
upon tuning, which can be mainly attributed to the improve-
ment in the accuracy of IP (HOMO) upon tuning. Therefore, the
tuning approach may accurately predict optical gaps and
charge-transfer excitations, as these excitations predominantly
occur between the frontier molecular orbitals.

To have a deeper insight into the accuracy of EA (LUMO), we
have evaluated the values of EA (LUMO) of the dataset molecules
at various range-separation parameters (ω): 0.20, 0.30, 0.40, 0.50,
and 0.60 bohr−1, respectively. The ω corresponding to zero
makes the LC hybrid functional a pure density functional, and
increasing the ω value indicates the inclusion of higher fraction
of HF exchange. Figure 6 depicts the accuracy of EA (LUMO)
obtained at various range-separation parameters of LC-ωPBE.

As the ω value increases, we observe an increasing underesti-
mation of EA (LUMO), with the MSEs decreasing from 0.31 to
−0.19 eV. EA (LUMO) evaluated with the range-separation
parameter ω = 0.40 bohr−1 (i.e., the default ω value) is found to
be the most accurate, with the MSE, MAE, STD, and MAX DEV
being −0.09, 0.12, 0.09, and 0.29 eV, respectively, whereas the
MSE, MAE, STD, and MAX DEV of EA (ΔSCF) at the same ω are
0.12, 0.15, 0.15, and 0.57 eV, respectively. From the MAEs and
STDs, it is evident that EA (LUMO) is a very good approximation
to EA, when the range-separation parameter is between 0.30
and 0.50 bohr−1. Therefore, when the range-separation parame-
ter is within the above range, the EA of a neutral molecule can
be evaluated accurately from the negative of the LUMO energy
of the neutral molecule, avoiding the computationally expen-
sive single-point energy calculations of the anion molecule.

From the above findings, it is clear that the tuning scheme is
prerequisite condition for improving the accuracy of IP (HOMO);
however, the same is not true with respect to EA (LUMO). It is

Figure 5. Deviation with respect to CCSD(T)//aTZ in IP(HOMO), EA (LUMO),
and FG (LUMO-HOMO) (L-H Gap), calculated employing the default and
tuning (eq. (5)) schemes based on 30 compounds using LC-ωPBE//aTZ.
[Color figure can be viewed at wileyonlinelibrary.com]

Figure 4. Deviation with respect to CCSD(T)//aTZ in IP (ΔSCF), EA (ΔSCF),
and FG (ΔSCF), calculated employing the default and tuning (eq. (5))
schemes based on 30 compounds using LC-ωPBE//aDZ. [Color figure can be
viewed at wileyonlinelibrary.com]
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also evident that the tuning scheme does not improve the
accuracy of IP (ΔSCF).

To see this, we plot a scattered graph for the deviation with
respect to CCSD(T)//aTZ in IP (ΔSCF) versus the difference
between IP (ΔSCF) and the corresponding IP (HOMO), calculated
using LC-ωPBE//aTZ with the default ω = 0.40 bohr−1. As shown in
Figure 7, the accuracy of IP (ΔSCF) is independent of that of IP
(HOMO). In few cases, we notice there is negligible difference
between IP (ΔSCF) and IP (HOMO), however, the deviation in IP
(ΔSCF) is still larger and in the cases where there is appreciable
energy difference between IP (ΔSCF) and IP (HOMO), the devia-
tion is still not so large. Therefore, while the tuning scheme
improves the accuracy of IP (HOMO), there may not exist any cor-
relation between the tuning scheme and the accuracy of IP
(ΔSCF). Hence, it may be stated that the accuracy of IP (ΔSCF) is
transferred to that of IP (HOMO) upon tuning, however a vice
versa phenomenon is not observed. The impact of tuning scheme
on IP (ΔSCF), EA (ΔSCF), and FG (ΔSCF) is marginal, and hence it

can be concluded that the accuracy of ΔSCF procedure is inde-
pendent of the tuning scheme. IP (HOMO) is quite sensitive to the
tuning scheme, and the accuracy of IP (HOMO) improves signifi-
cantly after tuning, however the same is not true for EA (LUMO).

Similar conclusions are drawn for two other LC hybrid func-
tionals, LC-BLYP and ωB97X-D, employing the default and tun-
ing (eq. (5)) schemes. The MAEs of IP (ΔSCF), EA (ΔSCF), FG
(ΔSCF), IP (HOMO), EA (LUMO), and FG (LUMO-HOMO) for LC-
BLYP and ωB97X-D are shown in Figure 8.

