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We calculate the dynamic structure factor S(k ,#) of liquid Ge (l-Ge" at temperature T!1250 K, and of
amorphous Ge (a-Ge" at T!300 K, using ab initio molecular dynamics. The electronic energy is computed
using density-functional theory, primarily in the generalized gradient approximation, together with a plane-
wave representation of the wave functions and ultrasoft pseudopotentials. We use a 64-atom cell with periodic
boundary conditions, and calculate averages over runs of up to about 16 ps. The calculated liquid S(k ,#)
agrees qualitatively with that obtained by Hosokawa et al. $Phys. Rev. B 63, 134205 !2001"% using inelastic
x-ray scattering. In a-Ge, we find that the calculated S(k ,#) is in qualitative agreement with that obtained
experimentally by Maley et al. $Phys. Rev. Lett. 56, 1720 !1986"%. Our results suggest that the ab initio

approach is sufficient to allow approximate calculations of S(k ,#) in both liquid and amorphous materials.
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I. INTRODUCTION

Ge is a well-known semiconductor in its solid phase, but
becomes metallic in its liquid phase. Liquid Ge (l-Ge" has,
near its melting point, an electrical conductivity characteris-
tic of a reasonably good metal (&1.6"10#4 '#1 cm#11),
but it retains some residual structural features of the solid
semiconductor.1 For example, the static structure factor S(k)
has a shoulder on the high-k side of its first !principal" peak,
which is believed to be due to residual tetrahedral short-
range order. This shoulder is absent in more conventional
liquid metals such as Na or Al, which have more of a close-
packed structure in the liquid state and a shoulderless first
peak in the structure factor. Similarly, the bond-angle distri-
bution function just above melting is believed to have peaks
at two angles, one near 60° and characteristic of close pack-
ing, and one near 108°, indicative of tetrahedral short-range
order. This latter peak rapidly disappears with increasing
temperature in the liquid state.
These striking properties of l-Ge have been studied theo-

retically by several groups. Their methods fall into two broad
classes: empirical and first principles. A typical empirical
calculation is that of Yu et al.,2 who calculate the structural
properties of l-Ge assuming that the interatomic potentials in
l-Ge are a sum of two-body and three-body potentials of the
form proposed by Stillinger and Weber.3 These authors find,
in agreement with experiment, that there is a high-k shoulder
on the first peak of S(k) just above melting, which fades
away with increasing temperature. However, since in this
model all the potential energy is described by a sum of two-
body and three-body interactions, the interatomic forces are
probably stronger and the ionic diffusion coefficient is cor-
respondingly smaller than their actual values.
In the second approach, the electronic degrees of freedom

are taken explicitly into account. If the electron-ion interac-
tion is sufficiently weak, it can be treated by linear-response
theory.4 In linear response, the total energy in a given ionic

configuration is a term which is independent of the ionic
arrangement, plus a sum of two-body ion-ion effective inter-
actions. These interactions typically do not give the bond-
angle-dependent forces which are present in the experiments,
unless the calculations are carried to third order in the
electron-ion pseudopotential,4 or unless electronic fluctuation
forces are included.5 Such interactions are, however, in-
cluded in the so-called ab initio approach, in which the
forces on the ions are calculated from first principles, using
the Hellman-Feynman theorem together with density-
functional theory6 to treat the energy of the inhomogeneous
electron gas. This approach not only correctly gives the
bond-angle-dependent ion-ion interactions, but also, when
combined with standard molecular-dynamics techniques,
provides a good account of the electronic properties and such
dynamical ionic properties as the ionic self-diffusion coeffi-
cients.
This combined approach, usually known as ab initio mo-

lecular dynamics, was pioneered by Car and Parrinello,7 and,
in somewhat different form, has been applied to a wide range
of liquid metals and alloys, including l-Ge,8–10

l-GaxGe1#x ,
11 stoichiometric III-V materials such as

l-GaAs, l-GaP, and l-InP,12,13 and nonstoichiometric
l-GaxAs1#x ,

14 l-CdTe,15 and l-ZnTe,16 among other materi-
als which are semiconducting in their solid phases. It has
been employed to calculate a wide range of properties of
these materials, including the static structure factor, bond-
angle distribution function, single-particle electronic density
of states, dc and ac electrical conductivity, and the ionic self-
diffusion coefficient. The calculations generally agree quite
well with data from available experiments.
A similar ab initio approach has also been applied exten-

