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We propose hybrid schemes incorporating exact exchange into thermally assisted-occupation-density
functional theory (TAO-DFT) [J.-D. Chai, J. Chem. Phys. 136, 154104 (2012)] for an improved
description of nonlocal exchange effects. With a few simple modifications, global and range-separated
hybrid functionals in Kohn-Sham density functional theory (KS-DFT) can be combined seamlessly
with TAO-DFT. In comparison with global hybrid functionals in KS-DFT, the resulting global hybrid
functionals in TAO-DFT yield promising performance for systems with strong static correlation
effects (e.g., the dissociation of H2 and N2, twisted ethylene, and electronic properties of linear
acenes), while maintaining similar performance for systems without strong static correlation effects.
Besides, a reasonably accurate description of noncovalent interactions can be efficiently achieved
through the inclusion of dispersion corrections in hybrid TAO-DFT. Relative to semilocal density
functionals in TAO-DFT, global hybrid functionals in TAO-DFT are generally superior in performance
for a wide range of applications, such as thermochemistry, kinetics, reaction energies, and optimized
geometries. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4974163]

I. INTRODUCTION

Over the past two decades, Kohn-Sham density functional
theory (KS-DFT)1,2 has emerged as one of the most popular
electronic structure methods for the study of large ground-
state systems, due to its low computational cost and reasonable
accuracy.3–6 Nevertheless, the essential ingredient of KS-DFT,
the exact exchange-correlation (XC) energy functional Exc[ρ]
remains unknown, and needs to be approximated. Conse-
quently, density functional approximations (DFAs) for Exc[ρ]
have been continuously developed to improve the accuracy of
KS-DFT for a broad range of applications.

Functionals based on the conventional semilocal DFAs,
such as the local density approximation (LDA)7,8 and gener-
alized gradient approximations (GGAs),9–11 can yield reason-
ably accurate predictions of the properties governed by short-
range XC effects, and possess high computational efficiency
for very large systems (for brevity, hereafter we use “DFAs”
for “the conventional semilocal DFAs”). Nonetheless, owing
to the inappropriate treatment of nonlocal XC effects,12,13

KS-DFAs can perform very poorly in situations where the
self-interaction error (SIE),12–15 noncovalent interaction error
(NCIE),16–18 or static correlation error (SCE)12,19–22 is pro-
nounced. Over the years, considerable efforts have been made
to resolve the qualitative failures of KS-DFAs at a reasonable
computational cost.

To date, global hybrid functionals23–30 and range-
separated hybrid functionals,31–33 which incorporate the
Hartree-Fock (HF) exchange energy into KS-DFAs, are per-
haps the most successful schemes that provide an improved

a)Electronic mail: jdchai@phys.ntu.edu.tw

description of nonlocal exchange effects. Relative to
KS-DFAs, the hybrid schemes, which greatly reduce the
SIE problems, are reliably accurate for a wide variety of
applications, such as thermochemistry and kinetics.34,35

To properly describe noncovalent interactions, a reason-
ably accurate treatment of middle- and long-range dynami-
cal correlation effects is critical. Accordingly, KS-DFAs and
hybrid functionals may be combined with the DFT-D (KS-DFT
with empirical dispersion corrections) schemes17,36–40 and the
double-hybrid (mixing both the HF exchange energy and the
second-order Møller-Plesset (MP2) correlation energy41 into
KS-DFAs) schemes,30,33,42 showing an overall satisfactory
accuracy for the NCIE problems.

In spite of their computational efficiency, KS-DFAs,
hybrid functionals, and double-hybrid functionals can per-
form very poorly for systems with strong static correlation
effects (i.e., multi-reference systems).12,19–22 Within KS-DFT,
fully nonlocal XC functionals, such as those based on the
random phase approximation (RPA), may be adopted for a
reliably accurate description of strong static correlation effects.
However, RPA-type functionals remain computationally very
demanding for large systems.4,13,43,44

To reduce the SCE problems with low computational
complexity, we have recently developed thermally-assisted-
occupation density functional theory (TAO-DFT),20,21 an
efficient electronic structure method for studying the ground-
state properties of very large systems (e.g., containing up
to a few thousand electrons) with strong static correlation
effects.45–48 Unlike finite-temperature DFT,49 TAO-DFT is
developed for ground-state systems at zero temperature. In
contrast to KS-DFT, TAO-DFT is a DFT with fractional
orbital occupations given by the Fermi-Dirac distribution (con-
trolled by a fictitious temperature θ), wherein strong static
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correlation is explicitly described by the entropy contribu-
tion (e.g., see Eq. (26) of Ref. 20). Interestingly, TAO-DFT
is as efficient as KS-DFT for single-point energy and analyti-
cal nuclear gradient calculations, and is reduced to KS-DFT in
the absence of strong static correlation effects. Besides, exist-
ing DFA XC functionals in KS-DFT may also be adopted
in TAO-DFT. The resulting TAO-DFAs have been shown
to consistently improve upon KS-DFAs for multi-reference
systems. Nevertheless, TAO-DFAs perform similarly to KS-
DFAs for single-reference systems (i.e., systems without
strong static correlation). In addition, the SIEs and NCIEs of
TAO-DFAs may remain enormous in situations where these
failures occur.

In this work, we aim to improve the accuracy of TAO-
DFAs for a wide variety of single-reference systems. Specif-
ically, we develop hybrid schemes that incorporate exact
exchange into TAO-DFAs for an improved description of non-
local exchange effects. Hybrid functionals (e.g., global and
range-separated hybrids) in KS-DFT can be easily modified,
and seamlessly combined with TAO-DFT. The rest of the
paper is organized as follows. A brief review of the essen-
tials of TAO-DFT is provided in Section II. In Section III, the
exact exchange in TAO-DFT is defined, and the corresponding
global and range-separated hybrid schemes are proposed. In
Section IV, the optimal θ values for global hybrid function-
als in TAO-DFT are defined, and the performance of global
hybrid functionals in TAO-DFT (with the optimal θ values)
is examined for various single- and multi-reference systems.
Our conclusions are given in Section V.

II. TAO-DFT
A. Rationale for fractional orbital occupations

Consider an interacting N-electron Hamiltonian for an
external potential v(r) at zero temperature, the exact ground-
state density ρ(r) is interacting v-representable, as it can be
obtained from the ground-state wavefunction calculated using
the full configuration interaction (FCI) method at the complete
basis set limit50

ρ(r) =
∞∑

i=1

ni | χi(r)|2, (1)

which can be expressed in terms of the natural orbitals (NOs)
{ χi(r)} and natural orbital occupation numbers (NOONs)
{ni} (i.e., the eigenfunctions and eigenvalues, respectively, of
one-electron reduced density matrix (1-RDM)).51 Here, the
NOONs {ni}, obeying the following two conditions:

∞∑
i=1

ni = N , 0 ≤ ni ≤ 1, (2)

are related to the variationally determined coefficients of the
FCI expansion. As shown in Eq. (1), the exact ground-state
density ρ(r) can be represented by orbitals and their occupation
numbers, showing the significance of an ensemble represen-
tation (via fractional orbital occupations) of the ground-state
density.

By contrast, in KS-DFT, the ground-state density ρ(r)
is assumed to be noninteracting pure-state vs-representable,

as it belongs to a one-determinant ground-state wavefunc-
tion of a noninteracting N-electron Hamiltonian for some
local potential vs(r) at zero temperature.52–54 Accordingly, the
Kohn-Sham (KS) orbital occupation numbers should be either
0 or 1. Due to the search over a restricted domain of densi-
ties, some ground-state densities cannot be obtained within the
framework of KS-DFT (i.e., even with the exact Exc[ρ]).53–57

Baerends and co-workers55 argued that the ground-state den-
sity ρ(r) of a system with strong static correlation effects may
not be noninteracting pure-state vs-representable, wherein an
ensemble representation of the ground-state density is essen-
tial. Arguments supporting this are also available from other
studies.56,58

To rectify the above situation, KS-DFT has been extended
to ensemble DFT,59,60 wherein ρ(r) is assumed to be nonin-
teracting ensemble vs-representable, as it is associated with
an ensemble of pure determinantal states of the noninteract-
ing KS system at zero temperature. Accordingly, the orbital
occupation numbers in ensemble DFT are 0, 1, and fractional
(between 0 and 1) for the orbitals above, below, and at the
Fermi level, respectively. Within the framework of ensem-
ble DFT, the development of DFT fractional-occupation-
number (DFT-FON) method,58,61–64 spin-restricted ensemble-
referenced KS (REKS) method,65,66 and fractional-spin DFT
(FS-DFT) method12,19 has yielded great success for some
systems with strong static correlation effects. Nevertheless,
the practical implementation of DFT-FON and related meth-
ods has been hindered by several factors, such as a possible
double-counting of correlation effects and the sharp increase
of computational cost for large systems.

On the other hand, the inclusion of fractional occu-
pation numbers (FONs) in electronic structure calculations
has a long history.12,19–21,49,58–83 In particular, the Fermi-
Dirac distribution, which appears in finite-temperature DFT49

and finite-temperature HF schemes,72,76–83 has been a pop-
ular distribution function for the FON-related schemes. For
example, finite-temperature techniques have been developed
for improving self-consistent field (SCF) convergence.70 The
grand canonical orbitals have been used for subsequent com-
plete active space configuration interaction (CASCI) calcula-
tions.71–73 Recently, a fractional occupation number weighted
electron density has been adopted for a real-space measure and
visualization of static correlation effects.77

In TAO-DFT,20,21 the representation of the ground-state
density from the exact theory (see Eq. (1)) has been high-
lighted. In contrast to the orbital occupation numbers in
KS-DFT and ensemble DFT, the NOONs can be fractional
(between 0 and 1) for all the NOs. While the exact NOONs are
intractable for large systems (due to the exponential complex-
ity), the distribution of NOONs (the microcanonical averaging
of NOONs) can, however, be approximately described by the
Fermi-Dirac distribution with renormalized parameters (i.e.,
orbital energies, chemical potential, and temperature) based on
the statistical arguments of Flambaum et al.84 Accordingly, in
TAO-DFT, the ground-state density ρ(r) of a system of N inter-
acting electrons moving in an external potential vext(r) at zero
temperature is assumed to be noninteracting thermal ensemble
vs-representable, as it is expressed as the thermal equilibrium
density of an auxiliary system of N noninteracting electrons
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moving in some local potential vs(r) at a fictitious temperature
θ. Consequently, ρ(r) can be represented by

ρ(r) =
∞∑

i=1

fi |ψi(r)|2, (3)

where the orbital occupation number f i is the Fermi-Dirac
distribution

fi = {1 + exp[(ε i − µ)/θ]}−1, (4)

which satisfies the following two conditions:
∞∑

i=1

fi = N , 0 ≤ fi ≤ 1, (5)

ε i is the orbital energy of the ith orbitalψi(r), and µ is the chem-
ical potential determined by the conservation of the number of
electrons N.

