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The van der Waals interactions in rare-gas
dimers: the role of interparticle interactions

Yu-Ting Chen,a Kerwin Huia and Jeng-Da Chai*ab

We investigate the potential energy curves of rare-gas dimers with various ranges and strengths of

interparticle interactions (nuclear–electron, electron–electron, and nuclear–nuclear interactions). Our

investigation is based on the highly accurate coupled-cluster theory associated with those interparticle

interactions. For comparison, the performances of the corresponding Hartree–Fock theory, second-

order Møller–Plesset perturbation theory, and density functional theory are also investigated. Our results

reveal that when the interparticle interactions retain the long-range Coulomb tails, the nature of van der

Waals interactions in the rare-gas dimers remains similar. By contrast, when the interparticle interactions

are sufficiently short-range, the conventional van der Waals interactions in the rare-gas dimers

completely disappear, yielding purely repulsive potential energy curves.

I. Introduction
The van der Waals (vdW) interactions1–5 are omnipresent in
materials and biological systems. These interactions are of
fundamental importance in numerous fields, involving molecular
and condensed matter physics, supramolecular chemistry,
structural biology, surface science, and nanoscience. While
vdW interactions are individually weak (e.g., compared to
covalent bonds or electrostatic interactions between permanent
charges, dipoles, etc.), they are collectively important in the
determination of the structure, stability, and function of a vast
variety of systems, such as the interaction between graphene
layers, the self-assembly of functional nanomaterials, the structure
of biomacromolecules (e.g., DNA, RNA, and proteins), and the
molecular recognition of proteins.6

In particular, the potential energy curve of a rare-gas dimer
is predominantly determined by the interplay between the
exchange-repulsion energy at short internuclear distances and
the attractive vdW interaction at large internuclear distances,
exhibiting a potential minimum (the vdW minimum) at an
intermediate internuclear distance. The exchange-repulsion
energy arises from the overlap of the electron densities of the
two atoms. On the other hand, the vdW interaction, also known
as London dispersion interaction or induced dipole–induced
dipole interaction, arises from the Coulomb correlation of
electron density fluctuations in the two well-separated atoms.
The potential energy curve can be conveniently approximated

by the Lennard-Jones (LJ) potential4

VLJðRÞ ¼ 4e
s
R

! "12
$ s

R

! "6# $
; (1)

where R is the internuclear distance, s is the distance at which
the potential is zero, and $e is the minimum of the potential,
which is reached at R = 21/6s. Here the term R$12 models the
exchange-repulsion energy, dominant at short internuclear
distances, while the term R$6 models the attractive vdW inter-
action, dominant at large internuclear distances. Whereas the
attractive term is physically based, the repulsive term has no
theoretical justification (i.e., chosen for computational efficiency).
Note that the exchange-repulsion energy should decay almost
exponentially with the internuclear distance. Nevertheless, due to
its computational simplicity, the LJ potential is widely used in
computer simulations even though more accurate potentials exist.

However, the R$6 dependence of the vdW interaction may
not be applied to macroscopic systems like colloids and bio-
logical membranes. In these systems, the vdW interaction
between two objects immersed in a medium is strongly influenced
by the dielectric properties of the objects and the medium.
Accordingly, the resulting vdW interaction can be very different
from the conventional R$6 expression,2,7,8 and can be completely
repulsive under certain conditions.2,9,10 Several fascinating
phenomena have been discovered in these non-R$6 macroscopic
vdW systems.9–12

Is it possible to create non-R$6 vdW interactions between
rare-gas atoms in vacuum? Conceptually, the types of inter-
particle interactions (nuclear–electron, electron–electron, and
nuclear–nuclear interactions), traditionally given by the Coulomb
interactions, should play a fundamental role in determining the
properties of atoms and molecules. Hence, we expect that non-R$6
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vdW interactions can appear by tuning the effective interparticle
interactions of rare-gas atoms in vacuum. As a proof of concept,
in this work, we address how the nature of vdW interactions in
rare-gas dimers (i.e., the simplest vdW systems) changes with
varying interparticle interactions, using the highly accurate
coupled-cluster theory associated with those interparticle inter-
actions. The rest of this paper is organized as follows. In Section II,
we describe our model systems and computational details. We
compare the results obtained from the coupled-cluster theory with
those obtained from different computational methods, and give
our comments on the connection between this study and a popular
scheme in density functional theory in Section III. Our conclusions
are given in Section IV.