sively to a variety of amorphous semiconductors, usually ob-
tained by quenching an equilibrated liquid state from the
melt. For example, Car, Parrinello, and their collaborators
have used their own ab initio approach !based on treating the
Fourier components of the electronic wave functions as fic-
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titious classical variables" to obtain many structural and elec-
tronic properties of amorphous Si.17,18 A similar approach
has been used by Lee and Chang.19 Kresse and Hafner8 ob-
tained both S(k) and g(r), as well as many electronic prop-
erties, of a-Ge, using an ab initio approach similar to the one
used here, in which the forces are obtained directly from the
Hellmann-Feynman theorem and no use is made of fictitious
dynamical variables for the electrons, as in the Car-Parrinello
approach. A similar calculation for a-Si has been carried out
by Cooper et al.,20 also making use of a plane-wave basis
and treating the electron-density functional in the generalized
gradient approximation and other amorphous semiconductors
have been carried out by !GGA".21 More recently, a number
of calculations for a-Si Sankey and Niklewsky,22 and by
Drabold and collaborators.23 These calculations use ab initio
molecular dynamics and electronic density-functional theory,
but in a localized basis. A recent study, in which S(k) and
g(r) were computed for several ab initio structural models
of a-Si, has been carried out by Alvarez et al.24

Finally, we mention a third approach, intermediate be-
tween empirical and ab initio molecular dynamics, generally
known as tight-binding molecular dynamics. In this ap-
proach, the electronic part of the total energy is described
using a general tight-binding Hamiltonian for the band elec-
trons. The hopping matrix elements depend on separation
between the ions, and additional terms are included to ac-
count for the various Coulomb energies in a consistent way.
The parameters can be fitted to ab initio calculations, and
forces on the ions can be derived from the separation depen-
dence of the hopping matrix elements. This approach has
been used, e.g., to treat l-Si,25 a-Si,26 and liquid compound
semiconductors such as l-GaAs and l-GaSb.27 Results are in
quite good agreement with experiment.
In this paper, we extend the method of ab initio molecular

dynamics !MD" to another dynamical property of the ions:
the dynamical structure factor, denoted S(k ,#). While no
fundamentally new theory is required to calculate S(k ,#),
this quantity provides additional information about the time-
dependent ionic response beyond what can be extracted from
other quantities. The present work appears to be the first to
calculate S(k ,#) using ab initio molecular dynamics. Here,
we will calculate S(k ,#) for l-Ge, where some recent
experiments28 provide data for comparison, and also for
amorphous Ge (a-Ge". In the latter case, using a series of
approximations described below, we are able to infer the
vibrational density of states of as-quenched a-Ge near tem-
perature T!300 K in reasonable agreement with experi-
ment. The calculated S(k ,#) for the liquid also agrees quite
well with experiment, especially considering the computa-
tional uncertainties inherent in an ab initio simulation with
its necessarily small number of atoms and limited time inter-
vals.
The remainder of this paper is organized as follows. A

brief review of the calculational method is given in Sec. II.
The results are presented in Sec. III, followed by a discussion
and a summary of our conclusions in Sec. IV.

II. METHOD

Our method is similar to that described in several previ-
ous papers,10,11,14 but uses the Vienna ab initio simulation

package !VASP", whose workings have been extensively de-
scribed in the literature.29 Briefly, the calculation involves
two parts. First, for a given ionic configuration, the total
electronic energy is calculated, using an approximate form of
the Kohn-Sham free-energy density functional, and the force
on each ion is also calculated, using the Hellmann-Feynman
theorem. Second, Newton’s equations of motion are inte-
grated numerically for the ions, using a suitable time step.
The process is repeated for as many time steps as are needed
to calculate the desired quantity. To hold the temperature
constant, we use the canonical ensemble with the velocity
rescaled at each time step. Further details of this approach
are given in Ref. 10.
The VASP code uses ultrasoft Vanderbilt

pseudopotentials,30 a plane-wave basis for the wave func-
tions, with the original Monkhorst-Pack (3"3"3) k-space
meshes31 and a total of 21 952 plane waves, corresponding to
an energy cutoff of 104.4 eV. We use a finite-temperature
version of the Kohn-Sham theory,32 in which the electron-gas
Helmholtz free energy is calculated on each time step. This
version also broadens the one-electron energy levels to case
the k-space sums converge more rapidly. Most of our calcu-
lations are done using the GGA !Ref. 21" for the exchange-
correlation energy !we use the particular form of the GGA
developed by Perdew and Wang21", but some are also carried
out using the local-density approximation !LDA".
In our iteration of Newton’s laws in liquid Ge (l-Ge", we

typically start from the diamond structure !at the experimen-
tal liquid state density for the temperature of interest", then
iterate for 901 time steps, each 10 fs, using the LDA. To
obtain S(k) within the GGA, we start from the LDA configu-
ration after 601 time steps, then iterate using the GGA for an
additional 1641 10-fs time steps, or 16.41 ps. We calculate
the GGA S(k) by averaging over an interval of 13.41 ps
within this 16.41 time interval, starting at a time t2 after the
start of the GGA simulation. We average over all t2’s from
1.0 to 3.0 ps.
For comparison, we have also calculated S(k) within the