As discussed in Ref. 20, for a given fictitious tempera-
ture θ, the Hohenberg-Kohn theorems1 and the Mermin theo-
rems49 can be employed for the physical and auxiliary systems,
respectively, to derive a set of self-consistent equations in
TAO-DFT for determining the remaining “renormalized
parameters” (i.e., the orbital energies {ε i} and chemical poten-
tial µ) of the orbital occupation numbers { f i} and the orbitals
{ψi(r)}, which can then be used to represent the ground-state
density ρ(r), and evaluate the ground-state energy of the phys-
ical system at zero temperature. In addition, due to the simi-
larity of Eqs. (1) and (3), when the fictitious temperature θ in
TAO-DFT is so chosen that the NOONs {ni} are approxi-
mately described by the orbital occupation numbers { f i} (in
the sense of statistical average, as mentioned above), the NOs
{ χi(r)}will be approximately described by the orbitals {ψi(r)}.
This implies that the exact ρ(r) is likely to be noninteracting
thermal ensemble vs-representable at this θ value (plus some
range of possible other values around it). In addition, as dis-
cussed in Ref. 20, strong static correlation has been shown to
be properly described by the entropy contribution (e.g., see
Eq. (26) of Ref. 20) in TAO-DFT at this θ value (plus some
range of possible other values around it).

While also adopting the Fermi-Dirac distribution, TAO-
DFT is developed for the ground-state density and ground-state
energy of a physical system at zero temperature, which is
different from the aforementioned finite-temperature FON-
related schemes (which mostly focus on the SCF conver-
gence, the adoption of grand canonical orbitals and density
for different purposes, and the thermodynamic properties of
a physical system at finite temperature). On the other hand,
while KS-DFT, ensemble DFT, and TAO-DFT all belong to
zero-temperature DFT, the representations of the ground-state
density are, however, different in these methods (as mentioned
above). While the entropy contribution in TAO-DFT plays an
important role in simulating strong static correlation (even
though at the price of adding an extra θ parameter that is related
to the distribution of NOONs), this term is, however, absent in
KS-DFT and ensemble DFT.

B. Self-consistent equations

Consider a system of Nα up-spin and Nβ down-spin
electrons moving in an external potential vext(r) at zero

(physical) temperature. In spin-polarized (spin-unrestricted)
TAO-DFT,20,21 two noninteracting reference systems at the
same fictitious (reference) temperature θ (measured in energy
units) are employed: one described by the spin function α
and the other described by the spin function β, with the corre-
sponding thermal equilibrium density distributions ρs,α(r) and
ρs,β(r) exactly equal to the up-spin density ρα(r) and down-
spin density ρβ(r), respectively, in the original interacting
system at zero temperature. The resulting self-consistent equa-
tions for the σ-spin electrons (σ = α or β) can be expressed
as (i runs for the orbital index){

−
1
2
∇2 + vs,σ(r)

}
ψiσ(r) = ε iσψiσ(r), (6)

where

vs,σ(r) = vext(r)+
∫

ρ(r′)
|r − r′ |

dr′+
δExc[ρα, ρβ]

δρσ(r)
+
δEθ [ρα, ρβ]

δρσ(r)
(7)

is the effective potential (atomic units, i.e., ~ = me = e = 4πε0

= 1, are adopted throughout this work). Here, Exc[ρα, ρβ]
≡ Ex[ρα, ρβ] + Ec[ρα, ρβ] is the XC energy (i.e., the sum
of the exchange energy Ex[ρα, ρβ] and correlation energy
Ec[ρα, ρβ]) defined in spin-polarized KS-DFT,58,85 and
Eθ [ρα, ρβ] ≡ Aθ=0

s [ρα, ρβ] − Aθs [ρα, ρβ] is the difference
between the noninteracting kinetic free energy at zero tem-
perature and that at the fictitious temperature θ. The σ-spin
density

ρσ(r) =
∞∑

i=1

fiσ |ψiσ(r)|2 (8)

is expressed in terms of the thermally-assisted-occupation
(TAO) orbitals {ψiσ(r)} and their occupation numbers { fiσ },

fiσ = {1 + exp[(ε iσ − µσ)/θ]}−1, (9)

which are given by the Fermi-Dirac distribution. Here, the
chemical potential µσ is determined by the conservation of
the number of σ-spin electrons Nσ ,

∞∑
i=1

{1 + exp[(ε iσ − µσ)/θ]}−1 = Nσ . (10)

The two sets (one for each spin function) of self-consistent
equations, Equations (6)–(10), for ρα(r) and ρβ(r), respec-
tively, are coupled with the ground-state density

ρ(r) =
α,β∑
σ

ρσ(r). (11)

The self-consistent procedure described in Ref. 20 may
be employed to obtain ρσ(r) and ρ(r). After self-consistency
is achieved, the noninteracting kinetic free energy

Aθs [{fiα,ψiα}, {fiβ ,ψiβ }] = T θs [{fiα,ψiα}, {fiβ ,ψiβ }]

+EθS [{fiα}, {fiβ }] (12)

can be computed, in an exact manner, as the sum of the kinetic
energy

T θs [{fiα,ψiα}, {fiβ ,ψiβ }] = −
1
2

α,β∑
σ

∞∑
i=1

fiσ

∫
ψ∗iσ(r)∇2ψiσ(r)dr

(13)
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and entropy contribution

EθS [{fiα}, {fiβ }] = θ
α,β∑
σ

∞∑
i=1

{
fiσ ln(fiσ) + (1 − fiσ) ln(1 − fiσ)

}
(14)

of noninteracting electrons at the fictitious temperature θ. The
ground-state energy of the original interacting system at zero
temperature is given by

E[ρα, ρβ] = Aθs [{fiα,ψiα}, {fiβ ,ψiβ }]

+

∫
ρ(r)vext(r)dr + EH [ρ] + Exc[ρα, ρβ]

+Eθ [ρα, ρβ], (15)

where EH [ρ] ≡ 1
2 ∫ ∫

ρ(r)ρ(r′)
|r − r′ | drdr′ is the Hartree energy.

Spin-unpolarized (spin-restricted) TAO-DFT can be formu-
lated by imposing the constraints of ψiα(r) = ψiβ(r) and fiα
= fiβ to spin-polarized TAO-DFT.

C. Density functional approximations

As the exact Exc[ρα, ρβ] and Eθ [ρα, ρβ] (i.e., the essen-
tial ingredients of spin-polarized TAO-DFT) remain unknown,
DFAs for both of them (denoted as TAO-DFAs) are necessary
for practical applications. Consequently, the performance of
TAO-DFAs depends on the accuracy of DFAs and the choice
of the fictitious temperature θ. Note that EDFA

xc [ρα, ρβ] can be
readily obtained from that of KS-DFA, and EDFA

θ [ρα, ρβ] can
be obtained with the knowledge of ADFA,θ

s [ρα, ρβ] as follows

EDFA
θ [ρα, ρβ] ≡ ADFA,θ=0

s [ρα, ρβ] − ADFA,θ
s [ρα, ρβ]

=
1
2

(ADFA,θ=0
s [2ρα] + ADFA,θ=0

s [2ρβ])

−
1
2

(ADFA,θ
s [2ρα] + ADFA,θ

s [2ρβ]), (16)

where ADFA,θ
s [ρα, ρβ] is expressed in terms of ADFA,θ

s [ρ] (in
its spin-unpolarized form) based on the spin-scaling relation
of Aθs [ρα, ρβ].86 Note that EDFA

θ=0 [ρα, ρβ] = 0 (i.e., an exact
property of Eθ [ρα, ρβ]) is ensured by Eq. (16). Accordingly,
TAO-DFAs at θ = 0 reduce to KS-DFAs.

D. Strong static correlation from TAO-DFAs

In 2012, we developed TAO-LDA,20 employing the LDA
XC functional ELDA

xc [ρα, ρβ]7,8 and ELDA
θ [ρα, ρβ] (given by

Eq. (16) with ALDA,θ
s [ρ], the LDA for Aθs [ρ] (see Appendix A

of Ref. 87 and Eq. (37) of Ref. 20)) in TAO-DFT. Even at
the simplest LDA level, TAO-LDA was shown to provide
a reasonably accurate treatment of static correlation via the
entropy contribution EθS [{fiα}, {fiβ }] (see Eq. (14)), when the
distribution of TAO orbital occupation numbers (TOONs)
{fiσ } (related to the chosen θ) is close to the distribution of
NOONs. However, this implies that a θ related to the distribu-
tion of NOONs should be employed to properly describe strong
static correlation effects. For simplicity, an optimal value of
θ = 7 mhartree was previously defined for TAO-LDA, based on
physical arguments and numerical investigations. TAO-LDA
(with θ = 7 mhartree) was shown to consistently outperform

KS-LDA for multi-reference systems (due to the appropriate
treatment of static correlation), while performing comparably
to KS-LDA for single-reference systems (i.e., in the absence
of strong static correlation effects).