II. Model systems and computational
details
For a system consisting of M nuclei and N electrons in the
Born–Oppenheimer approximation (as the nuclei are much
heavier than the electrons), the electronic Hamiltonian4

He ¼ $
!h2

2me

XN

i¼1
ri

2 $ e2

4pe0

XN

i¼1

XM

A¼1
ZAf riAð Þ

þ e2
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j4 i

f rij
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(2)

is the sum of the kinetic energy of electrons, the nuclear–
electron attraction energy, and the electron–electron repulsion
energy, respectively. Here ZA is the atomic number of nucleus A,
me is the mass of an electron, $e is the charge of an electron,
riA = |ri $ RA| is the distance between electron i and nucleus A,
rij = |ri $ rj| is the distance between electrons i and j, and f (r) is
the interparticle interaction operator with r being the inter-
particle distance. The electronic Schrödinger equation

HeCe = EeCe (3)

is solved for the electronic energy Ee and the electronic wave-
function Ce, which describes the motion of the electrons for
fixed nuclear positions. The total energy

Etotal ¼ Ee þ
e2

4pe0

XM

A¼1

XM

B4A

ZAZBf RABð Þ (4)

is obtained by adding the nuclear–nuclear repulsion energy to
the electronic energy, where RAB = |RA $ RB| is the distance
between nuclei A and B. One can obtain Etotal as a function of
the nuclear positions, commonly known as the potential energy
curve (or surface).

Traditionally, f (r) is given by the Coulomb interaction 1/r.
However, in this work, we consider two types of f (r): erf(or)/r
and erfc(or)/r, which are generated by splitting the Coulomb
interaction into two components.13,14 The former (the erf
interaction) retains the long-range Coulomb tail without the
singularity at r = 0, while the latter (the erfc interaction) is a
short-range interaction with a singularity at r = 0. Physically,
1/o specifies the distance beyond which erf(or)/r approaches

1/r and the distance beyond which erfc(or)/r becomes insigni-
ficant (see Fig. 1). Similar to the Coulomb case,15,16 the nuclear-
attraction and two-electron repulsion integrals modified for the
erf and erfc interaction operators can be evaluated analytically
over Gaussian basis functions,16–18 facilitating an efficient evalua-
tion of the integrals needed for solving eqn (3) and the equations
associated with related approximate methods (see below). In
principle, other types of f (r) can also be adopted.17,19–22

Similar to the Coulomb case, solving eqn (3) for a given f (r)
is, however, extremely difficult even for the ground-state energy
and wavefunction of a very small system, due to the prohibi-
tively expensive computational cost. Practically, one searches
for approximate solutions to eqn (3), obtained from ab initio
wavefunction methods,4,13,14,23 such as Hartree–Fock (HF) theory,
second-order Møller–Plesset perturbation theory (MP2), coupled-
cluster theory with iterative singles and doubles (CCSD), and
CCSD with a perturbative treatment of triple substitutions
(CCSD(T)). Among them, the CCSD(T) method with a sufficiently

Fig. 1 Interparticle interaction as a function of interparticle distance
(in atomic units).

Fig. 2 Potential energy curves of the He–He dimer associated with
the long-range interparticle interactions erf(or)/r, calculated using the
corresponding CCSD(T). The o = N case is equivalent to the Coulomb
interaction 1/r.
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large basis set is generally expected to provide highly accurate
results for a variety of small- to medium-sized systems.

