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ABSTRACT: Accurate prediction of the electronic properties of zigzag
graphene nanoribbons (ZGNRs) has been very challenging for conven-
tional electronic structure methods due to the presence of strong static
correlation effects. To meet the challenge, we study the singlet−triplet
energy gaps, vertical ionization potentials, vertical electron affinities,
fundamental gaps, and symmetrized von Neumann entropy (i.e., a measure
of polyradical character) of hydrogen-terminated ZGNRs with different
widths and lengths using our recently developed thermally-assisted-
occupation density functional theory (TAO-DFT) [Chai, J.-D. J. Chem.
Phys. 2012, 136, 154104], a very efficient method for the study of large
strongly correlated systems. Our results are in good agreement with the
available experimental and high-accuracy ab initio data. The ground states
of ZGNRs are shown to be singlets for all the widths and lengths
investigated. With the increase of ribbon length, the singlet−triplet energy
gaps, vertical ionization potentials, and fundamental gaps decrease monotonically, while the vertical electron affinities and
symmetrized von Neumann entropy increase monotonically. On the basis of the calculated orbitals and their occupation
numbers, the longer ZGNRs are shown to possess increasing polyradical character in their ground states, where the active orbitals
are mainly localized at the zigzag edges.

1. INTRODUCTION
The recent discovery of graphene, a single atomic plane of
graphite, has attracted enormous interest owing to its
fascinating properties and technological potential.1−5 The
high carrier mobility and long spin diffusion length of graphene
offer the possibility of building promising graphene-based
electronics and spintronics.2,3 However, unlike the semi-
conductor silicon, graphene lacks an energy gap (i.e., band
gap) between the valence and conduction bands and cannot be
turned on and off for transistor applications. Exploring methods
to open a band gap in graphene is essential for its potential
electronic applications.
One way of introducing a band gap into graphene is to

confine the carriers to quasi-one-dimensional systems, such as
graphene nanoribbons (GNRs), which are long and narrow
strips of graphene. Consequently, several methods have been
proposed for the synthesis of GNRs.6−9 Owing to their
fascinating electronic and magnetic properties, GNRs have
recently received considerable attention from many research-
ers,10−50 bringing tremendous possibilities to realize elec-
tronic27,28 and spintronic18,23,29 nanodevices. Due to the
pronounced quantum confinement and edge effects, the
electronic properties of GNRs are strongly dependent on
their geometrical structure, such as the width, length, and edge
shape (zigzag, armchair, or chiral). Therefore, developing a

comprehensive understanding of the relevant parameters
controlling the electronic properties of GNRs is essentially
important for the design of GNR-based nanodevices.
In spite of the increasing interest in GNRs, it remains very

difficult to explore the electronic properties of long-chain
GNRs from both experimental and theoretical perspectives. On
the experimental side, the difficulties in synthesizing long-chain
GNRs and their instability following isolation have been
attributed to their radical character. Accordingly, there have
been few reported measurements on long-chain GNRs.46−50

On the theoretical side, GNRs, which belong to π-conjugated
systems, typically require high-level ab initio multireference
methods, such as the density matrix renormalization group
(DMRG) algorithm,26,40 the variational two-electron reduced
density matrix (2-RDM) method,36 or other high-level
methods,33−35,37,38,42,45 to accurately describe the strong static
correlation effects. Nevertheless, these methods can be
prohibitively expensive for the study of long-chain GNRs.
In contrast, Kohn−Sham density functional theory (KS-

DFT)51,52 has been one of the most popular methods for the
study of ground-state properties of large systems, due to its
favorable cost-to-performance ratio. However, its essential
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ingredient, the exact exchange-correlation (XC) functional,
remains unknown and needs to be approximated. For systems
with pronounced strong static correlation effects (i.e., strongly
correlated (SC) systems), such as bond-breaking reactions,
conjugated polymers, and transition-metal compounds, the
predictions of semilocal density functionals, such as the local
density approximation (LDA) and generalized gradient
approximations (GGAs), can be problematic. Hybrid53−60

and double-hybrid61−69 density functionals may also yield
erroneous results for SC systems.70−72 Therefore, KS-DFT
employing conventional (LDA, GGA, hybrid, and double-
hybrid) functionals may no longer provide reliable results for
long-chain GNRs, which should have the multireference
character involving strong static correlation.26,32,39−45