To improve the accuracy of TAO-LDA for single-
reference systems, in 2014, we developed TAO-GGAs,21

adopting the GGA XC functionals EGGA
xc [ρα, ρβ] and

EGEA
θ [ρα, ρβ] (given by Eq. (16) with AGEA,θ

s [ρ], the gradient
expansion approximation (GEA) for Aθs [ρ] (see Appendices
A and B of Ref. 87)) in TAO-DFT. As TAO-GGAs should
improve upon TAO-LDA mainly for the properties governed
by short-range XC effects (due to the more accurate treat-
ment of on-top hole density),3–6,13 and the orbital energy
gaps of TAO-LDA and TAO-GGAs should be similar,34,35 the
optimal θ values for TAO-LDA and TAO-GGAs should remain
similar (when the same physical arguments and numerical
investigations are adopted to define the optimal θ values).
Therefore, we adopted an optimal value of θ = 7 mhartree for
both TAO-LDA and TAO-GGAs. While EGEA

θ [ρα, ρβ] should
be more accurate than ELDA

θ [ρα, ρβ] for the nearly uniform
electron gas, for a small value of θ (i.e., 7 mhartree), their
difference was found to be much smaller than the difference
between two different XC energy functionals. Unsurprisingly,
since ELDA

θ=0 = EGEA
θ=0 = 0, the difference between ELDA

θ and
EGEA
θ should remain small for a small value of θ (i.e., 7

mhartree). Accordingly, ELDA
θ [ρα, ρβ] may also be adopted

for TAO-GGAs.
While TAO-DFAs (i.e., TAO-LDA and TAO-GGAs) out-

perform KS-DFAs for multi-reference systems, they perform
similarly to KS-DFAs for single-reference systems. As men-
tioned previously, hybrid functionals in KS-DFT, which pro-
vide an improved description of nonlocal exchange effects,
are generally superior to KS-DFAs in performance for a broad
range of applications.34,35 Therefore, a possible hybrid func-
tional in TAO-DFT is expected to outperform TAO-DFAs
for a wide variety of single-reference systems. In Sec. III,
we define the exact exchange in TAO-DFT, and propose the
corresponding global and range-separated hybrid schemes in
TAO-DFT.

III. HYBRID SCHEMES IN TAO-DFT
A. Exact exchange

In KS-DFT, the exact exchange Ex[ρα, ρβ] is defined
as the HF exchange energy of the occupied KS orbitals
{φiσ(r)},3–6

Ex[ρα, ρβ] ≡ EHF
x [{φiα}, {φiβ }] = −

1
2

α,β∑
σ

Nσ∑
i,j=1

×

∫∫ φ∗iσ(r1)φ∗jσ(r2)φjσ(r1)φiσ(r2)

r12
dr1dr2

= −
1
2

α,β∑
σ

∫ ∫
|γKS
σ (r1, r2)|2

r12
dr1dr2, (17)

where r12 = |r1 − r2| is the interelectronic distance. Here,
γKS
σ (r1, r2) =

∑Nσ

i=1 φ
∗
iσ(r1)φiσ(r2) is the σ-spin 1-RDM in

KS-DFT, and its diagonal element γKS
σ (r, r) =

∑Nσ

i=1 |φiσ(r)|2

= ρσ(r) is the σ-spin density in KS-DFT.
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In TAO-DFT, the exact exchange Fθ
x [ρα, ρβ] can be

defined as the HF exchange free energy of the TAO orbitals
{ψiσ(r)} and their occupation numbers {fiσ } at the fictitious
temperature θ,

Fθ
x [ρα, ρβ] ≡ FHF,θ

x [{fiα,ψiα}, {fiβ ,ψiβ }] = −
1
2

α,β∑
σ

∞∑
i,j=1

fiσfjσ

×

∫ ∫ ψ∗iσ(r1)ψ∗jσ(r2)ψjσ(r1)ψiσ(r2)

r12
dr1dr2

= −
1
2

α,β∑
σ

∫ ∫
|γTAO
σ (r1, r2)|2

r12
dr1dr2. (18)

Here,

γTAO
σ (r1, r2) =

∞∑
i=1

fiσψ
∗
iσ(r1)ψiσ(r2) (19)

is the σ-spin 1-RDM in TAO-DFT, and its diagonal element

γTAO
σ (r, r) =

∞∑
i=1

fiσ |ψiσ(r)|2 =
∞∑

i=1

ρiσ(r) = ρσ(r) (20)

is theσ-spin density in TAO-DFT, where ρiσ(r) ≡ fiσ |ψiσ(r)|2

is the ith σ-spin orbital density in TAO-DFT. Note that
the TAO orbitals {ψiσ(r)} and their occupation numbers
{fiσ } are the eigenfunctions and eigenvalues, respectively, of
γTAO
σ (r1, r2),∫
γTAO
σ (r1, r2)ψiσ(r1)dr1 =

∞∑
j=1

fjσψjσ(r2)

×

∫
ψ∗jσ(r1)ψiσ(r1)dr1

=

∞∑
j=1

fjσψjσ(r2)δij = fiσψiσ(r2),

(21)

where δij is the Kronecker delta function. At θ = 0, TAO-DFT
is the same as KS-DFT, and hence, Eq. (18) is reduced to
Eq. (17).

To justify the use of Fθ
x [ρα, ρβ] ≡ FHF,θ

x [{fiα,ψiα},
{fiβ ,ψiβ }] (given by Eq. (18)) as the definition of exact
exchange in TAO-DFT, here, we comment on the self-
interaction energy associated with the exact exchange in
TAO-DFT. On the basis of Equations (8) and (11), the Hartree
energy can be expressed as

EH [ρ] ≡
1
2

∫ ∫
ρ(r1)ρ(r2)

r12
dr1dr2

=
1
2

α,β∑
σ

α,β∑
σ′

∫ ∫
ρσ(r1)ρσ′(r2)

r12
dr1dr2

=
1
2

α,β∑
σ

α,β∑
σ′

∞∑
i,j=1

fiσfjσ′

×

∫ ∫
|ψiσ(r1)|2 |ψjσ′(r2)|2

r12
dr1dr2. (22)

Accordingly, the self-Hartree energy,14

self-Hartree energy ≡
α,β∑
σ

∞∑
i=1

EH [ρiσ] =
1
2

α,β∑
σ

∞∑
i=1

f 2
iσ

×

∫ ∫
|ψiσ(r1)|2 |ψiσ(r2)|2

r12
dr1dr2,

(23)

which is the sum of the (σ = σ′ and i = j) terms in Eq. (22),
can be exactly cancelled by the self-exchange energy,14

self-exchange energy ≡
α,β∑
σ

∞∑
i=1

Fθ
x [ρiσ , 0] = −

1
2

α,β∑
σ

∞∑
i=1

f 2
iσ

×

∫ ∫
|ψiσ(r1)|2 |ψiσ(r2)|2

r12
dr1dr2

= −

α,β∑
σ

∞∑
i=1

EH [ρiσ], (24)

which is the sum of the (i = j) terms in Eq. (18), on an
orbital-by-orbital basis (i.e., each term in Eq. (23) can be
exactly cancelled by a term in Eq. (24)). Therefore, com-
plete cancellation of the self-interaction in the Hartree energy
would require the full exact exchange (given by Eq. (18)) in
TAO-DFT. By contrast, such perfect cancellation may not be
achieved by the HF exchange (given by Eq. (17)) with the
KS orbitals being replaced by the TAO orbitals. Besides, the
self-Hartree energy in TAO-DFT is unlikely to be exactly can-
celled by the self-XC energy, i.e.,

∑α,β
σ

∑∞
i=1 EDFA

xc [ρiσ , 0],
associated with the DFA XC functional EDFA

xc [ρα, ρβ],
implying that the SIEs associated with TAO-DFAs may
remain pronounced for both single- and multi-reference
systems!

From Eq. (17), EHF
x [{φiα}, {φiβ }] (i.e., the exact

exchange in KS-DFT) can be expressed as

EHF
x [{φiα}, {φiβ }] = Ex[ρα, ρβ]

=Fθ
x [ρα, ρβ] + (Ex[ρα, ρβ] − Fθ

x [ρα, ρβ])

=FHF,θ
x [{fiα,ψiα}, {fiβ ,ψiβ }] + Ex,θ [ρα, ρβ],

(25)

the sum of FHF,θ
x [{fiα,ψiα}, {fiβ ,ψiβ }] (i.e., the exact exchange

in TAO-DFT) and Ex,θ [ρα, ρβ] ≡ Ex[ρα, ρβ] − Fθ
x [ρα, ρβ]

= Fθ=0
x [ρα, ρβ]−Fθ

x [ρα, ρβ] (i.e., the difference between the
exchange free energy at zero temperature and that at the fic-
titious temperature θ). Subsequently, a DFA can be made for
Ex,θ [ρα, ρβ] as follows:

EDFA
x,θ [ρα, ρβ] ≡ FDFA,θ=0

x [ρα, ρβ] − FDFA,θ
x [ρα, ρβ], (26)

where FDFA,θ
x [ρα, ρβ] is the DFA for Fθ

x [ρα, ρβ]. Note that
EDFA

x,θ=0[ρα, ρβ] = 0 (i.e., an exact property of Ex,θ [ρα, ρβ]) can
be readily achieved by Eq. (26). Besides, from the spin-scaling
relation of Fθ

x [ρα, ρβ],86 EDFA
x,θ [ρα, ρβ] can be conveniently

expressed in terms of FDFA,θ
x [ρ] (in its spin-unpolarized form),

EDFA
x,θ [ρα, ρβ] =

1
2

(FDFA,θ=0
x [2ρα] + FDFA,θ=0

x [2ρβ])

−
1
2

(FDFA,θ
x [2ρα] + FDFA,θ

x [2ρβ]). (27)
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From Eqs. (25) and (26), the exact exchange in KS-DFT is
approximately given by

Ex[ρα, ρβ] = EHF
x [{φiα}, {φiβ }]

≈ FHF,θ
x [{fiα,ψiα}, {fiβ ,ψiβ }] + EDFA

x,θ [ρα, ρβ],

(28)

the sum of the exact exchange in TAO-DFT and EDFA
x,θ [ρα, ρβ].

