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From the perspective of perturbation theory, we propose a systematic procedure for the evaluation of the

derivative discontinuity (DD) of the exchange-correlation energy functional in Kohn-Sham (KS) density

functional theory, wherein the exact DD can in principle be obtained by summing up all the perturbation

corrections to infinite order. Truncation of the perturbation series at low order yields an efficient scheme

for obtaining the approximate DD. While the zeroth-order theory yields a vanishing DD, the first-order

correction to the DD can be expressed as an explicit universal functional of the ground-state density and

the KS lowest unoccupied molecular orbital density, allowing the direct evaluation of the DD in the

standard KS method without extra computational cost. The fundamental gap can be predicted by adding

the estimated DD to the KS gap. This scheme is shown to be accurate in the prediction of the fundamental

gaps for a wide variety of atoms and molecules.
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Over the past two decades, Kohn-Sham density func-
tional theory (KS DFT) [1] has become one of the most
powerful theoretical methods for studying the ground-state
properties of electronic systems. As the exact exchange-
correlation (XC) energy functional Exc½!# in KS DFT
remains unknown, functionals based on the local density
approximation (LDA) and generalized gradient approxi-
mations have been widely used for large systems, due to
their computational efficiency and reasonable accuracy.
However, owing to their qualitative failures in a number
of situations [2–5], resolving these failures at a reasonable
computational cost continues to be the subject of intense
research interest.

The prediction of the fundamental gap Eg has been an
important and challenging subject in KS DFT [6–21]. For a
system of N electrons (N is an integer) in the presence of
an external potential vextðrÞ, Eg is defined as

Eg ¼ IðNÞ ! AðNÞ; (1)

where IðNÞ ¼ EðN ! 1Þ ! EðNÞ is the vertical ionization
potential and AðNÞ ¼ EðNÞ ! EðN þ 1Þ is the vertical
electron affinity, with EðNÞ being the ground-state energy
of the N-electron system. Therefore, Eg can be extracted
from three KS calculations for the ground-state energies of
the N- and (N ( 1)-electron systems. However, such mul-
tiple energy-difference calculations are inapplicable for the
prediction of fundamental band gaps of solid-state systems
[6–11,14,17,18].

By contrast, the KS gap !KS is defined as the energy
difference between the highest occupied molecular orbital
(HOMO) and the lowest unoccupied molecular orbital
(LUMO) of the N-electron system [22–24],

!KS ¼ "Nþ1ðNÞ ! "NðNÞ; (2)

where "iðNÞ is the ith KS orbital energy of the N-electron
system. Therefore, !KS can be obtained from only one KS
calculation for the KS orbital energies of the N-electron
system. Note that Eg is not simply !KS but is given by

Eg ¼ !KS þ !xc; (3)

where

!xc ¼ lim
#!0þ

!
$Exc½!#
$!ðrÞ

""""""""Nþ#
!$Exc½!#

$!ðrÞ

""""""""N!#

#
(4)

is the derivative discontinuity (DD) of Exc½!# [23–32]. As
the KS gap (even with the exact functional) severely under-
estimates the fundamental gap [24,25,31], the evaluation
of the DD is tremendously important. Recently, the impor-
tance of the DD in the excited-state [33] and time-
dependent [34,35] properties has also been highlighted.
Although several schemes have been proposed for calcu-
lating the DD, they can be very computationally demand-
ing for large systems, due to the use of the nonlocal
energy-dependent self-energy operators [6,7,10,11,18] or
of the Hartree-Fock operator [8,13,21].
In this Letter, we provide a systematic procedure for the

evaluation of the DD, based on perturbation theory [36].
The lowest-order estimate of the DD can be expressed as
an explicit universal (i.e., system-independent) functional
of the ground-state density and the KS LUMO density,
allowing very efficient and accurate calculations of the DD
and, via Eq. (3), the fundamental gap in the standard KS
method.
For the exact KS DFT, IðNÞ¼!"NðNÞ [22,23,28,37–39],

and therefore AðNÞ ¼ IðN þ 1Þ ¼ !"Nþ1ðN þ 1Þ. Con-
sequently, Eg [see Eq. (1)] can be expressed as