Alternatively, Kohn–Sham density functional theory (KS-DFT),24

a popular method for the study of the ground-state properties
of large systems, can also be employed. Similar to the Coulomb
case, density functional approximations (DFAs), such as the
local density approximation (LDA) and generalized-gradient
approximations (GGAs), to the exchange–correlation (XC)
energy functional for a given f (r) are needed in the corres-
ponding KS-DFT.25,26 Here, the LDA exchange energy func-
tional for the erf interaction is obtained by subtracting the
LDA exchange energy functional for the erfc interaction27 from

the LDA exchange energy functional for the Coulomb inter-
action,28 whereas the LDA correlation energy functional for the
erfc interaction is obtained by subtracting the LDA correlation
energy functional for the erf interaction29 from the LDA corre-
lation energy functional for the Coulomb interaction.30 In
addition, as the Perdew–Burke–Ernzerhof (PBE) XC energy
functional (i.e., a popular GGA) for the Coulomb interaction31

and its variant for the erfc interaction32 are both available,
their difference gives the PBE XC energy functional for the erf
interaction.

To illustrate how the nature of vdW interactions in rare-gas
dimers changes with varying interparticle interactions, we calculate

Fig. 3 Potential energy curves of the He–He dimer associated with the long-range interparticle interactions erf(or)/r, calculated using the
corresponding CCSD(T), CCSD, MP2, HF, PBE, and LDA. The o = N case is equivalent to the Coulomb interaction 1/r.
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the potential energy curves of the He–He dimer associated with the
interparticle interactions erf(or)/r (o = N, 10.00, 2.00, 1.70, 1.40,
and 1.10 bohr$1) and erfc(or)/r (o = 0.00, 0.10, 0.20, 0.25, 0.30, and
0.40 bohr$1), using the corresponding CCSD(T), CCSD, MP2, HF,
and KS-DFT employing the PBE and LDA XC energy functionals for
the associated interactions.4,13,14,23

All calculations are performed using a development version
of Q-Chem 4.0.33 The results are computed using a large aug-cc-
pVQZ basis set34 with a high-quality EML (250, 590) grid,
consisting of 250 Euler–Maclaurin radial grid points35 and
590 Lebedev angular grid points.36 The counterpoise correc-
tion37 is employed to reduce the basis set superposition error
(BSSE).

III. Results and discussion
The potential energy curves of the He–He dimer associated with
the long-range interparticle interactions erf(or)/r, calculated
using the corresponding CCSD(T), are presented in Fig. 2.
Similar to the Coulomb case (i.e., the o = N case of the erf
interaction), all the potential energy curves resemble the LJ
potentials. For a smaller o, the strength of the erf interaction is
weaker. Consequently, the electrons are more loosely bound
to the nucleus, and the atoms are more polarizable, yielding
larger values of s and e, respectively, (see eqn (1)).4 Owing to the
long-range nature of the erf interaction, the attractive vdW
interaction is shown to have the [erf(oR)]2R$6 asymptote (essentially
retaining the R$6 asymptote of conventional vdW interactions) at
sufficiently large internuclear distances R, based on the second-
order perturbation theory (see the Appendix).

In comparison with the highly accurate CCSD(T) results, the
He–He potential energy curves associated with the erf inter-
actions, calculated using the corresponding CCSD, MP2, HF,
PBE, and LDA are presented in Fig. 3. As shown, CCSD performs
similarly to CCSD(T), and slightly outperforms MP2. Besides,

CCSD(T), CCSD, and MP2 exhibit the correct R$6 vdW asymptotes.
By contrast, due to the lack of electron correlation, HF completely
fails to describe the attractive vdW interactions, yielding purely
repulsive potential energy curves for all the o values studied.
Within the framework of KS-DFT, PBE consistently outperforms
LDA. However, in view of the large errors associated with the vdW
minima and the incorrect vdW asymptotes (decaying much faster
than R$6),38,39 LDA, PBE, and possibly other semilocal density
functionals40 cannot accurately describe long-range vdW inter-
actions,41 wherein a fully nonlocal XC energy functional should be
essential.25,26,38

On the other hand, the potential energy curves of the He–He
dimer associated with the short-range interparticle interactions
erfc(or)/r, calculated using the corresponding CCSD(T), are
shown in Fig. 4. In contrast to the Coulomb case (i.e., the
o = 0 case of the erfc interaction), the potential energy curves
show strong o-dependence. It resembles the LJ potential only
for a vanishingly small o, displays a metastable state for an
intermediate o (around 0.25 bohr$1), and becomes purely
repulsive for a o larger than 0.30 bohr$1 (see the Appendix).