LDA. This S(k) is obtained by averaging over 601 time steps
of the 901 time-step LDA simulation. This 601-step interval
is chosen to start a time t1 after the start of this simulation;
the calculated LDA S(k) is also averaged over all t1’s from
1.0 ps to 3.0 ps.
To calculate quantities for amorphous Ge (a-Ge", we start

with Ge in the diamond structure at T!1600 K but at the
calculated liquid density for that temperature, as given in
Ref. 10. Next, we quench this sample to 300 K, cooling at a
uniform rate, so as to reach 300 K in about 3.25 ps !in 10-fs
time steps". Finally, starting from T!300 K, we iterate for a
further 897 time steps, each of 10 fs, or 8.97 ps, using the
LDA. The LDA S(k) is then obtained by averaging over 5.97
of those 8.97 ps, starting at a time t1 after the system has
reached 300 K; we also average this S(k) over all t1’s from
1.0 to 3.0 ps. To obtain S(k) within the GGA, we start the
GGA after 5.7 ps of the LDA simulation, and then iterate
using the GGA for an additional 18.11 ps in 10-fs time steps.
The GGA S(k) is obtained by averaging over a 15.11-ps time
interval of this 18.11-ps run, starting at a time t2 after the
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start of the GGA simulation; we also average over all values
of t2 from 1.0 to 3.0 ps.
The reader may be concerned that the 3.25-ps quench

time is very short, very unrepresentative of a realistic
quench, and very likely to produce numerous defects in the
quenched structure, which are not typical of the a-Ge studied
in experiments. In defense, we note that some of these de-
fects may be annealed out in the subsequent relaxation at low
temperatures, which is carried out before the averages are
taken. In addition, the static structure factor we obtain agrees
well with experiment, and the dynamic structure factor is
also consistent with experiment, as discussed below. Thus,
the quench procedure appears to produce a material rather
similar to some of those studied experimentally. Finally, we
note that experiments on a-Ge themselves show some varia-
tion, depending on the exact method of sample preparation.
We have used the procedure outlined above to calculate

various properties of l-Ge and a-Ge. Most of these calculated
properties have been described in previous papers, using
slightly different methods, and therefore will be discussed
here only very briefly.33 However, our results for the dy-
namic structure factor S(k ,#) as a function of wave vector k
and frequency # are new, and will be described in detail. We
also present our calculated static structure factor S(k), which
is needed in order to understand the dynamical results.
S(k) is defined by the relation

S!k "!
1

N ! (
i , j

exp)ik•!ri! t "#rj! t ""*"
t0

#N+k,0 , !1"

where ri is the position of the ith ion at time t, N is the
number of ions in the sample, and the triangular brackets
denote an average over the sampling time. In all our calcu-
lations, we have used a cubic cell with N!64 and periodic
boundary conditions in all three directions. The choices of
particle number and cell shape are compatible with any pos-
sible diamond-structure Ge within the computational cell.
S(k,#) is defined by the relation !for k,0, #,0)

S!k,#"!
1

2-N##.

.

exp! i#t "/0!k,t "0!#k,0"1dt , !2"

where the Fourier component 0(k,t) of the number density
is defined by

0!k,t "!(
i!1

N

exp$#ik•ri! t "% . !3"

In our calculations, the average / . . . 1 is computed as

/0!k,t "0!Àk,0"1!
1

2t1
#
0

2t1
0!k,t1$t "0!Àk,t1"dt1 !4"

over a suitable range of initial times t1. Because of the ex-
pected isotropy of the liquid or amorphous phase, which
should hold in the limit of large N, S(k,#) should be a
function only of the magnitude k rather than the vector k, as
should the structure factor S(k).

Our calculations are carried out over relatively short
times. To reduce statistical errors, we therefore first calculate

S!k,# ,t1 ,t2"!
1

-N#0
t2
dt0!k,t1$t "0!#k,t1"exp! i#t ".