Eg ¼ "Nþ1ðN þ 1Þ ! "NðNÞ; (5)
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which is simply the energy difference between the HOMOs
of theN- and (N þ 1)-electron systems [26]. By subtracting
Eq. (2) from (5), !xc [see Eq. (3)] can be expressed as

!xc ¼ "Nþ1ðN þ 1Þ ! "Nþ1ðNÞ
¼ h ~c Nþ1 j ~HKS j ~c Nþ1i! hc Nþ1 j HKS j c Nþ1i:

(6)

Here, HKS)f! @2
2me

r2þvextðrÞþe2
R !ðr0Þ
jr!r0jdr

0þvxcð½!#;rÞg
and c iðrÞ are, respectively, the KS Hamiltonian and the ith
KS orbital of the N-electron system, with vxcð½!#; rÞ
being the XC potential and !ðrÞ ¼ PN

i¼1 jc iðrÞj2 being

the ground-state density. ~HKS ) f! @2
2me

r2 þ vextðrÞ þ
e2

R ~!ðr0Þ
jr!r0jdr

0 þ vxcð½~!#; rÞg and ~c iðrÞ are, respectively, the
KS Hamiltonian and the ith KS orbital of the (N þ 1)-
electron system, with vxcð½~!#; rÞ being the XC potential
and ~!ðrÞ ¼ PNþ1

i¼1 j ~c iðrÞj2 being the ground-state density.
Aiming to compute !xc (and hence Eg) using only one

KS calculation for the N-electron system (e.g., for being
applicable to solids), we express "Nþ1ðN þ 1Þ in terms of
f"iðNÞ; c iðrÞg, based on perturbation theory [36].

We choose HKS as the unperturbed Hamiltonian and
suppose that the unperturbed energy levels are nondegen-
erate. Let % be a dimensionless parameter, ranging
continuously from 0 (no perturbation) to 1 (the full pertur-
bation). Consider the perturbed Hamiltonian H% given by

H% ¼ HKS þ %H0
%; (7)

where the perturbation H0
%)e2

R ~!%ðr0Þ
jr!r0jdr

0þvxcð½~!%#;rÞ!
e2
R !ðr0Þ
jr!r0jdr

0!vxcð½!#;rÞ involves ~!%ðrÞ )
PNþ1

i¼1 j ~c %
i ðrÞj2

(filling the orbitals in order of increasing energy). Here,
f ~c %

i ðrÞg and f"%i ðN þ 1Þg are, respectively, the eigenstates
and eigenvalues of H%:

H%
~c %
i ðrÞ ¼ "%i ðN þ 1Þ ~c %

i ðrÞ: (8)

Equation (8) at % ¼ 1 is simply the KS equation for the
(N þ 1)-electron system, as it can be verified that f ~c iðrÞg
and f"iðN þ 1Þg are, respectively, the eigenstates and
eigenvalues of H%¼1. Therefore, "Nþ1ðN þ 1Þ ¼
"%¼1
Nþ1ðN þ 1Þ.
Writing H0

%,
~c %
i ðrÞ, and "%i ðN þ 1Þ as a power series in

%, we have

H0
% ¼ H0ð0Þ þ %H0ð1Þ þ %2H0ð2Þ þ * * * ; (9)

~c %
i ðrÞ ¼ c ð0Þ

i ðrÞ þ %c ð1Þ
i ðrÞ þ %2c ð2Þ

i ðrÞ þ * * * ; (10)

"%i ðN þ 1Þ ¼ "ð0Þi þ %"ð1Þi þ %2"ð2Þi þ * * * : (11)