For comparison, the He–He potential energy curves asso-
ciated with the erfc interactions, calculated using the corres-
ponding CCSD, MP2, HF, PBE, and LDA are shown in Fig. 5.
With the increase of o, the potential energy curves obtained
from all the computational methods become very similar. As
would be expected on physical grounds, semilocal density
functionals can be surprisingly accurate for short-range XC
effects.40 PBE is shown to consistently perform better than
LDA. Besides, due to the dominance of exchange-repulsion
energy for a sufficiently large o, even HF theory can be reliably
accurate.

Similar to the Coulomb case, the overall trends of LDA and
PBE are opposite to those of HF and MP2, implying that a
combination of the HF exchange, MP2 correlation, and DFAs
(e.g., LDA or GGAs) in KS-DFT (i.e., hybrid DFT42 or double-
hybrid DFT43) may achieve a more favorable balance between
cost and performance than CCSD(T) for the vdW interactions in
large rare-gas dimers under the erf and erfc interactions.

In addition, we calculate the potential energy curves of the
He–Ne and Ne–Ne dimers associated with the erf and erfc
interactions, using the corresponding CCSD(T), as shown in
Fig. 6–9. For the Coulomb case, the values of s for the He–Ne
and Ne–Ne dimers are larger than that for the He–He dimer.
Nevertheless, similar trends are also found for the potential
energy curves of He–Ne, Ne–Ne, and possibly other rare-gas
dimers.

To test the transferability of the above observed trends for
other vdW systems, we calculate the potential energy curves
for the lowest triplet states of H2 (a simple vdW system)44

associated with the erf and erfc interactions, using the corres-
ponding CCSD (i.e., an exact theory for any two-electron system).
As shown in Fig. 10 and 11, the major features of the potential
energy curves remain very similar to those found for rare-gas
dimers.

Here we comment on the connection between this study and
long-range corrected (LC) hybrid functionals for systems with

Fig. 4 Potential energy curves of the He–He dimer associated with the
short-range interparticle interactions erfc(or)/r, calculated using the
corresponding CCSD(T). The o = 0 case is equivalent to the Coulomb
interaction 1/r.
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Coulomb interactions.45–56 These functionals model the short-
range interaction (e.g., the erfc interaction) by a DFA in KS-DFT
and the complementary long-range interaction (e.g., the erf
interaction) by HF exchange or a fully nonlocal (i.e., orbital-
dependent) XC energy component from ab initio wavefunction
methods. In Fig. 3 and 5, compared to the highly accurate
CCSD(T) results, LDA and PBE perform reasonably well for
sufficiently short-range interparticle interactions, whereas they
perform poorly for long-range interparticle interactions. Accord-
ingly, our findings are also in support of the key feature of the LC
hybrid functionals for systems with Coulomb interactions, which
have recently been found to provide supreme performance for
a very wide range of applications,57,58 especially for problems

related to the asymptote of the XC potential,59–66 self-interaction
errors,67,68 fundamental gaps,69–82 and charge-transfer excitations.83–89

Besides, empirical atom–atom dispersion potentials51,55,56,90–92 or
MP2 correlation energy43,53,93–95 can be added to the KS-DFT
energy in order to improve the description of noncovalent inter-
actions (e.g., vdW interactions). Alternatively, KS-DFT may also be
combined with symmetry-adapted perturbation theory (SAPT)96–104

to yield accurate results for noncovalent interactions.105–111 In
addition, to appropriately describe strong static correlation, it could
be essential to develop a combined LC hybrid scheme with random
phase approximations (RPAs)25,112–114 for small- to medium-sized
systems or with thermally-assisted-occupation density functional
theory (TAO-DFT)115–117 for large-sized systems.