!5"

For large enough t2 , S(k,# ,t1 ,t2) should become indepen-
dent of t2 but will still retain some dependence on t1. There-
fore, in the liquid, we obtain our calculated dynamic struc-
ture factor, Scalc(k,#), by averaging over a suitable range of
t1 from 0 to 2t1:

Scalc!k,#"!
1

2t1
#
0

2t1
dt1S!k,# ,t1 ,t2". !6"

We choose our initial time in the t1 integral to be 1 ps after
the start of the GGA calculation, and !in the liquid" 2t1
!6 ps. We choose the final MD time t2!16.41 ps. For
a-Ge, we use the same procedure but t2!18.11 ps in our
simulations. For our finite simulational sample, the calcu-
lated S(k) and S(k,#) will, in fact, depend on the direction
as well as the magnitude of k. To suppress this finite-size
effect, we average the calculated S(k) and S(k,#) over all k
values of the same length. This averaging considerably re-
duces statistical error in both S(k ,#) and S(k).
Finally, we have also incorporated the experimental reso-

lution functions into our plotted values of S(k ,#). Specifi-
cally, we generally plot Sav(k ,#)/S(k), where Sav(k ,#) is
obtained from the !already orientationally averaged" S(k ,#)
using the formula

Sav!k ,#"!#
#.

.

R!###!"S!k ,#!"d#!, !7"

where the resolution function R(#) $normalized so that
3#.

. R(#)d#!1] is

R!#"!
1

!-#0

exp!##2/#0
2". !8"

In an isotropic liquid, we must have S(k ,##)!S(k ,#),
since our ions are assumed to move classically under the
calculated first-principles force. Our orientational averaging
procedure guarantees that this will be satisfied identically in
our calculations, since for every k, we always include Àk in
the same average. We will nonetheless show results for nega-
tive # for clarity, but they do not provide any additional
information.

III. RESULTS

A. S„k… for l-Ge and a-Ge
In Fig. 1, we show the calculated S(k) for l-Ge at T

!1250 K, as obtained using the procedure described in Sec.
II. The two calculated curves are obtained using the GGA
and the LDA for the electronic energy-density functional;
they lead to nearly identical results. The calculated S(k)
shows the well-known characteristics already found in pre-
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vious simulations.8,10 Most notably, there is a shoulder on the
high-k side of the principal peak, which is believed to arise
from residual short-range tetrahedral order persisting into the
liquid phase just above melting. We also show the experi-
mental results of Waseda et al.;34 agreement between simu-
lation and experiment is good, and in particular the shoulder
seen in experiment is also present in both calculated curves
!as observed also in previous simulations".
We have also calculated S(k) for a model of amorphous

Ge (a-Ge" at 300 K. We prepare our sample of a-Ge as
described in the previous section. For l-Ge, we average the
calculated S(k) over different k vectors of the same length.
In Fig. 2, we show the calculated S(k) for a-Ge at T!300,
again using both the GGA and the LDA. The sample is pre-

pared and the averages obtained as described in Sec. II. In
contrast to l-Ge, but consistent with previous simulations,8,24

the principal peak in S!k" is strikingly split. The calculations
are in excellent agreement with experiments carried out on
as-quenched a-Ge at T!300 K;35 in particular, the split prin-
cipal peak seen in experiment is accurately reproduced by
the simulations.
We have also calculated a number of other quantities for

both l-Ge and a-Ge, including the pair distribution function
g(r), and the electronic density of states n(E). For l-Ge, we
calculated n(E) using the Monkhorst-Pack mesh with
gamma point shifting !one of the meshes recommended in
the VASP package". The resulting n(E) is generally similar to
that found in previous calculations,8,10 provided that an av-

FIG. 1. !Color online" Static structure factor
S(k) for l-Ge at T!1250 K, just above the ex-
perimental melting temperature. Full curve: pre-
sent work, as calculated using the generalized
gradient approximation !GGA; see text". Dashed
curve: present work, but using the local-density
approximation !LDA; see text". Open circles:
measured S(k) near T!1250 K, as given in
Ref. 34.