Note that the approximation becomes exact, when the exact
EDFA

x,θ [ρα, ρβ] is employed.
While the exact exchange in TAO-DFT is free of the SIE,

the scheme is not expected to perform satisfactorily for most
systems, due to the lack of correlation energy Ec[ρα, ρβ].
Besides, it is well known that the exact exchange is incom-
patible with the DFA correlation in KS-DFT, implying that
TAO-DFT with the exact exchange and DFA correlation
would not perform well for single-reference systems (i.e.,
in the absence of strong static correlation effects). There-
fore, similar to the hybrid schemes in KS-DFT, it may be
useful to incorporate the exact exchange with the DFA XC
functional in TAO-DFT. In Subsections III B and III C, the
global and range-separated hybrid schemes in TAO-DFT are
proposed.

B. Global hybrid scheme

In KS-DFT, a global hybrid (GH) functional23–30 is
generally expressed as

EKS-GH
xc = axEHF

x [{φiα}, {φiβ }] + (1 − ax)EDFA
x [ρα, ρβ]

+EDFA
c [ρα, ρβ], (29)

where EHF
x is the HF exchange energy (given by Eq. (17)),

EDFA
x is the DFA exchange energy, and EDFA

c is the DFA cor-
relation energy. The fraction of HF exchange ax, typically
ranging from 0.2 to 0.25 for thermochemistry and from 0.4
to 0.6 for kinetics, can be determined by empirical fitting or
physical arguments.

After substituting Eq. (28) into Eq. (29), the correspond-
ing global hybrid functional in TAO-DFT can be defined
as

ETAO-GH
xc = ax

{
FHF,θ

x [{fiα,ψiα}, {fiβ ,ψiβ }] + EDFA
x,θ [ρα, ρβ]

}
+ (1 − ax)EDFA

x [ρα, ρβ] + EDFA
c [ρα, ρβ], (30)

and the resulting ground-state energy is evaluated by

ETAO-GH = Aθs [{fiα,ψiα}, {fiβ ,ψiβ }]+
∫
ρ(r)vext(r)dr + EH [ρ]

+ETAO-GH
xc + EDFA

θ [ρα, ρβ]. (31)

While an evaluation of the functional derivative of
FHF,θ

x [{fiα,ψiα}, {fiβ ,ψiβ }] (i.e., an explicit functional of the
TAO orbitals and their occupation numbers) with respect to
the density ρσ (see Eq. (7)) can be achieved with the finite-
temperature exact-exchange and related schemes,88 the result-
ing scheme can be computationally demanding. To reduce the
computational complexity, in this work, the electronic energy
for a global hybrid functional in TAO-DFT is minimized with
respect to the 1-RDM γTAO

σ (as is usual in the finite-temperature

HF (FT-HF) and related schemes72,76–83). The resulting self-
consistent equations for the σ-spin electrons can be expressed
as{
−

1
2
∇2 + v loc

s,σ(r)
}
ψiσ(r) − ax

∞∑
j=1

fjσ

×

∫ ψ∗jσ(r′)ψiσ(r′)

|r − r′ |
ψjσ(r)dr′ = ε iσψiσ(r),

(32)

where

v loc
s,σ(r) = vext(r) +

∫
ρ(r′)
|r − r′ |

dr′ +
δEDFA

θ [ρα, ρβ]

δρσ(r)

+ (1 − ax)
δEDFA

x [ρα, ρβ]

δρσ(r)
+
δEDFA

c [ρα, ρβ]

δρσ(r)

+ ax

δEDFA
x,θ [ρα, ρβ]

δρσ(r)
(33)

is the local part of the effective potential. The two sets
(one for each spin function) of self-consistent equations,
Equations (8)–(10), (32), and (33), for ρα(r) and ρβ(r), respec-
tively, are coupled with the ground-state density (given by
Eq. (11)).

Note that ETAO-GH
xc reduces to EDFA

xc (i.e., the DFA
XC functional) for ax = 0, and reduces to FHF,θ

x + EDFA
x,θ

+ EDFA
c (i.e., the exact exchange in TAO-DFT, the DFA for

Ex,θ , and the DFA correlation functional) for ax = 1. At θ
= 0, TAO-DFT with ETAO-GH

xc is the same as KS-DFT with
EKS-GH

xc .
On the other hand, if the constraints of ax = 1 and EDFA

c
= EDFA

θ = EDFA
x,θ = 0 are imposed on the global hybrid

scheme in TAO-DFT, the resulting scheme resembles the
FT-HF scheme. Therefore, the computational cost of the global
hybrid scheme in TAO-DFT is similar to that of the global
hybrid scheme in KS-DFT or the FT-HF scheme.

C. Range-separated hybrid scheme

In KS-DFT, a range-separated hybrid (RSH) func-
tional31–33 is generally given by

EKS-RSH
xc = EHF

x (I)[{φiα}, {φiβ }] + EDFA
x (Ī)[ρα, ρβ]

+EDFA
c [ρα, ρβ], (34)

where EHF
x (I) is the HF exchange energy of an interelectronic

repulsion operator I(r12),

EHF
x (I)[{φiα}, {φiβ }] = −

1
2

α,β∑
σ

Nσ∑
i,j=1

∫ ∫
I(r12)φ∗iσ(r1)φ∗jσ(r2)

× φjσ(r1)φiσ(r2)dr1dr2, (35)

and EDFA
x (Ī) is the DFA exchange energy of the complementary

operator Ī(r12) ≡ 1/r12 − I(r12). Similar to the previous trick,
we replace the Coulomb operator 1/r12 in Eq. (28) by the
operator I(r12), yielding the following expression:
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EHF
x (I)[{φiα}, {φiβ }] ≈ FHF,θ

x (I)[{fiα,ψiα}, {fiβ ,ψiβ }]

+EDFA
x,θ (I)[ρα, ρβ], (36)

where

FHF,θ
x (I)[{fiα,ψiα}, {fiβ ,ψiβ }] = −

1
2

α,β∑
σ

∞∑
i,j=1

fiσfjσ

×

∫ ∫
I(r12)ψ∗iσ(r1)ψ∗jσ(r2)

× ψjσ(r1)ψiσ(r2)dr1dr2

(37)

is the HF exchange free energy of the operator I(r12) at the
fictitious temperature θ, and

EDFA
x,θ (I)[ρα, ρβ] ≡ FDFA,θ=0

x (I)[ρα, ρβ] − FDFA,θ
x (I)[ρα, ρβ]

(38)

is the difference between the DFA exchange free energy of the
operator I(r12) at zero temperature and that at the fictitious tem-
perature θ. Note that the approximation (see Eq. (36)) becomes
exact, when the exact EDFA

x,θ (I)[ρα, ρβ] is employed.
After substituting Eq. (36) into Eq. (34), the correspond-

ing range-separated hybrid functional in TAO-DFT can be
defined as

ETAO-RSH
xc =

{
FHF,θ

x (I)[{fiα,ψiα}, {fiβ ,ψiβ }] + EDFA
x,θ (I)[ρα, ρβ]

}
+EDFA

x (Ī)[ρα, ρβ] + EDFA
c [ρα, ρβ]. (39)

For I(r12) = ax/r12, ETAO-RSH
xc reduces to ETAO-GH

xc . However,
for a general operator I(r12) (e.g., the erf,89 erfgau,90 or
terf91 operator), while FHF,θ

x (I) is defined, and EDFA
x (Ī) and

EDFA
c are available from those of the range-separated hybrid

scheme in KS-DFT, FDFA,θ
x (I) (and hence, EDFA

x,θ (I)) is mostly
unavailable and needs to be developed for practical appli-
cations. Therefore, in this work, while the range-separated
hybrid scheme in TAO-DFT is proposed, our numerical
results are only available for the global hybrid scheme in
TAO-DFT.

IV. GLOBAL HYBRID FUNCTIONALS IN TAO-DFT
A. Definition of the optimal θ values

As previously mentioned, the fictitious temperature θ
in TAO-DFT should be chosen so that the distribution of
TOONs is close to that of NOONs.20,21 In this situation, the
strong static correlation effects can be properly described by
the entropy contribution. For single-reference systems, as the
exact NOONs are close to either 0 or 1, the optimal θ should
be sufficiently small. However, for multi-reference systems, as
the distribution of NOONs can be diverse (due to the varying
strength of static correlation), the optimal θ can span a wide
range of values. Therefore, for a global hybrid functional in
TAO-DFT, it is impossible to adopt a θ that is optimal for both
single- and multi-reference systems. Nevertheless, it remains
useful to define an optimal θ value for a global hybrid func-
tional in TAO-DFT to provide an explicit description of orbital
occupations.

FIG. 1. Mean absolute errors of the reaction energies of the 30 chemical
reactions in the NHTBH38/04 and HTBH38/04 sets,92 calculated using TAO-
B3LYP, TAO-B3LYP-D3, TAO-PBE0, and TAO-BHHLYP (with various θ).
The θ = 0 cases correspond to KS-B3LYP, KS-B3LYP-D3, KS-PBE0, and
KS-BHHLYP, respectively.

To be consistent with the previous definition of the opti-
mal θ value for TAO-DFAs, in this work, the same physi-
cal arguments and numerical investigations are adopted to
define the optimal θ value for a global hybrid functional in
TAO-DFT. Specifically, the performance of various global
hybrid functionals in TAO-DFT (with θ = 0, 5, 10, 15, 20, 25,
30, 35, 40, 45, and 50 mhartree) is examined for the following
single-reference systems:

FIG. 2. Mean absolute errors of the 166 bond lengths in the EXTS set,93

calculated using TAO-B3LYP, TAO-B3LYP-D3, TAO-PBE0, and TAO-
BHHLYP (with various θ). The θ = 0 cases correspond to KS-B3LYP,
KS-B3LYP-D3, KS-PBE0, and KS-BHHLYP, respectively.

TABLE I. Optimal fictitious temperature θ (in mhartree), given by Eq. (43),
for TAO-B3LYP, TAO-B3LYP-D3, TAO-PBE0, and TAO-BHHLYP, where
ax is the fraction of exact exchange.