Fig. 5 Potential energy curves of the He–He dimer associated with the short-range interparticle interactions erfc(or)/r, calculated using the
corresponding CCSD(T), CCSD, MP2, HF, PBE, and LDA. The o = 0 case is equivalent to the Coulomb interaction 1/r.
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IV. Conclusions
In conclusion, we have developed a comprehensive under-
standing of the physics involved in controlling the vdW inter-
actions in rare-gas dimers. Specifically, we have examined the
potential energy curves of the rare-gas dimers associated with a
variety of interparticle interactions, using the highly accurate
CCSD(T) method as well as other computational methods. The
long-range interparticle interactions are shown to be essential
for retaining the main features of conventional vdW interactions,
which cannot be appropriately described by LDA, PBE, and
possibly other semilocal density functionals in KS-DFT, but can
be accurately described by MP2, CCSD, and possibly other fully
nonlocal XC energy components from ab initio wavefunction
methods. On the other hand, the nature of vdW interactions is
shown to change drastically with the short-range interparticle
interactions, wherein LDA, PBE, and possibly other semilocal
density functionals in KS-DFT perform reasonably well for

Fig. 8 Potential energy curves of the Ne–Ne dimer associated with the long-
range interparticle interactions erf(or)/r, calculated using the corresponding
CCSD(T). The o = N case is equivalent to the Coulomb interaction 1/r.

Fig. 6 Potential energy curves of the He–Ne dimer associated with the long-
range interparticle interactions erf(or)/r, calculated using the corresponding
CCSD(T). The o = N case is equivalent to the Coulomb interaction 1/r.

Fig. 7 Potential energy curves of the He–Ne dimer associated with the short-
range interparticle interactions erfc(or)/r, calculated using the corresponding
CCSD(T). The o = 0 case is equivalent to the Coulomb interaction 1/r.

Fig. 9 Potential energy curves of the Ne–Ne dimer associated with the
short-range interparticle interactions erfc(or)/r, calculated using the corres-
ponding CCSD(T). The o = 0 case is equivalent to the Coulomb interaction 1/r.

Fig. 10 Potential energy curves for the lowest triplet states of H2 associated
with the long-range interparticle interactionserf(or)/r, calculatedusingthe corres-
ponding CCSD. The o = N case is equivalent to the Coulomb interaction 1/r.
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sufficiently short-range interparticle interactions (e.g., erfc(or)/r
with o = 0.30 bohr$1 or larger). Therefore, our findings also
support the main feature of the LC hybrid functionals for
systems with Coulomb interactions. Although only the vdW
interactions in rare-gas dimers and the triplet H2 molecule are
studied and discussed in this work, our conclusion may remain
appropriate for other vdW-dominated systems.

Appendix: asymptote of the interaction
energy curve between two well-
separated rare-gas atoms associated
with the long-range (erf) interparticle
interactions
Similar to the derivation for the Coulomb case (e.g., see Chapter 3
of ref. 5), we derive an analytical expression for the asymptote
of the interaction energy curve between two well-separated rare-
gas atoms associated with the long-range interparticle inter-
action operator f (r): erf(or)/r (the erf interaction), based on the
second-order perturbation theory.118 Since in the Coulomb
case, a rare-gas atom has no permanent multipole moments
in its nondegenerate ground state,3 presumably this remains
correct for the erf interaction with a sufficiently large o or for
the erfc interaction [f (r): erfc(or)/r] with a sufficiently small o.
Also note that the finite speed of propagation of electromag-
netic signals is not taken into account in our derivation.5 For
brevity, the Einstein summation convention119 is adopted here.
Based on this convention, when an index variable appears twice
in a term, it implies a summation of that term over all possible
values of the index.

Consider a rare-gas atom A, composed of a nucleus situated
at ra=0 and NA electrons situated at ra (a = 1, 2,. . .,NA) with
respect to the nucleus of A. The electric potential at a point r,

due to the charge distribution, is

VAðrÞ ¼
1

4pe0

XNA

a¼0
eAa f r$ raj jð Þ; (5)

where eA
a=0 = NAe is the nuclear charge of A and eA

a = $e (a = 1,
2. . .,NA) is the charge of an electron. The Taylor series expan-
sion of VA(r) around the nucleus of A gives

VAðrÞ ¼

1

4pe0

X

a
eAa f ðrÞ $

X
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X
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where the first term is from an electric monopole eAtot ¼
P
a
eAa ,

the second term is from an electric dipole, whose ith Cartesian
component is mAi ¼

P
a
eAa ria, the third term is from an electric

quadrupole source, QA
ij ¼

1

2!