FIG. 2. !Color online" Full curve: Calculated
S(k) for a-Ge at T!300 K, as obtained using the
GGA. Structure is prepared as described in the
text. Dashed curve: same as full curve, but calcu-
lated in the LDA. Open circles: measured S(k)
for a-Ge at T!300 K, as given in Ref. 35.
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erage is taken over at least five to ten liquid state configura-
tions. Our n(E) for a-Ge $calculated using a shorter averag-
ing time than that used below for S(k ,#)] is also similar to
that found previously.8 Our calculated g(r)’s for both l-Ge
and a-Ge, as given by the VASP program, are similar to those
found in Refs. 8 and 10. The calculated number of nearest
neighbors in the first shell is 4.18 for a-Ge measured to the
first minimum after the principal peak in g(r). For l-Ge, if
we count as ‘‘nearest neighbors’’ all those atoms within 3.4
Å of the central atom !the larger of the cutoffs used in Ref. 8"
we find approximately 7.2 nearest neighbors, quite close to
the value of 6.9 obtained in Ref. 8 for that cutoff. Finally, we
have recalculated the self-diffusion coefficient D(T) for l-Ge
at T!1250 K, from the time derivative of the calculated
mean-square ionic displacement; we obtain a result very
close to that of Ref. 10.

B. S„k ,!… for l-Ge and a-Ge
1. l-Ge

Figure 3 shows the calculated ratio S(k ,#)/S(k) for l-Ge
at T!1250 K, as obtained using the averaging procedure
described in Sec. II. We include a resolution function $Eqs.

!7" and !8"% of width 4#!2.5 meV, the same as the quoted
experimental width.28 In Fig. 4, we show the same ratio, but
without the resolution function !i.e., with #0!0). Obvi-
ously, there is much more statistical noise in this latter case,
though the overall features can still be distinguished.
To interpret these results, we first compare the calculated

S(k ,#) in l-Ge with hydrodynamic predictions, which
should be appropriate at small k and # . This prediction takes
the form !see, for example, Ref. 36"

2-
S!k ,#"

S!k "
!

5#1

5 $ 2DTk
2

#2$!DTk
2"2

%
$
1

5 $ 6k2

!#$csk "2$!6k2"2

$
6k2

!##csk "2$!6k2"2
% . !9"

Here 5!cP /cV is the ratio of specific heats, constant pres-
sure, and constant volume; DT is the thermal diffusivity; cs
is the adiabatic sound velocity; and 6 is the sound attenua-
tion constant. DT and 6 can in turn be expressed in terms of
other quantities. For example, DT!7T /(0cP), where 7T is
the thermal conductivity and 0 is the atomic number density.
Similarly, 6! 1

2 $a(5#1)/5$b% , where a!7T /(0cV) and b
is the kinematic longitudinal viscosity !see, for example, Ref.
36, pp. 264–266".

FIG. 3. Calculated ratio of dynamic structure factor S(k ,#) to
static structure factor S(k) for l-Ge at T!1250 K for several values
of k, plotted as a function of # , calculated using ab initio molecular
dynamics with a MD time step of 10 fs. For clarity, each curve has
been vertically displaced by 0.05 units from the curve below. In
each case, the plotted curve is obtained by averaging both the cal-
culated S(k,#) and the calculated S(k) over all values of k of the
same length. We also incorporate a Gaussian resolution function of
half width 4#0!2.5 meV, as in Eqs. !7" and !8". This value of #0

is chosen to equal the quoted experimental resolution !Ref. 28".

FIG. 4. Same as in Fig. 3, but without the resolution func-
tion.
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Equation !9" indicates that S(k ,#) in the hydrodynamic
regime should have two propagating peaks centered at #
!%csk , and a diffusive peak centered at #!0 of width
determined by DT . The calculated S(k ,#)/S(k) for the three
smallest values of k in Fig. 3 does show the propagating
peaks. We estimate peak values of 4#&10 meV for k

!5.60 nm#1, 4#&11 meV for k!7.92 nm#1, and !some-
what less clearly" 4#&13 meV for k!9.70 nm#1. The
value of cs estimated from the lowest-k value is cs&2.7
"105 cm/sec. !The largest of these three k values may al-
ready be outside the hydrodynamic, linear-dispersion
regime."
These predictions agree reasonably well with the mea-

sured S(k ,#) obtained by Hosokawa et al.,28 using inelastic
x-ray scattering. For example, the measured sound-wave
peaks for k!%6 nm#1 occur near 10 meV, while those k
!%12 nm#1 occur at 4#!17.2 meV. Furthermore, the in-
tegrated relative strength of our calculated sound-wave
peaks, compared to that of the central diffusion peak, de-
creases between k!7.92 nm#1 and 12.5 nm#1, consistent
with both Eq. !9" and the change in experimental behavior28

between k!6 nm#1 and 12 nm#1.
Because S(k ,#) in Fig. 3 already includes a significant