Aiming to study the ground-state properties of large SC
systems with minimum computational complexity, we have
recently developed thermally-assisted-occupation density func-
tional theory (TAO-DFT).39 Unlike conventional ab initio
multireference methods, the computational complexity of
TAO-DFT increases very insignificantly with the size of the
active space (i.e., an active space restriction is not needed for
TAO-DFT calculations), showing that TAO-DFT can be very
promising for the study of large polyradical systems, such as
long-chain GNRs. In contrast to KS-DFT, TAO-DFT is a
density functional theory with fractional orbital occupations
produced by the Fermi−Dirac distribution (controlled by a
fictitious temperature θ). However, existing XC functionals
(e.g., LDA and GGAs) in KS-DFT may also be adopted in
TAO-DFT.43 TAO-DFT has similar computational cost as KS-
DFT for single-point energy calculations and analytical nuclear
gradients, and reduces to KS-DFT in the absence of strong
static correlation effects. In addition, as discussed in ref 39,
TAO-DFT offers an explicit description of strong static
correlation via the entropy contribution (e.g., see eq 26 of ref
39). Even at the simplest LDA level, the resulting TAO-LDA
has been shown to perform reasonably well for multireference
systems (due to the appropriate treatment of static correlation),
when the distribution of orbital occupation numbers (related to
the chosen θ) is close to that of the natural orbital occupation
numbers (NOONs).73 However, this implies that a system-
dependent θ (related to the distribution of NOONs) should be
needed to capture the essential physics of strong static
correlation effects. For simplicity, an optimal value of θ = 7
mhartree has been defined for TAO-LDA, based on the
physical arguments and numerical investigations presented in
ref 39. Interestingly, TAO-LDA (with θ = 7 mhartree) has been
shown to consistently improve upon KS-LDA74,75 for multi-
reference systems, while performing similarly to KS-LDA for
single-reference systems.
Due to its computational efficiency and reasonable accuracy

for large systems with strong static correlation effects, in this
work, we adopt TAO-LDA to study the electronic properties of
zigzag GNRs (ZGNRs) with different widths and lengths. In
particular, the availability of analytical nuclear gradients for
TAO-LDA enables extremely efficient geometry optimization
of molecules. Our results are compared with the available
experimental and high-accuracy ab initio data as well as the
results obtained from various density functionals in KS-DFT.

2. COMPUTATIONAL DETAILS
Here a series of polycyclic aromatic hydrocarbons (PAHs) are
taken as finite-size models of ZGNRs. The ZGNRs considered
have zigzag edges on both sides with hydrogen passivation. As

illustrated in Figure 1, a rectangular GNR with width = m (in
the armchair direction) and length = n (in the zigzag direction),

is designated as GNR[m, n]. Particularly, GNR[1, n] are linear
n-acenes (C4n+2H2n+4), consisting of n linearly fused benzene
rings, which have recently attracted significant attention from
many experimental and theoretical researchers due to their
novel electronic properties.16,26,31−34,36−39,42−50 Note that the
number of electrons in GNR[m, n] (C4mn+2mH4m+2n) is 24mn +
16m + 2n, which can quickly increase with the increase of m
and n.
To circumvent the formidable computational expense of

high-level ab initio multireference methods, we investigate the
singlet−triplet energy (ST) gaps, vertical ionization potentials,
vertical electron affinities, fundamental gaps, and symmetrized
von Neumann entropy of ZGNRs with three different widths
and various lengths, involving GNR[1, n] (up to n = 100),
GNR[2, n] (up to n = 50), and GNR[3, n] (up to n = 30),
using KS-LDA74,75 and TAO-LDA.39 For all the TAO-LDA
calculations, we adopt the optimal value of θ = 7 mhartree (as
defined in ref 39). As KS-LDA is simply TAO-LDA (with θ =
0), it is important to examine the performance of KS-LDA here
to assess the significance of TAO-LDA.
All calculations are performed with a development version of