P
a
eAa riarja, and so on.

Consider a second rare-gas atom B, composed of a nucleus
situated at rb=0 and NB electrons situated at rb (b = 1,2,. . .,NB)
with respect to the nucleus of B. Let R be the separation
distance vector pointing from the nucleus of A towards the
nucleus of B. The interaction energy between atoms A and B is

UAB ¼
XNB

b¼0
eBbVA Rþ rb

% &
; (7)

where eB
b=0 = NBe is the nuclear charge of B, and eB

b = $e (b = 1,
2,. . .,NB) is the charge of an electron. The Taylor series expan-
sion of VA(R + rb) around the nucleus of B gives
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1
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Substituting eqn (6) and (8) into eqn (7) produces
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X

b

eBb 1þ ribri þ
1

2!
ribrjbrirj þ . . .

# $
VAðRÞ

¼ eBtot þ mBi ri þQB
ijrirj þ . . .

h i 1

4pe0

& eAtot $ mAi ri þQA
ijrirj þ . . .

h i
f ðRÞ

¼ 1

4pe0
eAtote

B
tot þ eAtotm

B
i ri $ eBtotm

A
i ri

% &
$ mAi m

B
j rirj

h

þ eAtotQ
B
ijrirj þ eBtotQ

A
ijrirj

! "

$ mAi Q
B
jkrirjrk $ mBi Q

A
jkrirjrk

! "

þ QA
ij Q

B
klrirjrkrl þ . . .

i
f ðRÞ:

(9)

Fig. 11 Potential energy curves for the lowest triplet states of H2 asso-
ciated with the short-range interparticle interactions erfc(or)/r, calculated
using the corresponding CCSD. The o = 0 case is equivalent to the
Coulomb interaction 1/r.
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Here eBtot ¼
P
b
eBb , mBi ¼

P
b
eBb rib, QB

ij ¼
1
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P
b
eBb ribrjb, and so on.

Since atoms A and B are both neutral, eA
tot = eB

tot = 0. Accordingly,
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(10)

can be expressed as a sum of dipole–dipole (dd), dipole–quadrupole
(dq), quadrupole–quadrupole (qq), and other contributions.

To evaluate the interaction energy between ground-state rare-gas
atoms A and B, the classical interaction energy given by eqn (10)
should be first converted into a quantum mechanical operator.
Perturbation theory may then be adopted to obtain the various
perturbation contributions to the interaction energy at large R.

Let the Hamiltonian of an isolated rare-gas atom X (X = A, B)
be HX. The Schrödinger equation

HXcX
n = EX

ncX
n (11)

is solved for the nth excited-state energy EX
n and wavefunction

cX
n, where the n = 0 case refers to the ground state. Accordingly,

the full Hamiltonian of rare-gas atoms A and B can be
expressed as

H = HA + HB + UAB. (12)

The interaction energy between ground-state rare-gas atoms A
and B can be calculated as

DEint = E0 $ (EA
0 + EB

0), (13)

where E0 is the ground-state energy of H.
To circumvent the need for solving the Schrödinger equa-

tion with Hamiltonian H, E0 may be expressed in terms of {EA
n,

cA
n;EB

n, cB
n}, based on perturbation theory.5,118 Since atoms A and

B are well-separated, an appropriate unperturbed Hamiltonian
is the sum of the Hamiltonians of the isolated atoms A and B,

H0 = HA + HB. (14)

Consequently,

H = H0 + UAB, (15)

where UAB given by eqn (10) is the perturbation.

A. Zeroth-order theory
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n . At large R, the effects of electron exchange are

insignificant. Accordingly, for the nth excited state, C(0)
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described by quantum numbers r and s, respectively. For the
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0 = cA
0cB

0 and E(0)
0 = EA

0 + EB
0. Correspondingly,

DEint = E0$ (EA
0 + EB

0) E (E(0)
0 )$ (EA

0 + EB
0) = (EA

0 + EB
0)$ (EA

0 + EB
0) = 0.

Therefore, to obtain a nonvanishing DEint, it is necessary to go
beyond the zeroth-order theory.