TAO-B3LYP TAO-B3LYP-D3 TAO-PBE0 TAO-BHHLYP

ax 1/5 1/5 1/4 1/2
θ 17.4 17.4 20 33
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TABLE II. Statistical errors (in kcal/mol) of the reaction energies of the 30 chemical reactions in the NHTBH38/04
and HTBH38/04 sets,92 calculated using TAO-B3LYP, TAO-B3LYP-D3, TAO-PBE0, and TAO-BHHLYP (with
the optimal θ values given in Table I). The θ = 0 cases correspond to KS-B3LYP, KS-B3LYP-D3, KS-PBE0, and
KS-BHHLYP, respectively.

KS-DFT TAO-DFT

B3LYP B3LYP-D3 PBE0 BHHLYP B3LYP B3LYP-D3 PBE0 BHHLYP

MSE −0.23 −0.27 −0.03 −1.25 −0.66 −0.70 −0.41 −1.76
MAE 2.01 1.95 2.41 3.63 2.33 2.36 2.63 3.95
rms 2.66 2.61 3.35 4.72 3.05 3.07 3.69 5.00
Max(−) −7.38 −7.41 −7.11 −14.00 −8.44 −8.46 −8.40 −14.21
Max(+) 4.46 4.13 10.20 7.63 4.34 4.01 10.52 6.55

TABLE III. Statistical errors (in Å) of the 166 bond lengths in the EXTS set,93 calculated using TAO-B3LYP,
TAO-B3LYP-D3, TAO-PBE0, and TAO-BHHLYP (with the optimal θ values given in Table I). The θ = 0 cases
correspond to KS-B3LYP, KS-B3LYP-D3, KS-PBE0, and KS-BHHLYP, respectively.

KS-DFT TAO-DFT

B3LYP B3LYP-D3 PBE0 BHHLYP B3LYP B3LYP-D3 PBE0 BHHLYP

MSE 0.003 0.003 −0.002 −0.012 0.003 0.003 −0.002 −0.014
MAE 0.008 0.008 0.008 0.013 0.008 0.008 0.008 0.015
rms 0.013 0.013 0.012 0.017 0.013 0.014 0.013 0.019
Max(−) −0.078 −0.078 −0.082 −0.090 −0.080 −0.080 −0.085 −0.095
Max(+) 0.065 0.065 0.051 0.025 0.063 0.063 0.049 0.035

TABLE IV. Statistical errors (in kcal/mol) of the ωB97 training set,32 calculated using TAO-B3LYP, TAO-B3LYP-D3, TAO-PBE0, and TAO-BHHLYP (with
the optimal θ values given in Table I). The θ = 0 cases correspond to KS-B3LYP, KS-B3LYP-D3, KS-PBE0, and KS-BHHLYP, respectively.

KS-DFT TAO-DFT

System Error B3LYP B3LYP-D3 PBE0 BHHLYP B3LYP B3LYP-D3 PBE0 BHHLYP

G3/99 MSE −4.30 −1.99 3.94 −29.55 0.90 3.21 11.48 −11.32
(223) MAE 5.46 3.64 6.28 29.68 5.25 6.80 13.34 12.59

rms 7.34 5.23 8.65 34.13 6.97 8.31 17.16 16.62

IP MSE 2.18 2.17 −0.13 −1.72 0.25 0.24 −2.34 −5.66
(40) MAE 3.68 3.69 3.33 4.44 4.25 4.26 4.37 7.04

rms 4.81 4.81 3.98 5.47 5.30 5.31 5.27 8.19

EA MSE 1.71 1.71 −1.07 −4.79 −1.02 −1.02 −4.30 −9.98
(25) MAE 2.38 2.39 3.10 5.97 3.48 3.49 4.63 10.21

rms 3.27 3.29 3.53 6.84 4.50 4.52 5.42 11.38

PA MSE −0.77 −0.66 0.18 −0.12 0.14 0.26 1.25 1.75
(8) MAE 1.16 1.07 1.14 1.55 0.91 1.01 1.42 2.02

rms 1.36 1.33 1.61 1.78 1.21 1.27 2.03 2.63

NHTBH MSE −4.57 −5.09 −3.13 0.52 −4.88 −5.39 −3.53 −0.51
(38) MAE 4.69 5.19 3.63 2.21 5.08 5.56 4.18 2.75

rms 5.71 6.14 4.63 2.93 6.02 6.49 5.10 3.29

HTBH MSE −4.48 −5.12 −4.60 0.58 −5.20 −5.84 −5.55 −1.43
(38) MAE 4.56 5.14 4.60 2.48 5.20 5.84 5.55 2.40

rms 5.10 5.62 4.88 3.11 5.79 6.34 5.80 3.15

S22 MSE 3.95 −0.02 2.50 2.98 2.74 −1.22 1.10 0.18
(22) MAE 3.95 0.43 2.52 3.01 2.76 1.22 1.49 1.42

rms 5.17 0.59 3.62 4.22 3.98 1.37 2.40 1.98

Total MSE −2.77 −1.80 1.55 −16.93 −0.34 0.63 5.20 −7.76
(394) MAE 4.75 3.63 5.05 18.28 4.79 5.69 9.34 9.11

rms 6.38 5.03 7.06 25.85 6.27 7.17 13.33 13.18
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• the reaction energies of the 30 chemical reactions in the
NHTBH38/04 and HTBH38/04 sets,92

• the 166 equilibrium geometries of the equilibrium
experimental test set (EXTS).93

The optimal θ value for a global hybrid functional in TAO-
DFT is defined as the largest θ value for which the performance
of the global hybrid functional in TAO-DFT (with this θ) and
the corresponding global hybrid functional in KS-DFT (i.e.,
the θ = 0 case) is similar for the aforementioned systems.

For the choice of global hybrid functionals, we adopt the
following four popular functionals (see Eq. (30)):

• B3LYP:24,25 ax = 1/5, EDFA
x = 0.10 ELDA

x + 0.90 EB88
x ,

EDFA
c = 0.19 EVWN1RPA

c + 0.81 ELYP
c ,

• B3LYP-D3:38 B3LYP with the -D3 dispersion correc-
tions (sr ,6 = 1.261 and s8 = 1.703),
• PBE0:28,29 ax = 1/4, EDFA

x = EPBE
x , EDFA

c = EPBE
c ,

• BHHLYP:23 ax = 1/2, EDFA
x = EB88

x , EDFA
c = ELYP

c ,

where ELDA
x is the LDA exchange energy,7 EB88

x is the
B88 exchange energy,9 EPBE

x is the PBE exchange energy,11

EVWN1RPA
c is the VWN formula 1 RPA local correlation

energy,94 ELYP
c is the LYP correlation energy,10 and EPBE

c is the
PBE correlation energy.11 Note that sr ,6 and s8 are the param-
eters controlling the strength of the -D3 dispersion corrections
(see Eq. (3) of Ref. 38).

Besides, we adopt the following θ-dependent energy
functionals (see Eqs. (30) and (31)):

• EDFA
θ = ELDA

θ : given by Eq. (16) with ALDA,θ
s [ρ]87 (also

see Eq. (37) of Ref. 20).
• EDFA

x,θ = ELDA
x,θ : given by Eq. (27) with FLDA,θ

x [ρ]95 (also
see Eq. (40)).

For completeness of this work, FLDA,θ
x [ρ] (in its spin-

unpolarized form), which is the LDA for Fθ
x [ρ], is explicitly

given here,

FLDA,θ
x [ρ] =

∫
f LDA,θ
x (r)dr, (40)

where f LDA,θ
x (r) ≡ −(3/π)1/3ρ4/3(r)g(t), t ≡ 2θ/(3π2ρ(r))

2/3
,

and g(t) is a parametrized function,

g(t) =
0.75 + 3.043 63 t2 − 0.092 270 t3 + 1.703 50 t4

1 + 8.310 51 t2 + 5.1105 t4
× tanh(1/t). (41)

FIG. 3. Potential energy curves (in relative energy) for the ground state of H2, calculated using spin-restricted (a) TAO-B3LYP, (b) TAO-B3LYP-D3, (c)
TAO-PBE0, and (d) TAO-BHHLYP (with various θ). The θ = 0 cases correspond to spin-restricted (a) KS-B3LYP, (b) KS-B3LYP-D3, (c) KS-PBE0, and (d)
KS-BHHLYP, respectively. The exact curve is calculated using the CCSD theory. The zeros of energy are set at the respective spin-unrestricted dissociation
limits.
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The θ = 0 case, FLDA,θ=0
x [ρ], is the same as the LDA exchange

energy functional,7

FLDA,θ=0
x [ρ] = ELDA

x [ρ] = −
3
4

(
3
π

)1/3 ∫
ρ4/3(r)dr. (42)

For consistency, in this work, we evaluate the functional
derivative of FLDA,θ

x [ρ] based on Eq. (40), instead of adopting
the independent parametrization given by Eq. (3.3) of Ref. 95.

The B3LYP, B3LYP-D3, PBE0, and BHHLYP global
hybrid functionals (together with ELDA

θ and ELDA
x,θ ) in

TAO-DFT are denoted as TAO-B3LYP, TAO-B3LYP-D3,
TAO-PBE0, and TAO-BHHLYP, respectively, which reduce to
KS-B3LYP, KS-B3LYP-D3, KS-PBE0, and KS-BHHLYP,
respectively (i.e., the corresponding global hybrid functionals
in KS-DFT) at θ = 0.

All calculations are performed with a development ver-
sion of Q-Chem 4.3.96 Spin-restricted theory is employed for
singlet states and spin-unrestricted theory for others, unless
noted otherwise. For the interaction energies of the weakly
bound systems, the counterpoise correction97 is adopted to
reduce the basis set superposition error (BSSE). Results are
calculated using the 6-311++G(3df,3pd) basis set with the fine
grid EML(75,302), consisting of 75 Euler-Maclaurin radial
grid points98 and 302 Lebedev angular grid points,99 unless
noted otherwise. The error for each entry is defined as (error
= theoretical value − reference value). The notation adopted

for characterizing statistical errors is as follows: mean signed
errors (MSEs), mean absolute errors (MAEs), root-mean-
square (rms) errors, maximum negative errors (Max(−)), and
maximum positive errors (Max(+)).