Q-Chem 4.0.76 Results are computed using the 6-31G(d) basis
set77 with the fine grid EML(75, 302), consisting of 75 Euler−
Maclaurin radial grid points78 and 302 Lebedev angular grid
points.79 Spin-unrestricted KS-LDA and TAO-LDA calcula-
tions are performed for the lowest singlet and triplet energies of
GNR[m, n] on the respective geometries that were fully
optimized at the same level of theory. The ST gap of GNR[m,
n] is calculated as (ET − ES), the energy difference between the
lowest triplet (T) and singlet (S) states of GNR[m, n].

3. RESULTS AND DISCUSSION
Figure 2 shows the ST gaps of GNR[1, n] as a function of the
ribbon length, calculated using spin-unrestricted KS-LDA and
TAO-LDA. The results are compared with the available
experimental data (uncorrected for zero-point vibrations,
thermal vibrations, etc.)46−49 and high-accuracy ab initio data
calculated using the DMRG algorithm26 and the coupled-
cluster theory with iterative singles and doubles and
perturbative treatment of triple substitutions at the complete
basis set limit (CCSD(T)/CBS)34 as well as the results
obtained from the CAM-B3LYP functional55 (a popular range-
separated hybrid functional) in KS-DFT.40 The ST gaps
calculated using KS-LDA and CAM-B3LYP unexpectedly
increase beyond GNR[1, 10] and GNR[1, 8], respectively,
due to unphysical symmetry-breaking effects.26,32,39−45 By
contrast, the ST gaps calculated using TAO-LDA decrease

Figure 1. Rectangular graphene nanoribbon with width = 2 (in the
armchair direction) and length = 10 (in the zigzag direction),
designated as GNR[2, 10].
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monotonically with the increase of ribbon length, showing
consistency with the experimental data and those calculated
using the DMRG algorithm and CCSD(T)/CBS method.
Similar trends can be observed for GNR[2, n] (see Figure 3)

and GNR[3, n] (see Figure 4), where the DMRG and CAM-

B3LYP data are taken from the work of Mizukami et al.40 for
comparison. Note that if long-chain ZGNRs are to be reliably
investigated by the DMRG algorithm, a sufficiently large
number of renormalized basis states should be adopted, which
can, however, be prohibitively expensive. As shown in Figure 3,
the ST gaps calculated using the DMRG algorithm
unexpectedly increase beyond GNR[2, 6], possibly due to the
insufficient number of the renormalized basis states adopted in
the calculations.40

To show the ribbon width effect on the ST gaps calculated
using TAO-LDA, Figures 5 and 6 plot the ST gaps of GNR[1−
3, n] as a function of the ribbon length. Based on our TAO-
LDA calculations, the ST gaps decrease monotonically with

increasing ZGNR length for each ribbon width, and the ground
states of ZGNRs are singlets for all the widths and lengths
investigated.
Along the upper zigzag edge, the maximum C−C bond

length difference between the lowest singlet and triplet states of

Figure 2. Singlet−triplet energy gap of GNR[1, n] as a function of the
ribbon length, calculated using spin-unrestricted KS-LDA and TAO-
LDA. For comparison, the experimental data (uncorrected for zero-
point vibrations, thermal vibrations, etc.),46−49 the DMRG data,26 the
CCSD(T)/CBS data,34 and the CAM-B3LYP data40 are taken from
the literature.

Figure 3. Singlet−triplet energy gap of GNR[2, n] as a function of the
ribbon length, calculated using spin-unrestricted KS-LDA and TAO-
LDA. For comparison, the DMRG and CAM-B3LYP data are taken
from the work of Mizukami et al.40

Figure 4. Singlet−triplet energy gap of GNR[3, n] as a function of the
ribbon length, calculated using spin-unrestricted TAO-LDA. For
comparison, the CAM-B3LYP data are taken from the work of
Mizukami et al.40

Figure 5. Singlet−triplet energy gap of GNR[1−3, n] as a function of
the ribbon length, calculated using spin-unrestricted TAO-LDA.