Inserting Eqs. (7) and (9)–(11), into Eq. (8) gives

ðHKSþ%H0ð0Þþ%2H0ð1Þþ***Þðc ð0Þ
i þ%c ð1Þ

i þ%2c ð2Þ
i þ***Þ

¼ð"ð0Þi þ%"ð1Þi þ%2"ð2Þi þ***Þðc ð0Þ
i þ%c ð1Þ

i þ%2c ð2Þ
i þ***Þ:

(12)

Expanding Eq. (12) and comparing the coefficients of each
power of % yield an infinite series of simultaneous
equations.
To zeroth order ð%0Þ in Eq. (12), the equation is

HKSc
ð0Þ
i ðrÞ ¼ "ð0Þi c ð0Þ

i ðrÞ; (13)

which is simply the KS equation for the N-electron
system (i.e., the unperturbed system). We then have

c ð0Þ
i ðrÞ¼c iðrÞ and "ð0Þi ¼"iðNÞ. Therefore, "Nþ1ðNþ1Þ¼

"%¼1
Nþ1ðNþ1Þ+"ð0ÞNþ1¼"Nþ1ðNÞ. Correspondingly, !xc ¼

"Nþ1ðN þ 1Þ ! "Nþ1ðNÞ + "Nþ1ðNÞ ! "Nþ1ðNÞ ¼ 0 and
Eg ¼ !KS þ!xc + !KS. Therefore, to obtain a nonvan-
ishing !xc, it is necessary to go beyond the zeroth-order
theory.
To first order ð%1Þ in Eq. (12) (see the Supplemental

Material [40]), the first-order correction to the orbital
energy is

"ð1Þi ¼ hc ð0Þ
i j H0ð0Þ j c ð0Þ

i i ¼ hc i j H0
%¼0 j c ii; (14)

and the first-order correction to the orbital is

c ð1Þ
i ðrÞ ¼

X

j!i

hc ð0Þ
j j H0ð0Þ j c ð0Þ

i i
"ð0Þi ! "ð0Þj

c ð0Þ
j ðrÞ: (15)

Note that ~!%¼0ðrÞ¼
PNþ1

i¼1 j ~c %¼0
i ðrÞj2¼PNþ1

i¼1 jc ð0Þ
i ðrÞj2¼PNþ1

i¼1 jc iðrÞj2¼!ðrÞþ!LðrÞ, where !LðrÞ ) jc Nþ1ðrÞj2
is the KS LUMO density of the N-electron system.
Consequently, we have

H0
%¼0 ¼ e2

Z !Lðr0Þ
jr! r0jdr

0 þ vxcð½!þ !L#; rÞ ! vxcð½!#; rÞ:

(16)

As "Nþ1ðNþ1Þ¼"%¼1
Nþ1ðNþ1Þ+"ð0ÞNþ1þ"ð1ÞNþ1, we have

!xc¼"Nþ1ðNþ1Þ!"Nþ1ðNÞ+"ð1ÞNþ1

¼ hc Nþ1 jH0
%¼0 j c Nþ1i

¼e2
ZZ !LðrÞ!Lðr0Þ

jr!r0j drdr0þ
Z
!LðrÞfvxcð½!þ!L#;rÞ

!vxcð½!#;rÞgdr (17)

and Eg ¼ !KS þ!xc + !KS þ "ð1ÞNþ1. Equation (17) is a
key result, showing that the DD can be approximately
expressed as an explicit universal functional of !ðrÞ and
!LðrÞ and can be calculated in the standard KS method
without extra computational cost. Note that it can also be
derived from Eq. (6) by assuming (‘‘frozen orbital approxi-
mation’’) that

PRL 110, 033002 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

18 JANUARY 2013

033002-2



~c iðrÞ + c iðrÞ; i ¼ 1; 2; 3; . . . : (18)

To second order (%2) in Eq. (12) (see the Supplemental
Material [40]), the second-order correction to the orbital
energy is