The reaction energies of the 30 chemical reactions with
different barrier heights for the forward and backward direc-
tions in the NHTBH38/04 and HTBH38/04 sets92 are adopted
to assess the performance of TAO-B3LYP, TAO-B3LYP-
D3, TAO-PBE0, and TAO-BHHLYP (with various θ val-
ues). As shown in Figure 1, the global hybrid functionals in
TAO-DFT (with sufficiently small θ values) perform similarly
to the corresponding global hybrid functionals in KS-DFT
(i.e., the θ = 0 cases). Unsurprisingly, these systems do not
have significant amounts of static correlation, and hence, the
exact NOONs should be close to either 0 or 1, which can
be properly simulated by the TOONs of TAO-B3LYP, TAO-
B3LYP-D3, TAO-PBE0, and TAO-BHHLYP (with sufficiently
small θ values).

An accurate and efficient prediction of molecular geome-
tries can be essential for practical applications. Geometry opti-
mizations for TAO-B3LYP, TAO-B3LYP-D3, TAO-PBE0, and
TAO-BHHLYP (with various θ values) are performed using
analytical nuclear gradients on the equilibrium experimental
test set (EXTS),93 which contains 166 symmetry unique exper-
imental bond lengths for small to medium sized molecules. As
shown in Figure 2, the global hybrid functionals in TAO-DFT

FIG. 4. Occupation numbers of the 1σg orbital for the ground state of H2 as a function of the internuclear distance R, calculated using spin-restricted (a) TAO-
B3LYP/TAO-B3LYP-D3, (b) TAO-PBE0, and (c) TAO-BHHLYP (with various θ). The θ = 0 cases correspond to spin-restricted (a) KS-B3LYP/KS-B3LYP-D3,
(b) KS-PBE0, and (c) KS-BHHLYP, respectively. The reference data are the FCI NOONs.50
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(with sufficiently small θ values) have similar performance to
the corresponding global hybrid functionals in KS-DFT (i.e.,
the θ = 0 cases). As the ground states of these molecules near
their equilibrium geometries do not exhibit significant multi-
reference character, the exact NOONs are close to either 0 or
1, which can be well described by the TOONs of the global
hybrid functionals in TAO-DFT (with sufficiently small θ
values).

In this work, the optimal θ value for a global hybrid func-
tional in TAO-DFT is defined as the largest θ value for which
the difference between the MAE of the global hybrid func-
tional in TAO-DFT (with this θ) and that of the corresponding
global hybrid functional in KS-DFT (i.e., the θ = 0 case) is less
than 0.5 kcal/mol for the 30 reaction energies, and less than
0.003 Å for the 166 bond lengths. On the basis of our numer-
ical investigations, the optimal θ value is estimated to be 15
mhartree for TAO-B3LYP and TAO-B3LYP-D3, 20 mhartree
for TAO-PBE0, and 35 mhartree for TAO-BHHLYP. Although
only four global hybrid functionals in TAO-DFT are examined
in this work, some common characteristics are summarized as
follows. Since the dispersion corrections have no effects on
the TAO orbitals and their occupation numbers, the optimal θ
value for a global hybrid functional with and without the dis-
persion corrections in TAO-DFT is the same. In addition, as
previously mentioned, the choice of DFA functionals (e.g.,

EDFA
x , EDFA

c , EDFA
θ , and EDFA

x,θ ) has insignificant effects

on the optimal θ values.21 Accordingly, we expect that
the optimal θ value for a global hybrid functional in
TAO-DFT should be mainly dependent on the fraction of exact
exchange ax. A global hybrid functional with a larger frac-
tion of exact exchange gives larger orbital energy gaps,34,35

requiring a larger θ value to yield a similar distribution of
TOONs.

Here, based on a simple linear interpolation between the
optimal θ = 7 mhartree for TAO-DFAs20,21 (ax = 0) and the
optimal θ = 20 mhartree for TAO-PBE0 (ax = 1/4), the optimal
θ (in mhatree)

θ = 7 + 52 ax (43)

for a global hybrid functional in TAO-DFT (see Eq. (30))
is expressed as a linear function of the fraction of exact
exchange ax. As shown in Table I, the optimal θ value, given by
Eq. (43), is 17.4 mhartree for TAO-B3LYP and TAO-B3LYP-
D3, 20 mhartree for TAO-PBE0, and 33 mhartree for TAO-
BHHLYP, matching well with the aforementioned optimal θ
values. Therefore, the optimal θ value for a global hybrid
functional with 0%–50% exact exchange (i.e., most of the
existing global hybrid functionals) in TAO-DFT should be reli-
ably given by Eq. (43), while the optimal θ value for a global

FIG. 5. Potential energy curves (in relative energy) for the ground state of N2, calculated using spin-restricted (a) TAO-B3LYP, (b) TAO-B3LYP-D3, (c)
TAO-PBE0, and (d) TAO-BHHLYP (with various θ). The θ = 0 cases correspond to spin-restricted (a) KS-B3LYP, (b) KS-B3LYP-D3, (c) KS-PBE0, and (d)
KS-BHHLYP, respectively. The reference data (−228.3 (kcal/mol) at R = 1.098 Å (i.e., at the equilibrium geometry)) are the experimental results.104 The zeros
of energy are set at the respective spin-unrestricted dissociation limits.
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hybrid functional with 50%–100% exact exchange in TAO-
DFT may also be reasonably given by Eq. (43).

The 30 reaction energies (see Table II) and 166 bond
lengths (see Table III) calculated using TAO-B3LYP, TAO-
B3LYP-D3, TAO-PBE0, and TAO-BHHLYP (with the opti-
mal θ values given in Table I) are indeed similar to those
calculated using KS-B3LYP, KS-B3LYP-D3, KS-PBE0, and
KS-BHHLYP, respectively (see the supplementary material).
In addition, relative to TAO-DFAs (see Tables II and III of
Ref. 21), the global hybrid functionals in TAO-DFT are supe-
rior in performance for the 30 reaction energies and 166 bond
lengths.

B. Results and discussion for the test sets

Here, we examine the performance of TAO-B3LYP, TAO-
B3LYP-D3, TAO-PBE0, and TAO-BHHLYP (with the optimal
θ values given in Table I, unless noted otherwise) on vari-
ous test sets, including both single- and multi-reference sys-
tems. The results are compared with those obtained from KS-
B3LYP, KS-B3LYP-D3, KS-PBE0, and KS-BHHLYP (i.e., the
corresponding global hybrid functionals in KS-DFT).

1. ωB97 training set

The ωB97 training set32 contains different types of
databases, such as

• the 223 atomization energies (AEs) of the G3/99 set,100

• the 40 ionization potentials (IPs), 25 electron affinities
(EAs), and 8 proton affinities (PAs) of the G2-1 set,101

• the 76 barrier heights (BHs) of the NHTBH38/04 and
HTBH38/04 sets,92

• the 22 noncovalent interactions of the S22 set.102

Since these systems do not exhibit significant static correla-
tion, TAO-B3LYP, TAO-B3LYP-D3, TAO-PBE0, and TAO-
BHHLYP perform comparably to KS-B3LYP, KS-B3LYP-D3,
KS-PBE0, and KS-BHHLYP, respectively (see Table IV) (see
the supplementary material). In particular, TAO-B3LYP (ax

= 1/5) performs well for thermochemistry, and TAO-BHHLYP
(ax = 1/2) performs well for kinetics. For the noncovalent
interactions of the S22 set, the dispersion corrected func-
tionals, KS-B3LYP-D3 and TAO-B3LYP-D3, perform better
than the other functionals, suggesting that the DFT-D schemes
can be adopted in both KS-DFT and TAO-DFT for an accu-
rate description of noncovalent interactions. Besides, due to
the improved treatment of nonlocal exchange effects, TAO-
B3LYP, TAO-B3LYP-D3, TAO-PBE0, and TAO-BHHLYP are
shown to significantly outperform TAO-DFAs (see Table I of
Ref. 21) for the 223 AEs of the G3/99 set and the 76 BHs of
the NHTBH38/04 and HTBH38/04 sets.

2. Dissociation of H2 and N2

Owing to the presence of strong static correlation ef-
fects, the dissociation of molecular hydrogen H2(a single-bond

FIG. 6. Occupation numbers of the 3σg orbital for the ground state of N2 as a function of the internuclear distance R, calculated using spin-restricted (a) TAO-
B3LYP/TAO-B3LYP-D3, (b) TAO-PBE0, and (c) TAO-BHHLYP (with various θ). The θ = 0 cases correspond to spin-restricted (a) KS-B3LYP/KS-B3LYP-D3,
(b) KS-PBE0, and (c) KS-BHHLYP, respectively. The reference data are the NOONs of the MRCI method.105

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-021704
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-021704
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breaking system) remains very challenging for KS-DFT.
On the basis of the symmetry constraint, the spin-restricted
and spin-unrestricted dissociation energy curves of H2

calculated using the exact theory should be identical.
Accordingly, the difference between the spin-restricted and
spin-unrestricted dissociation limits calculated using an
approximate electronic structure method can be taken as
a quantitative measure of the SCE of the method.12,19

Conventional LDA, GGA, hybrid, and double-hybrid func-
tionals in spin-restricted KS-DFT have been shown to yield
very large SCEs for the dissociation of H2, owing to the
inappropriate treatment of static correlation. By contrast, spin-
restricted TAO-LDA and TAO-GGAs (with a θ between 30
and 50 mhartree) are able to dissociate H2 correctly (yielding
vanishingly small SCEs) to the respective spin-unrestricted
dissociation limits, which is closely related to that the distri-
bution of TOONs (related to the chosen θ) matches reasonably
well with that of NOONs.20,21

To assess the performance of the present method upon
the SCE problems, the potential energy curves (in relative
energy) for the ground state of H2 are calculated using
spin-restricted TAO-B3LYP, TAO-B3LYP-D3, TAO-PBE0,
and TAO-BHHLYP with various θ values (see Figure 3), where
the zeros of energy are set at the respective spin-unrestricted
dissociation limits. The results are compared with the
exact curve calculated using the coupled-cluster theory with

iterative singles and doubles (CCSD),103 which is equivalent
to the FCI method for any two-electron system.50

Near the equilibrium bond length of H2, where the single-
reference character is predominant, the global hybrid func-
tionals in TAO-DFT (with the optimal θ values given in
Table I) perform similarly to the corresponding global hybrid
functionals in KS-DFT (i.e., the θ = 0 cases), matching rea-
sonably well with the exact curve. However, at the disso-
ciation limit, where the multi-reference character becomes
pronounced, they have noticeable SCEs. By contrast, spin-
restricted TAO-B3LYP and TAO-B3LYP-D3 (with a θ between
50 and 70 mhartree), TAO-PBE0 (with a θ between 60 and 80
mhartree), and TAO-BHHLYP (with a θ between 90 and 120
mhartree) can properly dissociate H2 (yielding vanishingly
small SCEs) to the respective spin-unrestricted dissociation
limits.