Figure 6. Same as in Figure 5, but for the longer GNR[1−3, n].
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GNR[1−3, n] as a function of the ribbon length, calculated
using spin-unrestricted TAO-LDA, are shown in Table 1.

Similar to previous findings,16,31 the geometries for the lowest
singlet and triplet states of GNR[1, n] become very similar for a
sufficiently large n, supporting the absence of the Peierls
distortion in this limit. For wider ZGNRs, the Peierls distortion
vanishes more rapidly with increasing ribbon length.
Due to the symmetry constraint, the spin-restricted and spin-

unrestricted energies for the lowest singlet state of GNR[m, n],
calculated by the exact theory, should be identical.39,41,43 To
examine the possible symmetry-breaking effects, spin-restricted
TAO-LDA calculations are also performed for the lowest
singlet energies on the respective geometries that were fully
optimized at the same level. Within the numerical precision
considered in this work, the spin-restricted and spin-
unrestricted TAO-LDA energies for the lowest singlet state of
GNR[m, n] are essentially the same, and no spin density is
numerically observed in spin-unrestricted TAO-LDA calcu-
lations, implying that essentially no unphysical symmetry-
breaking effects occur in our spin-unrestricted TAO-LDA
calculations.
At the optimized geometry of the lowest singlet state (i.e.,

the ground state) of GNR[m, n], containing N electrons, the
vertical ionization potential IPv = EN−1 − EN, vertical electron
affinity EAv = EN − EN+1, and fundamental gap Eg = IPv − EAv =
EN+1 + EN−1 − 2EN are obtained by multiple energy-difference
calculations, where EN is the total energy of the N-electron
system. With the increase of ribbon length, IPv (see Figure 7)
monotonically decreases, and EAv (see Figure 8) monotonically
increases, yielding a monotonically deceasing Eg (see Figure 9).
For GNR[1, n], our results are in good agreement with the
available experimental data50 and those calculated using the
CCSD(T)/CBS method.37,38 At the level of TAO-LDA, the Eg
of the longest ZGNR studied for each ribbon width is 0.55 eV
for GNR[1, 100], 0.80 eV for GNR[2, 50], and 1.02 eV for
GNR[3, 30]. Note that the calculated Eg is within the most
interesting range (1−3 eV) for GNR[1, n] (n: 46−10), GNR[2,
n] (n: 36−7), and GNR[3, n] (n: 30−5), giving promise for
applications of ZGNRs in nanophotonics.
To examine the possible polyradical character of GNR[m, n],

as the orbital occupation numbers resulting from the TAO-
LDA calculations are closely related to the NOONs,73 we
calculate the symmetrized von Neumann entropy (e.g., see eq 9
of ref 41)

∑= − + − −
=

∞
S f f f f1

2
{ ln( ) (1 ) ln(1 )}N

i
i i i iv

1 (1)

for the lowest singlet state of GNR[m, n] as a function of the
ribbon length, using spin-restricted TAO-LDA. Here f i the

occupation number of the ith orbital obtained with TAO-LDA,
ranging from 0 to 1, is approximately equal to the occupation
number of the ith natural orbital.39,43 Note that SvN essentially
provides no contributions for a single-reference system ({f i} are
close to either 0 or 1) and quickly increases with the number of
active orbitals ({f i} are fractional for active orbitals and are
close to either 0 or 1 for others). As shown in Figure 10, SvN
increases monotonically with the ribbon length.
To illustrate the causes of the increase of SvN with ribbon

length, we plot the active orbital occupation numbers for the
lowest singlet state of GNR[1, n] (Figure 11), GNR[2, n]
(Figure 12), and GNR[3, n] (Figure 13) as a function of the
ribbon length, calculated using spin-restricted TAO-LDA. Here,
the highest occupied molecular orbital (HOMO) is the (N/
2)th orbital, and the lowest unoccupied molecular orbital
(LUMO) is the (N/2 + 1)th orbital, with N being the number
of electrons in GNR[m, n]. For brevity, HOMO, HOMO − 1,
..., and HOMO − 8, are denoted as H, H − 1, ..., and H − 8,
respectively, while LUMO, LUMO + 1, ..., and LUMO + 8, are