Gaussian smoothing function, a quantitatively accurate half
width for the central peak, and hence a reliable predicted
value for DT , cannot be extracted. A rough estimate can be
made as follows. For the smallest-k value of 5.6 nm#1, the
full width of the central peak at half maximum is around 7.5
meV. If the only broadening were due to this Gaussian
smoothing, the full width would be around 24#0

!5.5 meV. Thus, a rough estimate of the intrinsic full width
is 8!7.52#5.52!5 meV824DTk

2. This estimate seems
reasonable from the raw data for S(k ,#) shown in Fig. 4.
Using this estimate, one obtains DT81.3"10#3 cm2/sec.
The hydrodynamic expression for S(k ,#)/S(k) was origi-

nally obtained without consideration of the electronic de-
grees of freedom. Since l-Ge is a reasonably good metal, one
might ask if the various coefficients appearing in Eq. !9"
should be the full coefficients, or just the ionic contribution
to those coefficients. For example, should the value of DT

which determines the central peak width be obtained from
the full cP , cV , and 7T , or from only the ionic contributions
to these quantities? For l-Ge, the question is most relevant
for 7T , since the dominant contribution to cP and cV should
be the ionic parts, even in a liquid metal.4 However, the
principal contribution to 7T is expected to be the electronic
contribution.
We have made an order-of-magnitude estimate of DT us-

ing the experimental liquid number density and the value
CP!(5/3)kB per ion, obtaining the electronic contribution to
7T from the Wiedemann-Franz law37 together with previ-
ously calculated estimates of the electronic contribution.10

This procedure yields DT&0.1 cm
2/sec, about two orders-

of-magnitude greater than that extracted from Fig. 3, and
well outside the possible errors in that estimate. We conclude
that the DT which should be used in Eq. !9" for l-Ge !and by
inference, other liquid metals" is the ionic contribution only.

In support of this interpretation, we consider what one
expects for S(k ,#) in a simple metal such as Na. In such a
metal, ionic motions are quite accurately determined by ef-
fective pairwise screened ion-ion interactions.4 Since the
ionic motion is determined by such an interaction, the
S(k ,#) resulting from that motion should not involve the
contribution of the electron gas to the thermal conductivity.
Although l-Ge is not a simple metal, it seems plausible that
its S(k ,#) should be governed by similar effects, at least in
the hydrodynamic regime. This plausibility argument is sup-
ported by our numerical results.
For k beyond around 12 nm#1, the hydrodynamic model

should start to break down, since the dimensionless param-
eter #9 !where 9 is the Maxwell viscoelastic relaxation time"
becomes comparable to unity. At these larger k’s, both our
calculated and the measured28 curves of S(k ,#)/S(k) con-
tinue to exhibit similarities. Most notable is the existence of
a single, rather narrow peak for k near the principal peak of
S(k), followed by a reduction in height and broadening of
this central peak as k is further increased. This narrowing
was first predicted by de Gennes.38 In our calculations, it
shows up in the plot for k!20.9 nm#1, for which the half
width of S(k ,#)/S(k) is quite narrow, while at k!28.5 and
30.7 nm#1, the corresponding plots are somewhat broader
and lower. By comparison, the measured central peak in
S(k ,#)/S(k) is narrow at k!20 nm#1 and especially at k
!24 nm#1, while it is broader and lower at k!28 nm#1.28

The likely physics behind the de Gennes narrowing is
straightforward. The half width of S(k ,#) is inversely pro-
portional to the lifetime of a density fluctuation of wave
number k. If that k coincides with the principal peak in the
structure factor, a density fluctuation will be in phase with
the natural wavelength of the liquid structure, and should
decay slowly, in comparison to density fluctuations at other
wavelengths. This is indeed the behavior observed both in
our simulations and in experiment.
In further support of this picture, we attempt to describe

these fluctuations by a very oversimplified Langevin model.
We suppose that the Fourier component 0(k,t) $Eq. !3"% is
governed by a Langevin equation

0̇!k,t "!#:0!k,t "$;! t ". !10"

Here the dot is a time derivative, : is a constant, and ;(t) is
a random time-dependent ‘‘force’’ which has ensemble aver-
age /;1!0 and correlation function /;(t);*(t!)1!A+(t
#t!). Equation !10" can be solved by standard methods !see,
e.g., Ref. 36 for a related example", with the result !for suf-
ficiently large t)

/0!k,t "0*!k,t$9"1!
-A

:
exp!#&9&:". !11"

According to Eq. !2", S(k ,#) is, to within a constant factor,
the frequency Fourier transform of this expression, i.e.,

S!k ,#"<#
#.