To examine if this is related to the distribution of TOONs,
we plot the occupation numbers of the 1σg orbital for the
ground state of H2 as a function of the internuclear distance
R, calculated using spin-restricted TAO-B3LYP/TAO-B3LYP-
D3, TAO-PBE0, and TAO-BHHLYP with various θ values (see
Figure 4), where the reference data are the FCI NOONs.50 The
FCI NOON is 1.9643 at R = 0.741 Å (i.e., at the equilibrium
geometry), 1.5162 at R = 2.117 Å, and 1.0000 at R = 7.938
Å. As shown, the 1σg orbital occupation numbers of spin-
restricted TAO-B3LYP/TAO-B3LYP-D3 (with a θ between 50

FIG. 7. Occupation numbers of the 1πux orbital for the ground state of N2 as a function of the internuclear distance R, calculated using spin-restricted (a) TAO-
B3LYP/TAO-B3LYP-D3, (b) TAO-PBE0, and (c) TAO-BHHLYP (with various θ). The θ = 0 cases correspond to spin-restricted (a) KS-B3LYP/KS-B3LYP-D3,
(b) KS-PBE0, and (c) KS-BHHLYP, respectively. The reference data are the NOONs of the MRCI method.105
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and 70 mhartree), TAO-PBE0 (with a θ between 60 and
80 mhartree), and TAO-BHHLYP (with a θ between 90
and 120 mhartree) match reasonably well with the FCI
NOONs, which is closely related to the vanishingly small
SCEs of these global hybrid functionals in TAO-DFT (with
the same θ values). This highlights the importance of
adopting a θ related to the distribution of NOONs in
TAO-DFT.

Similar results are also found for N2 dissociation (a triple-
bond breaking system), where experimental results are also
presented.104 As shown in Figure 5, spin-restricted TAO-
B3LYP and TAO-B3LYP-D3 (with a θ between 50 and 70
mhartree), TAO-PBE0 (with a θ between 60 and 80 mhartree),
and TAO-BHHLYP (with a θ between 90 and 120 mhartree)
can dissociate N2 adequately (yielding very small SCEs) to
the respective spin-unrestricted dissociation limits, which is
closely correlated with the fact that the occupation numbers
of the 3σg (see Figure 6) and 1πux (see Figure 7) orbitals
for the ground state of N2 as functions of the internuclear
distance R, calculated using these global hybrid function-
als in TAO-DFT (with the same θ values), match reason-
ably well with the corresponding NOONs of multi-reference
configuration interaction (MRCI) method (i.e., the reference
data).105 By contrast, while the global hybrid functionals
in TAO-DFT (with the optimal θ values given in Table I)

perform comparably to the corresponding global hybrid func-

tionals in KS-DFT (i.e., the θ = 0 cases) near the equilibrium
bond length of N2, they yield considerable SCEs at the dissoci-
ation limit (as the TOONs do not match well with the accurate
MRCI NOONs). This again shows the significance of adopt-
ing a θ related to the distribution of NOONs in TAO-DFT.

3. Twisted ethylene

The torsion of ethylene (C2H4) remains very difficult
for KS-DFT due to the presence of strong static correlation
effects. The π (1b2) and π∗ (2b2) orbitals in ethylene should
be degenerate when the HCCH torsion angle is 90◦. However,
spin-restricted KS-DFT cannot properly describe such degen-
eracy, yielding a torsion potential with an unphysical cusp and
a too high barrier.

To investigate if spin-restricted TAO-DFT alleviates these
problems, we plot the torsion potential energy curves (in rel-
ative energy) for the ground state of twisted ethylene as a
function of the HCCH torsion angle, calculated using spin-
restricted TAO-B3LYP, TAO-B3LYP-D3, TAO-PBE0, and
TAO-BHHLYP with various θ values (see Figure 8), where
the zeros of energy are set at the respective minimum ener-
gies. The experimental geometry of C2H4 (RCC = 1.339 Å,
RCH = 1.086 Å, and ∠HCH = 117.6◦)106 is adopted in the cal-
culations. Spin-restricted TAO-B3LYP and TAO-B3LYP-D3

FIG. 8. Torsion potential energy curves (in relative energy) for the ground state of twisted ethylene as a function of the HCCH torsion angle, calculated using
spin-restricted (a) TAO-B3LYP, (b) TAO-B3LYP-D3, (c) TAO-PBE0, and (d) TAO-BHHLYP (with various θ). The θ = 0 cases correspond to spin-restricted (a)
KS-B3LYP, (b) KS-B3LYP-D3, (c) KS-PBE0, and (d) KS-BHHLYP, respectively. The reference data are the CASPT2 results.107 The zeros of energy are set at
the respective minimum energies.
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FIG. 9. Occupation numbers of the π (1b2) orbital for the ground state of twisted ethylene as a function of the HCCH torsion angle, calculated using spin-
restricted (a) TAO-B3LYP/TAO-B3LYP-D3, (b) TAO-PBE0, and (c) TAO-BHHLYP (with various θ). The θ = 0 cases correspond to spin-restricted (a)
KS-B3LYP/KS-B3LYP-D3, (b) KS-PBE0, and (c) KS-BHHLYP, respectively. The reference data are the half-projected NOONs of the CASSCF method
(HPNO-CAS).108

(with θ = 30 mhartree), TAO-PBE0 (with θ = 40 mhartree), and
TAO-BHHLYP (with θ = 60 mhartree) can remove the unphys-
ical cusp, and the corresponding torsion barriers are close to
the torsion barrier of complete-active-space second-order per-
turbation theory (CASPT2), that is, 65.2 (kcal/mol).107 We
note, however, that the torsion barrier of TAO-DFT can be too
low for a very large θ value, and too high for a very small θ
value. While the global hybrid functionals in TAO-DFT (with
the optimal θ values given in Table I) consistently outper-
form the corresponding global hybrid functionals in KS-DFT
(i.e., the θ = 0 cases), the predicted torsion barriers remain
too high. Therefore, this indicates a limited applicability of
TAO-DFT in its present form, showing the importance of
finding an efficient way to estimate the appropriate θ value.

To assess if this is also related to the distribution of
TOONs, we plot the occupation numbers of the π (1b2) orbital

FIG. 10. Pentacene, containing 5 linearly fused benzene rings, is designated
as 5-acene.

for the ground state of twisted ethylene as a function of the
HCCH torsion angle, calculated using spin-restricted TAO-
B3LYP/TAO-B3LYP-D3, TAO-PBE0, and TAO-BHHLYP
with various θ values (see Figure 9), where the reference

FIG. 11. Singlet-triplet energy gap as a function of the acene length, cal-
culated using various hybrid functionals in spin-unrestricted KS-DFT and
TAO-DFT (with the optimal θ values given in Table I). The experimen-
tal data (uncorrected for zero-point vibrations, thermal vibrations, etc.) are
taken from Refs. 109–112, the DMRG data are taken from Ref. 115, and the
CCSD(T)/CBS data are taken from Ref. 120.
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data are the half-projected NOONs of complete-active-space
self-consistent field (CASSCF) method.108 As shown, the
π (1b2) orbital occupation numbers of spin-restricted TAO-
B3LYP/TAO-B3LYP-D3 (with θ = 30 mhartree), TAO-PBE0
(with θ = 40 mhartree), and TAO-BHHLYP (with θ = 60
mhartree) match reasonably well with the accurate NOONs,
which is closely related to the accurate torsion potential
energy curves obtained from these global hybrid functionals in
TAO-DFT (with the same θ values). Note that the π (1b2)
orbital occupation numbers of spin-restricted TAO-BHHLYP
(with a θ between 0 and 33 mhartree) are not correctly reduced
to unity (singly occupied) near 90◦, yielding an unphysical
cusp in the torsion potential. Again, this highlights the impor-
tance of adopting a θ related to the distribution of NOONs in
TAO-DFT.

4. Electronic properties of linear acenes

Recently, linear n-acenes (C4n+2H2n+4), containing n lin-
early fused benzene rings (see Figure 10), have attracted con-
siderable interest in the research community owing to their
promising electronic properties.20,21,45–48,109–124 The elec-
tronic properties of n-acenes have been found to be highly
dependent on the chain lengths. Although there has been a
keen interest in n-acenes, it remains very challenging to study
the electronic properties of long-chain n-acenes from both
experimental and theoretical approaches. On the experimental
side, the synthetic procedures have been extremely difficult,
and have not succeeded in synthesizing long-chain n-acenes,
which may be attributed to their highly reactive nature. Con-
sequently, the experimental singlet-triplet energy gaps (ST
gaps) of n-acenes are only available up to pentacene.109–112

On the theoretical side, since n-acenes belong to conjugated
π-orbital systems, high-level ab initio multi-reference meth-
ods, such as the density matrix renormalization group (DMRG)
algorithm,115,122 the variational two-electron reduced density
matrix (2-RDM) method,121,124 and other high-level meth-
ods,114,118–120 are typically required to capture the essential
strong static correlation effects. Nevertheless, as the number
of electrons in n-acene, 26n + 16, quickly increases with the
increase of n, there have been very scarce studies on the elec-
tronic properties of long-chain n-acenes using multi-reference
methods due to their prohibitively high cost.

FIG. 12. Same as Figure 11, but for the larger acenes.

FIG. 13. Vertical ionization potential for the lowest singlet state of n-acene
as a function of the acene length, calculated using various hybrid functionals
in spin-unrestricted TAO-DFT (with the optimal θ values given in Table I).
The experimental data are taken from the compilation in Ref. 116, and the
CCSD(T)/CBS data are taken from Ref. 114.