"ð2Þi ¼ hc ð0Þ
i j H0ð0Þ j c ð1Þ

i iþ hc ð0Þ
i j H0ð1Þ j c ð0Þ

i i

¼
X

j!i

jhc j j H0
%¼0 j c iij2

"iðNÞ ! "jðNÞ þ hc i j H0ð1Þ j c ii; (19)

where

H0ð1Þ ¼ @H0
%

@%

""""""""%¼0

¼
Z !

e2

jr! r0jþ
$vxcð½~!%#; rÞ

$~!%ðr0Þ

#
@~!%ðr0Þ
@%

""""""""%¼0
dr0

¼
Z !

e2

jr! r0jþ fxcð½!þ !L#; r; r0Þ
#

,
!
2
XNþ1

i¼1

<½c -
i ðr0Þc ð1Þ

i ðr0Þ#
#
dr0: (20)

Here, fxcð½!#; r; r0Þ ) $vxcð½!#; rÞ=$!ðr0Þ is the XC ker-
nel, the asterisk denotes a complex conjugate, and <½* * *#
denotes the real part of ½* * *#. From Eq. (19), we have

"ð2ÞNþ1 ¼
X

j!Nþ1

jhc j j H0
%¼0 j c Nþ1ij2

"Nþ1ðNÞ ! "jðNÞ

þ hc Nþ1 j H0ð1Þ j c Nþ1i: (21)

Correspondingly, "Nþ1ðN þ 1Þ ¼ "%¼1
Nþ1ðN þ 1Þ + "ð0ÞNþ1þ

"ð1ÞNþ1 þ "ð2ÞNþ1. This gives !xc¼"Nþ1ðNþ1Þ!"Nþ1ðNÞ+
"ð1ÞNþ1þ"ð2ÞNþ1 and Eg¼!KSþ!xc+!KSþð"ð1ÞNþ1þ"ð2ÞNþ1Þ.

Extending the process further, the HOMO energy of the
(N þ 1)-electron system can be obtained by summing up
all the perturbation corrections to infinite order, i.e.,

"Nþ1ðNþ1Þ¼"%¼1
Nþ1ðNþ1Þ¼P1

n¼0"
ðnÞ
Nþ1. Therefore, we

can, in principle, obtain the exact !xc¼"Nþ1ðNþ1Þ!
"Nþ1ðNÞ¼P1

n¼1"
ðnÞ
Nþ1 and the exact Eg¼!KSþ!xc¼

!KSþ
P1

n¼1"
ðnÞ
Nþ1.

For any finite-order truncation of the above perturbation
series, if two or more unperturbed states share the same
energy, degenerate perturbation theory may be needed
[36]. Since the concept of the perturbation to the unper-
turbed Hamiltonian HKS remains valid, this scheme could
be extended to estimate the !xc (and hence the Eg) for the
degenerate cases based on the corresponding degenerate
perturbation theory.

As mentioned previously, the DD needs to be summed to
the KS gap to give the fundamental gap. While the DD
given by Eq. (4) should be the same as that given by Eq. (6)
for the exact functional, this property may no longer hold
true for an approximate functional. For example, for a LDA
or a generalized gradient approximation, while the DD

given by Eq. (4) is shown to vanish [13,21,30], we empha-
size that the DD can be favorably restored by Eq. (6) and
subsequently approximated by Eq. (17). Although a more
accurate approximation for the DD could be pursued by
higher-order perturbation theory, we adopt the DD given
by Eq. (17) (i.e., first-order correction) for simplicity.
Accordingly, the fundamental gap is predicted by summing
Eqs. (2) and (17) in our !KS þ!xc scheme.
Here, we examine the performance of various schemes