.

!-A/:"exp! i#9"exp!#&9&:"d9 , !12"

or, on carrying out the integral,
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S!k ,#"<
-A

#2$:2
. !13"

This is a Gaussian function centered at #!0 of half width : .
On the other hand, the static structure factor

S!k "< lim
9→0

/0!k,t "0*!k,t$9"1!
-A

:
. !14"

Thus, if the constant A is independent of k, the half width :
of the function S(k ,#) at wave number k is inversely pro-
portional to the static structure S(k). This prediction is con-
sistent with the ‘‘de Gennes narrowing’’ seen in our simula-
tions and in experiment.28

To summarize, there is overall a striking similarity in the
shapes of the experimental and calculated curves for
S(k ,#)/S(k) both in the hydrodynamic regime and at larger
values of k.

2. a-Ge

We have also calculated the dynamic structure for our
sample of a-Ge at T!300 K. The results for the ratio
S(k ,#)/S(k) are shown in Figs. 5 and 6 for a range of k
values, and, over a broader range of # , in Fig. 7. Once again,
both S(k ,#) and S(k) are averaged over different values of
k of the same length, as described above. We have incorpo-
rated a resolution function of width 4#0!2 meV into
S(k ,#). This width is a rough estimate for the experimental

resolution function in the measurements of Maley et al.;39

we assume it to be smaller than the liquid case because the
measured width of the central peak in S(k ,#)/S(k) for a-Ge
is quite small.
Ideally, our calculated S(k ,#) should be compared to the

measured one. However, the published measured quantity is
not S(k ,#) but is, instead, based on a modified dynamical
structure factor, denoted G(k ,#), and related to S(k ,#) by39

G!k ,#"!' C
k2

( $ 4#

n!# ,T "$1%S!k ,#". !15"

Here C is a k- and #-independent constant, and n(# ,T)
!1/$e4#/kBT#1% is the phonon occupation number for
phonons of energy E!4# at temperature T. The quantity
plotted by Maley et al.39 is an average of G(k ,#) over a
range of k values from 40 to 70 nm#1. These workers as-
sumed that this average is proportional to the vibrational
density of states nvib(#). The measured nvib(#) as obtained
in this way39 is shown in Fig. 8 for two different amorphous
structures, corresponding to two different methods of prepa-
ration, and having differing degrees of disorder.
In order to compare our calculated S(k ,#) to experiment,

we use Eq. !15" to infer G(k ,#), then average over a suit-
able range of k. However, in using Eq. !15", we use the
classical form of the occupation factor, n(4#)$1
8kBT/4# . This choice is justified because we have calcu-

FIG. 5. Calculated S(k ,#)/S(k) for a-Ge at T!300 K at k
=35 nm#1, plotted as a function of # . Again, each curve has been
vertically displaced by appropriate amounts from the one below it,
as evident from the figure, and both S(k ,#) and S(k) have been
plotted after an average over all k’s of the same length. We also
incorporate a Gaussian resolution function of half width 4#0

!2 meV. This value is chosen to give the best results for nvib(#)
as measured by Ref. 39. The time step here is 10 fs.

FIG. 6. Same as Fig. 5, but at k>35 nm#1.
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lated S(k ,#) using classical equations of motion for the ions.
We thus obtain for the calculated vibrational density of states

nvib!#"8'C42

kBT
( ' #2

k2
( S!k ,#". !16"

In Fig. 8 we show two such calculated plots of nvib(#),
obtained by averaging Eq. !16" over two separate groups of
k’s, as indicated in the caption40. For comparison, we also
show nvib(#) for a-Ge as calculated in Ref. 8 directly from
the Fourier transform of the velocity-velocity autocorrelation
function.
The calculated plots for nvib(#) in Fig. 8 have some dis-

tinct structure, which arises from some corresponding high-
frequency structure in S(k ,#). The plot of nvib(#) for the

group of smaller k’s has two distinct peaks, near 8 meV and
29 meV, separated by a broad dip with a minimum near 18
meV. The plot corresponding to the group of larger k’s has
similar structure and width, but the dip is less pronounced.
The two experimental plots also have two peaks separated by
a clear dip. The two maxima are found around 10 and 35
meV, while the principal dip occurs near 16 meV. In addition,
the overall width of the two densities of states is quite simi-
lar.
The reasonable agreement between the calculated and

measured nvib(#) suggests that our ab initio calculation of
S(k ,#) for a-Ge is reasonably accurate. The noticeable dif-
ferences probably arise from several factors. First, there are
several approximations involved in going from the calculated
and measured S(k ,#)’s to the corresponding nvib(#)’s, and

FIG. 7. !Color online" Calculated
S(k ,#)/S(k) as in Figs. 5 and 6 but including
higher frequencies # . At 4#!60 meV, the
curves are arranged vertically in order of increas-
ing frequency. Each curve is vertically displaced
by 0.0005 units from the one below it.