Table 1. Along the Upper Zigzag Edge, the Maximum C−C
Bond Length Difference (Å) between the Lowest Singlet and
Triplet States of GNR[1−3, n] as a Function of the Ribbon
Length, Calculated Using Spin-Unrestricted TAO-LDA

n GNR[1, n] GNR[2, n] GNR[3, n]

2 0.052 0.018 0.009
4 0.025 0.004 0.002
6 0.015 0.001 0.001
8 0.005 0.001 0.001
10 0.002 0.001 0.000

Figure 7. Vertical ionization potential for the lowest singlet state of
GNR[1−3, n] as a function of the ribbon length, calculated using spin-
unrestricted TAO-LDA. For GNR[1, n], the experimental data are
taken from the compilation of Malloci et al.50 and the CCSD(T)/CBS
data are taken from the work of Deleuze et al.37

Figure 8. Vertical electron affinity for the lowest singlet state of
GNR[1−3, n] as a function of the ribbon length, calculated using spin-
unrestricted TAO-LDA. For GNR[1, n], the experimental data are
taken from the compilation of Malloci et al.50 and the CCSD(T)/CBS
data are taken from Hajgato ́ et al.38
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denoted as L, L + 1, ..., and L + 8, respectively. As shown, the
number of fractionally occupied orbitals increases with the
increase of ribbon length, supporting the previous findings that
ZGNRs with longer length should exhibit increasing polyradical
character.26,31,40−42,45 Similar to previous studies,40−42,45 the
evolution of polyradical character is more rapid for wider
ZGNRs. Nevertheless, in contrast to previous studies,26,40−42,45

the active orbital occupation numbers exhibit a curve crossing
behavior in the approach to unity (singly occupied) with
increasing ribbon length. For examples, the orbital with
HOMO (LUMO) character in short-chain ZGNRs may
become the LUMO (HOMO) in medium- to long-chain
ZGNRs. Note that the curve crossing behavior may be an
artifact showing the limitation of TAO-LDA (with a system-
independent θ).
For the lowest singlet states of some representative GNR[m

,n], we explore the real-space representation of active orbitals
(those orbitals whose occupancy approaches to unity for
sufficiently long ZGNRs), such as the HOMOs and LUMOs,
obtained with spin-restricted TAO-LDA. As shown in Figures
14−16, our findings support previous research that the HOMO

Figure 9. Fundamental gap for the lowest singlet state of GNR[1−3,
n] as a function of the ribbon length, calculated using spin-unrestricted
TAO-LDA. For GNR[1, n], the experimental data are taken from the
compilation of Malloci et al.50 and the CCSD(T)/CBS data are taken
from Deleuze et al.37 and Hajgato ́ et al.38

Figure 10. Symmetrized von Neumann entropy for the lowest singlet
state of GNR[1−3, n] as a function of the ribbon length, calculated
using spin-restricted TAO-LDA.

Figure 11. Active orbital occupation numbers (HOMO − 8, ...,
HOMO − 1, HOMO, LUMO, LUMO + 1, ..., and LUMO + 8) for the
lowest singlet state of GNR[1, n] as a function of the ribbon length,
calculated using spin-restricted TAO-LDA.

Figure 12. Active orbital occupation numbers (HOMO − 8, ...,
HOMO − 1, HOMO, LUMO, LUMO + 1, ..., and LUMO + 8) for the
lowest singlet state of GNR[2, n] as a function of the ribbon length,
calculated using spin-restricted TAO-LDA.