in the prediction of the fundamental gaps for the FG115
database [20], which consists of 115 accurate reference
values for the fundamental gaps of 18 atoms and 97
molecules at their experimental geometries. The funda-
mental gaps are calculated by our !KS þ !xc scheme, the
!KS scheme [by Eq. (2)], and the Eg scheme [by Eq. (5)],
using the LDA [41] and LB94 [42] functionals and the
6-311++G(3df,3pd) basis set, with a development version
of Q-CHEM3.2 [43]. The error for each entry is defined as
(error ¼ theoretical value! reference value). The nota-
tion used for characterizing statistical errors is as follows:
mean signed errors (MSEs), mean absolute errors (MAEs),
and root-mean-square (rms) errors. Note that, for the !KS

or !KS þ !xc schemes, only one KS calculation for the
N-electron system is required (i.e., applicable to solids),
while, for the Eg scheme, which is the !KS þ !xc scheme
with !xc being exactly calculated by Eq. (6) (with no
further approximations), two KS calculations for the
N- and (N þ 1)-electron systems are required (i.e., inap-
plicable to solids).
The calculated gaps are plotted against the reference

values in Fig. 1 (for LDA) and Fig. 2 (for LB94). For
both functionals, as the !KS gaps are shown to be vanish-
ingly small (some of them are even negative) for the small-
gap (smaller than 10 eV) systems, the DDs are essential for
the accurate prediction of the fundamental gaps. In fact,
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FIG. 1 (color online). Calculated versus reference fundamental
gaps for the FG115 database [20]. The fundamental gaps are
calculated by three schemes (see the text for details) using the
LDA functional.
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even for the large-gap (larger than 15 eV) systems, the DDs
remain significant fractions of the fundamental gaps. As
shown in Table I, the MAE associated with the !KS þ !xc

or Eg schemes is more than three times smaller than that
associated with the !KS scheme [40].

Due to the use of the frozen orbital approximation [see
Eq. (18)] in the evaluation of the DD, the !KS þ !xc gaps
tend to be larger than the Eg gaps. For rare gas atoms (e.g.,
He, Ne, and Ar), where this approximation becomes excel-
lent, the!KS þ !xc gaps are very close to the Eg gaps [40].

For LB94, the Eg gaps are in excellent agreement with
the reference values, due to the correct asymptote of the
LB94 potential, which is a key factor for the accurate
prediction of the HOMO energies [28,37,38,42] and, via
Eq. (5), the fundamental gaps. By contrast, for LDA, the Eg

gaps tend to underestimate the reference values, due to the
imbalanced self-interaction errors (as the LDA potential is
asymptotically incorrect) in the predicted HOMO energies
of the N- and (N þ 1)-electron systems [2,4,28,37,38,42].
As the !KS þ!xc gaps tend to overestimate the Eg gaps, it
appears that there is a fortuitous cancellation of errors in
the predicted !KS þ !xc gaps, when compared with the
reference values.

In conclusion, we have provided a systematic procedure
for the direct evaluation of the DD, based on perturbation
theory. The lowest-order estimate of the DD is an explicit
universal functional of the ground-state density and the KS
LUMO density [see Eq. (17)], presenting a simple, effi-
cient, and nonempirical scheme for the direct evaluation of
the DD in the standard KS method. The fundamental gap
can be accurately predicted by the sum of the KS gap and
the estimated DD. The validity and accuracy of this scheme
have been demonstrated for a wide variety of atoms and
molecules, extending the applicability of KS DFT to an
area long believed to be beyond its reach. To further
improve the accuracy of this scheme, a more accurate

functional and a more accurate approximation for the DD
(based on higher-order perturbation theory) should be
adopted, although this will necessarily be somewhat
more expensive. Since the concepts of the DD and the
perturbation to the unperturbed Hamiltonian HKS are still
valid for solid-state systems, this scheme could be
extended to estimate the DD (a correction to the KS band
gap) for solids, where the prediction of accurate funda-
mental band gaps is very challenging for KS DFT. Work in
this direction is in progress.
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