FIG. 8. !Color online" Full curve: calculated
vibrational density of states nvib(#), in units of
10#3 states/meV. nvib(#) is obtained from the
resolution broadened S(k ,#) and S(k) of Fig. 7
using the formula nvib(#)!/Gcalc(k ,#)1, where
Gcalc(k ,#) is given by the right-hand side of Eq.
!16", and the averaging is carried out over the
three magnitudes of k near 40 nm#1 for which we
have computed S(k ,#). Dashed curve: same as
full curve, but calculated by averaging over the
six magnitudes of k near 90 nm#1 for which we
have computed S(k ,#). The open circles and
open stars denote the measured nvib(#), as re-
ported in Ref. 39 for two forms of a-Ge. Finally,
the open diamonds denote nvib(#) as calculated
in Ref. 8 from the ionic velocity-velocity autocor-
relation function !dot-dashed curves". In all plots
except that of Ref. 8, nvib(#) is normalized so
that 30

#maxn(#)d(4#)!1. #max is the frequency
at which nvib(#)→0, and is estimated from this
figure by extrapolating the right-hand parts of the
solid and dashed curves linearly to zero.
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these may be responsible for some of the discrepancies. Sec-
ondly, there may actually be differences between the particu-
lar amorphous structures studied in the experiments, and the
quenched, then relaxed structure considered in the present
calculations. !However, the similarities in the static structure
factors suggest that these differences are not vast." Finally,
our calculations are carried out over relatively short times,
using relatively few atoms; thus, finite-size and finite-time
effects are likely to produce some additional errors. Consid-
ering all these factors, agreement between calculation and
experiment is quite reasonable.
Previous ab initio calculations for a-Ge !Ref. 8" have also

obtained a vibrational density of states, but this is computed
directly from the ionic velocity-velocity autocorrelation
function rather than from the procedure described here. The
calculations in Ref. 8 do not require computing S(k ,#). In
the present work, by contrast, we start from S(k ,#) !which
is calculated here in an ab initio calculation for a-Ge", and
we work backwards to get nvib(#). In principle, our S(k ,#)
includes all anharmonic effects on the vibrational spectrum
of a-Ge, though in extracting nvib(#) we assume that the
lattice vibrates harmonically about the metastable atomic po-
sitions. In Fig. 8, we also show the results of Ref. 8 for
nvib(#) as obtained from this correlation function. They are
quite similar to those obtained in the present work, but have
a somewhat deeper minimum between the two principal
peaks.
The quantity nvib(#) could, of course, also be calculated

directly from the force-constant matrix, obtained by assum-
ing that the quenched configuration is a local energy mini-
mum and calculating the potential energy for small positional
deviations from that minimum using ab initio molecular dy-
namics. This procedure has been followed for a-GeSe2, for
example, by Cappelletti et al.41 These workers have then ob-
tained S(q ,#) versus q from their nvib(#) at selected values
of # , within a one-phonon approximation. However, as

noted above, the present work produces the full S(k ,#) and
thus has, in principle, more information than does nvib(#).

IV. DISCUSSION AND CONCLUSIONS

The present results show that ab initio molecular dynam-
ics can be used to calculate the dynamic structure factor
S(k ,#) for both liquid and amorphous semiconductors. Al-
though the accuracy of the calculated S(k ,#) is lower than
that attained for static quantities, such as S(k), nonetheless it
is sufficient for comparison to most experimental features.
This is true even though our calculations are limited to 64-
atom samples and fewer than 20 ps of elapsed real time.
We have presented evidence that the calculated

S(k ,#)/S(k) in l-Ge agrees qualitatively with that measured
by inelastic x-ray scattering,28 and that the one calculated for
a-Ge leads to a vibrational density of states qualitatively
similar to the quoted experimental one.39 Since such calcu-
lations are thus shown to be feasible, our work should spur
further numerical studies, with longer runs on larger samples,
to obtain even more detailed information. Furthermore, we
can use these dynamical simulations to probe the underlying
processes at the atomic scale which give rise to specific fea-
tures in the measured and calculated S(k ,#).
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