B. First-order theory
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rare-gas atom X (X = A, B) has no permanent multipole
moments in its nondegenerate ground state,3 presumably this

holds true for the erf interaction with a sufficiently large o or
for the erfc interaction with a sufficiently small o. Accordingly,
the dipole terms are vanished hcX
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(16)

Accordingly, DEint = E0 $ (EA
0 + EB

0) E (E(0)
0 + E(1)

0 ) $ (EA
0 + EB

0) =
E(1)

0 = 0. Therefore, to obtain a nonvanishing DEint, it is also
necessary to go beyond the first-order theory.

C. Second-order theory

E
ð2Þ
n ¼ $

P
man

Cð0Þm UABj jCð0Þn

( )'' ''2

E
ð0Þ
m $ E

ð0Þ
n

. The second-order correction to

the ground-state energy is

E
ð2Þ
0 ¼ $

X

ma0

Cð0Þm UABj jCð0Þ0

D E'''
'''
2

E
ð0Þ
m $ E

ð0Þ
0

; (17)

which is always nonpositive.
From eqn (10), if only the dipole–dipole contribution is

retained, we have

Udd
AB ¼ $

1

4pe0
mAi m

B
j rirj f ðRÞ: (18)

Accordingly, the second-order correction to the ground-state
energy due to the dipole–dipole contribution is
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(19)

In eqn (19), the terms (r = 0, s a 0) and (r a 0, s = 0) are excluded in the summation, due to the vanishing dipole terms, i.e.,
hcX

0|mX
i |cX

0i = 0 (X = A, B).
' For the erf interaction, f ðRÞ ¼ erfðoRÞ

R
.
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(20)

Since e$o
2R2

decays faster than polynomials when R is large, rirj f ðRÞ ( $
erfðoRÞ

R3
dij $ 3R̂iR̂j

% &
at large R. Accordingly,
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Similar to the Coulomb case (e.g., see Chapter 3 of ref. 5), we adopt the rotational average of cA
r mAi
'' ''cA

0

( )
cA
0 mAi0
'' ''cA

r

( )
¼
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dii0 cA
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, where mA ¼

P
a
eAa ra and

mB ¼
P
b
eBb rb. Also, note that
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i¼1
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% &2¼ 6: (22)
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Therefore, from eqn (21),

E
ð2Þ;dd
0 ( $ 1

24p2e02
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R6

X

ra0

X

sa0

cA
r mA
'' ''cA

0

( )'' ''2 cB
s mB
'' ''cB

0

( )'' ''2
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r þ EB

s $ EA
0 $ EB

0

:

(23)

From eqn (10), retaining also the dipole–quadrupole, quadrupole–
quadrupole, and other contributions will produce additional terms
in eqn (17), involving rirjrkf (R), rirjrkrlf (R), and so on. For
the erf interaction, it can be shown that rirjf (R) decays more
slowly than rirjrkf (R), and rirjrkf (R) decays more slowly than
rirjrkrlf (R), and so on. Accordingly, E(2)

0 E E(2),dd
0 at large R.

Therefore, in the second-order theory, the interaction energy
between rare-gas atoms A and B at large R is

DEint ¼ E0 $ EA
0 þ EB

0

% &
( E

ð0Þ
0 þ E

ð1Þ
0 þ E

ð2Þ
0

! "
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'' ''cB

0

( )'' ''2
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s $ EA
0 $ EB

0

;

(24)

which has the [erf(oR)]2R$6 asymptote.

' For the erfc interaction, f ðRÞ ¼ erfcðoRÞ
R

.
In the second-order theory, the interaction energy between

rare-gas atoms A and B, DEint ¼ E0 $ EA
0 þ EB

0

% &
( E

ð2Þ
0 ¼

$
P
ma0

Cð0Þm UABj jCð0Þ0

D E'''
'''
2

E
ð0Þ
m $ E

ð0Þ
0

, is always nonpositive. Therefore, it

is necessary to go beyond the second-order theory to describe
the repulsive interaction energy at large R (as discussed in our
paper), which is, however, beyond the scope of our
discussion here.
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