The default ΔSCF results are generally more accurate than the
tuned results, and the accuracy of HOMO energies improves sig-
nificantly upon tuning. We find that the accuracy of default EA
(LUMO) obtained from ωB97X-D is worse than the accuracy of LC-
ωPBE and LC-BLYP, which should be related to the fact that the
default ω value of ωB97X-D is smaller than those of LC-ωPBE and
LC-BLYP. This is also supported by the previous study,[13] where
LC-ωPBE (with ω = 0.40 bohr−1) was shown to outperform ωB97X-
D (with ω = 0.20 bohr−1) for EA (LUMO) (see Table VIII of Ref. 13).

Conclusion

We have investigated the impact of tuning the range-separation
parameter of LC hybrid functionals on the accuracy of IPs, EAs,
and FGs. We observe that the tuning scheme improves the accu-
racy of IP (HOMO), whereas its accuracy is still lower than that of
IP (ΔSCF) obtained with the default scheme. On the other hand,
the default IP (HOMO) is a poor approximation to IP, and the tun-
ing scheme improves the accuracy of IP (HOMO) significantly.
However, we do not observe any improvement in IP (ΔSCF) upon
tuning. Tuning IP (HOMO) with IP (ΔSCF) improves the accuracy
of IP (HOMO), whereas a reciprocal phenomenon is not observed.
Unlike IP (HOMO), the impact of tuning scheme on EA (LUMO) is
not profound, and the change in accuracy is negligible. Compared
to EA (LUMO), the magnitude of change in IP (HOMO) is larger,
indicating that the impact of HF exchange is predominantly high
on HOMO energies, and marginal on LUMO energies. EA (LUMO)
obtained from LC hybrid functionals with a range-separation

Figure 7. Deviation with respect to CCSD(T)//aTZ in IP (ΔSCF) versus
[IP (ΔSCF) - IP (HOMO)], calculated employing the default range-separation
parameter (ω = 0.40 bohr−1) based on 30 compounds using LC-ωPBE//aTZ.

Figure 6. Deviation with respect to CCSD(T)//aTZ in EA (LUMO), calculated
employing various range-separation parameters (0.20 to 0.60 bohr−1) based
on 30 compounds using LC-ωPBE//aTZ. [Color figure can be viewed at
wileyonlinelibrary.com]

Figure 8. MAEs of IP (ΔSCF), EA (ΔSCF), FG (ΔSCF), IP (HOMO), EA (LUMO),
and L-H (LUMO-HOMO), calculated employing the default and tuning (eq. (5))
schemes based on 30 compounds using LC-BLYP//aTZ and ωB97X-D//aTZ.
[Color figure can be viewed at wileyonlinelibrary.com]
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parameter of 0.30–0.50 bohr−1 is a very good approximation to
EA, and its accuracy is even better than the accuracy of EA (ΔSCF).
Thus, reliable prediction of EA from the negative of LUMO energy
of a LC hybrid functional thus helps in avoiding the computation-
ally expensive anion energy calculations. The LR region of Cou-
lomb operators contributes insignificantly to relative energies,
such as IP (ΔSCF), EA (ΔSCF), and FG (ΔSCF), and hence, the
details of HF exchange mixing in the LR region are expected to
be unimportant.[32] Accordingly, the ΔSCF approach of calculating
IPs, EAs, and FGs is found to be independent of tuning scheme.
By contrast, as the HOMO and LUMO energies of a molecule are
rather sensitive to the asymptotic behavior of XC potential (which
is closely related to the range-separation parameter ω), IP (HOMO)
can be greatly improved by the tuning scheme; tuned EA (LUMO)
is generally less accurate than the tuned IP (HOMO) due to the
fact that for a molecule, IP (HOMO) is larger than EA (LUMO) in
magnitude, and hence, the tuning scheme naturally takes better
care of IP (HOMO) in order to minimize ΔFG (see eq. (5)). The default
IP (ΔSCF), and FG (ΔSCF) are found to be better than the tuned IP
(HOMO), and FG (LUMO-HOMO), respectively. The accuracy of IP
(ΔSCF) remains passive with respect to basis set, whereas a suffi-
ciently large basis set (e.g., aTZ) is required for EA (ΔSCF). Among
the different types of hybrid functionals tested from our earlier[2]

and current studies, we have found that LC hybrid functionals are
consistent and efficient in calculating IPs, EAs, and FGs via the ΔSCF
approach. Wong and Hsieh[37] observed similar findings where LC
hybrid functionals with a default range-separation parameter also
yielded reasonably accurate IPs and FGs in the series of acenes.
Among the three LC hybrid functionals examined, LC-ωPBE (with
default ω) is found to be efficient, and its accuracy in IP (ΔSCF), EA
(ΔSCF), FG (ΔSCF), and EA (LUMO) is found to be on par with the
computationally demanding GW approach.
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