On the other hand, despite their computational efficiency,
conventional LDA, GGA, hybrid, and double-hybrid func-
tionals in KS-DFT can perform very poorly for systems
with strong static correlation effects,12,19–22 and hence, their
predicted electronic properties of n-acenes can be problem-
atic.20,21,45,115,122 By contrast, TAO-LDA and TAO-GGAs
(with θ = 7 mhartree) were recently applied to study the
electronic properties of n-acenes,20,21,45 and the predicted
electronic properties were shown to be in good agreement with
the existing experimental and high-level ab initio data.

To examine how global hybrid functionals in TAO-DFT
improve upon the corresponding global hybrid functionals in
KS-DFT here, spin-unrestricted calculations, employing TAO-
B3LYP, TAO-B3LYP-D3, TAO-PBE0, and TAO-BHHLYP
(with the optimal θ values given in Table I), are performed
using the 6-31G(d) basis set (up to 30-acene), for the low-
est singlet and triplet energies on the respective geometries
that were fully optimized at the same level of theory. The

FIG. 14. Vertical electron affinity for the lowest singlet state of n-acene as
a function of the acene length, calculated using various hybrid functionals
in spin-unrestricted TAO-DFT (with the optimal θ values given in Table I).
The experimental data are taken from the compilation in Ref. 116, and the
CCSD(T)/CBS data are taken from Ref. 118.
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FIG. 15. Fundamental gap for the lowest singlet state of n-acene as a function
of the acene length, calculated using various hybrid functionals in spin-
unrestricted TAO-DFT (with the optimal θ values given in Table I). The experi-
mental data are taken from the compilation in Ref. 116, and the CCSD(T)/CBS
data are taken from Refs. 114 and 118.

ST gap of n-acene is calculated as (ET − ES), the energy dif-
ference between the lowest triplet (T) and singlet (S) states
of n-acene. The results are compared with those calculated
using the corresponding global hybrid functionals in spin-
unrestricted KS-DFT. Besides, to compare with the ST gaps
obtained from high-level ab initio methods, the DMRG data
are taken from Ref. 115, and the CCSD(T)/CBS data (calcu-
lated using the CCSD theory with perturbative treatment of
triple substitutions at the complete basis set limit) are taken
from Ref. 120.

As shown in Figures 11 and 12, in contrast to the accu-
rate DMRG and CCSD(T)/CBS data, the ST gaps calcu-
lated using spin-unrestricted KS-DFT unexpectedly increase
beyond 9-acene for KS-B3LYP and KS-B3LYP-D3, 8-acene
for KS-PBE0, and 7-acene for KS-BHHLYP, due to unphysical
symmetry-breaking effects (see the supplementary material).
By contrast, the ST gaps calculated using spin-unrestricted
TAO-B3LYP, TAO-B3LYP-D3, and TAO-PBE0 decrease
monotonically as the size of the acene increases, which is

FIG. 16. Symmetrized von Neumann entropy for the lowest singlet state of
n-acene as a function of the acene length, calculated using various hybrid
functionals in spin-restricted TAO-DFT (with the optimal θ values given in
Table I).

in good agreement with the existing experimental109–112 and
high-level ab initio115,120 data. While the ST gaps calculated
using spin-unrestricted TAO-BHHLYP unexpectedly increase
beyond 23-acene, the deviation remains very small (within
0.02 kcal/mol). Similar to previous findings,20,21,45,115,122,124

the ground states of n-acenes are singlets for all the chain
lengths investigated.

The spin-restricted and spin-unrestricted energies for the
lowest singlet state of n-acene, calculated using the exact
theory, should be identical due to the symmetry constraint.
To examine this property, spin-restricted TAO-DFT calcu-
lations are also performed for the lowest singlet energies
on the respective geometries that were fully optimized at
the same level. For TAO-B3LYP/TAO-B3LYP-D3, the spin-
unrestricted and spin-restricted calculations are found to essen-
tially yield the same energy value for the lowest singlet state of
n-acene (i.e., no unphysical symmetry-breaking effects). For
TAO-PBE0 and TAO-BHHLYP, while symmetry-breaking
effects occur, the maximum deviation between the spin-
unrestricted and spin-restricted energy values remains small
(within 0.5 kcal/mol).

At the optimized geometry of the lowest singlet state
(i.e., the ground state) of n-acene (containing N electrons),
the vertical ionization potential IPv = EN−1 − EN , vertical
electron affinity EAv = EN − EN+1, and fundamental gap
Eg = IPv − EAv = EN+1 + EN−1 − 2EN are calculated using
multiple energy-difference methods, where EN is the total
energy of the N-electron system. With increasing chain
length, IPv (see Figure 13) monotonically decreases, EAv (see
Figure 14) monotonically increases, and hence Eg (see
Figure 15) monotonically decreases. The calculated IPv , EAv ,
and Eg values are in good agreement with the available exper-
imental116 and high-level ab initio114,118 data. Similar to our
previous findings,21 Eg is rather insensitive to the choice of
the XC functionals in TAO-DFT.

Since the TOONs are closely related to the NOONs, to
investigate the possible polyradical character of n-acene, we
compute the symmetrized von Neumann entropy (e.g., see
Eq. (9) of Ref. 123),

SvN = −
1
2

α,β∑
σ

∞∑
i=1

{
fiσ ln( fiσ) + (1 − fiσ) ln(1 − fiσ)

}
(44)

for the lowest singlet state of n-acene as a function of the
chain length, using spin-restricted TAO-DFT. Note that SvN

= − 1
2θEθS [{fiα}, {fiβ }], which can be readily obtained in TAO-

DFT, provides insignificant contributions for single-reference
systems, and quickly increases with the number of fraction-
ally occupied orbitals (i.e., active orbitals) for multi-reference
systems. As shown in Figure 16, SvN increases monotonically
with the chain length.

To understand the reasons of increasing SvN with the
chain length, we plot the active orbital occupation numbers
for the lowest singlet state of n-acene as a function of the
chain length, calculated using spin-restricted TAO-B3LYP,
TAO-B3LYP-D3, TAO-PBE0, and TAO-BHHLYP (see
Figure 17). Here, the highest occupied molecular orbital
(HOMO) is the (N /2)th orbital, and the lowest unoccupied
molecular orbital (LUMO) is the (N /2 + 1)th orbital, with

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-021704
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FIG. 17. Active orbital occupation numbers (HOMO−5, . . ., HOMO−1, HOMO, LUMO, LUMO+1, . . ., and LUMO+5) for the lowest singlet state of n-acene
as a function of the acene length, calculated using spin-restricted (a) TAO-B3LYP (with θ = 17.4 mhartree), (b) TAO-B3LYP-D3 (with θ = 17.4 mhartree), (c)
TAO-PBE0 (with θ = 20 mhartree), and (d) TAO-BHHLYP (with θ = 33 mhartree).

N being the number of electrons in n-acene. For brevity,
HOMO, HOMO−1, . . ., and HOMO−5 are denoted as H,
H−1, . . ., and H−5, respectively, while LUMO, LUMO+1, . . .,
and LUMO+5, are denoted as L, L+1, . . ., and L+5, respec-
tively. As shown, the number of fractionally occupied orbitals
increases with the increase of chain length, supporting the pre-
vious findings that longer acenes should possess increasing
polyradical character.20,21,45,115,117,122,123 However, in contrast
to some previous studies,115,123 the active orbital occupation
numbers display a curve crossing behavior in the approach to
unity (singly occupied) with the increase of chain length. For
examples, the orbital with HOMO (LUMO) character in short
acenes may become the LUMO (HOMO) in long acenes. This
curve crossing behavior was first observed from our TAO-LDA
calculations,20,45 and was recently confirmed by highly accu-
rate 2-RDM calculations.124 This is a very encouraging result,
showing the value of TAO-DFT.

V. CONCLUSIONS

In summary, we have proposed the global and range-
separated hybrid schemes in TAO-DFT, incorporating the
exact exchange into TAO-DFAs. For a global hybrid functional
in TAO-DFT, a linear relationship between the optimal ficti-
tious temperature θ and the fraction of exact exchange ax has
been established. Global hybrid functionals in TAO-DFT (with

the optimal θ values) have been shown to consistently improve
upon the corresponding global hybrid functionals in KS-DFT
for multi-reference systems, while performing similarly to
the corresponding global hybrid functionals in KS-DFT for
single-reference systems. In addition, the inclusion of disper-
sion corrections in hybrid TAO-DFT has been shown to yield
an efficient and reasonably accurate description of noncovalent
interactions. Relative to TAO-DFAs, global hybrid function-
als in TAO-DFT are generally superior in performance for a
broad range of applications, such as thermochemistry, kinet-
ics, reaction energies, and optimized geometries. Owing to
the computational efficiency, four global hybrid functionals
in TAO-DFT (with the optimal θ values) have been applied
to study the electronic properties of linear acenes, includ-
ing the ST gaps, vertical ionization potentials, vertical elec-
tron affinities, fundamental gaps, symmetrized von Neumann
entropy, and active orbital occupation numbers. The ground
states of acenes have been found to be singlets for all the
cases examined. With increasing acene length, the ST gaps,
vertical ionization potentials, and fundamental gaps decrease
monotonically, while the vertical electron affinities and sym-
metrized von Neumann entropy increase monotonically. Long
acenes should possess singlet polyradical character in their
ground states.

Nonetheless, for a few multi-reference systems (e.g., the
dissociation of H2 and N2 and twisted ethylene), global hybrid
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functionals in TAO-DFT (with the optimal θ values) may not
provide a sufficient amount of static correlation energy. Since
a θ related to the distribution of NOONs should improve the
performance of global hybrid functionals in TAO-DFT for a
wide variety of systems, work in this direction is in progress.
Besides, as the development of a possible range-separated
hybrid functional in TAO-DFT would require EDFA

x,θ (I) (see
Eq. (38)), which is mostly unavailable, we plan to pursue this
in the future.

SUPPLEMENTARY MATERIAL

See supplementary material for further numerical results.
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