Figure 13. Active orbital occupation numbers (HOMO − 8, ...,
HOMO − 1, HOMO, LUMO, LUMO + 1, ..., and LUMO + 8) for the
lowest singlet state of GNR[3, n] as a function of the ribbon length,
calculated using spin-restricted TAO-LDA.
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and LUMO of GNR[m, n] are mainly localized at the zigzag
edges.26,31,40,41 However, as discussed above, the orbital with
HOMO (LUMO) character in GNR[2, 5] unexpectedly
becomes the LUMO (HOMO) in GNR[2, 6]. Similar trends
are also observed for those orbitals in GNR[3, 5] and GNR[3,
6].

4. CONCLUSIONS
In conclusion, we have presented a systematic computational
study on the electronic properties (i.e., the ST gaps, vertical
ionization potentials, vertical electron affinities, fundamental
gaps, and symmetrized von Neumann entropy) of hydrogen-
terminated ZGNRs with different widths and lengths using our
recently developed TAO-LDA, a very efficient method for the
study of large systems with strong static correlation effects. Our
results are in good agreement with the available experimental
and high-accuracy ab initio data. The ground states of ZGNRs
have been shown to be singlets for all the widths and lengths
investigated. With the increase of ZGNR length, the ST gaps,
vertical ionization potentials, and fundamental gaps decrease

monotonically, while the vertical electron affinities and
symmetrized von Neumann entropy increase monotonically.
The effects of different ribbon widths on the electronic
properties of ZGNRs have been presented and discussed. On
the basis of the calculated orbitals and their occupation
numbers, the longer ZGNRs should possess increasing
polyradical character in their ground states, where the active
orbitals are mainly localized at the zigzag edges. Although we
have theoretically demonstrated that the electronic properties
of GNRs can be manipulated with the appropriate choice of
ribbon width and length, it remains to be addressed how these
properties change with different edge types and chemical
termination of the edges in GNRs. We intend to investigate
these questions in the near future.
In view of the possible artifacts associated with the

occupation numbers of TAO-LDA (with a system-independent
θ), a system-dependent θ (related to the distribution of
NOONs) is expected to improve the general performance of
TAO-LDA and TAO-GGAs.43 However, in situations where
the self-interaction errors or noncovalent interaction errors of
TAO-LDA or TAO-GGAs are pronounced, a fully nonlocal
TAO-DFT [i.e., nonlocal XC functional and Eθ[ρ](see ref 39)]
may be needed to resolve these failures.39,43 We plan to
investigate how to incorporate existing hybrid and double-
hybrid density functionals into TAO-DFT to improve the
accuracy of TAO-DFT for a wide range of single- and
multireference systems.
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Detailed results for the electronic properties of hydrogen-
terminated zigzag graphene nanoribbons with different widths
and lengths are provided. This material is available free of
charge via the Internet at http://pubs.acs.org/.

Figure 14. Real-space representation of the HOMOs (left) and
LUMOs (right) for the lowest singlet states of GNR[1, 4], GNR[1, 5],
and GNR[1, 6], calculated using spin-restricted TAO-LDA, at isovalue
= 0.01 e/Å3. The orbital occupation numbers are given in parentheses.

Figure 15. Real-space representation of the HOMOs (left) and
LUMOs (right) for the lowest singlet states of GNR[2, 4], GNR[2, 5],
and GNR[2, 6], calculated using spin-restricted TAO-LDA, at isovalue
= 0.01 e/Å3. The orbital occupation numbers are given in parentheses.

Figure 16. Real-space representation of the HOMOs (left) and
LUMOs (right) for the lowest singlet states of GNR[3, 4], GNR[3, 5],
and GNR[3, 6], calculated using spin-restricted TAO-LDA, at isovalue
= 0.01 e/Å3. The orbital occupation numbers are given in parentheses.
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(41) Rivero, P.; Jimeńez-Hoyos, C. A.; Scuseria, G. E. Entanglement
and Polyradical Character of Polycyclic Aromatic Hydrocarbons
Predicted by Projected Hartree-Fock Theory. J. Phys. Chem. B 2013,
117, 12750−12758.
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