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We propose a long-range corrected hybrid meta-generalized-gradient approximation (GGA) func-
tional, based on a global hybrid meta-GGA functional, M05 [Y. Zhao, N. E. Schultz, and D. G.
Truhlar, J. Chem. Phys. 123, 161103 (2005)], and empirical atom-atom dispersion corrections. Our
resulting functional, ωM05-D, is shown to be accurate for a very wide range of applications, such
as thermochemistry, kinetics, noncovalent interactions, equilibrium geometries, frontier orbital ener-
gies, fundamental gaps, and excitation energies. In addition, we present three new databases, IP131
(131 ionization potentials), EA115 (115 electron affinities), and FG115 (115 fundamental gaps), con-
sisting of experimental molecular geometries and accurate reference values, which will be useful in
the assessment of the accuracy of density functional approximations. © 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4704370]

I. INTRODUCTION

Because of its satisfactory accuracy and modest cost
in many applications, Kohn-Sham density functional the-
ory (KS-DFT) (Refs. 1 and 2) has become one of the most
popular electronic structure methods for large ground-state
systems.3–6 Its extension for treating excited-state systems,
time-dependent density functional theory (TDDFT),7, 8 has
also been widely used.

The crucial ingredient of KS-DFT, the exact exchange-
correlation (XC) energy functional Exc[ρ], however, remains
unknown and needs to be approximated. Functionals based
on the local density approximation (LDA), modeling the XC
energy density locally with that of a uniform electron gas
(UEG), have been quite successful for nearly free electron
systems,3, 4 though still insufficiently accurate for most quan-
tum chemical applications. Functionals based on the gener-
alized gradient approximations (GGAs), additionally incor-
porating the gradient of local density into the LDA, have
achieved reasonable accuracy in many applications. As an
extension of the GGA (for rather restricted set of density
variables), meta-GGA (MGGA) offers itself quite naturally.
Functionals depending directly on the Laplacian of the den-
sity have not been pursued intensively, because of the diffi-
culty of numerical evaluation. MGGAs, which adopt the ki-
netic energy density as a substitute for the Laplacian, have
shown evidences of superiority over GGAs.9–11

However, the LDA, GGAs, and MGGAs (commonly de-
noted as DFAs for density functional approximations) are
based on the localized model XC holes, while the exact XC
hole should be fully nonlocal. Currently, perhaps the most
successful approaches to taking into account the nonlocality
of XC hole are provided by hybrid DFT methods, incorpo-
rating a fraction of the exact Hartree-Fock (HF) exchange

a)Author to whom correspondence should be addressed. Electronic mail:
jdchai@phys.ntu.edu.tw.

into the DFAs. Hybrid density functionals have achieved
remarkable accuracy and have expanded the usefulness of
DFT for many applications. Noticeably, global hybrid MGGA
functionals,12–20 where the XC energy density depends on the
local density, the gradient of local density, a fraction of ex-
act exchange, as well as the exact KS kinetic energy den-
sity (a function of the occupied KS orbitals),21–24 have been
shown to potentially perform better than global hybrid GGA
functionals,15–20, 25, 26 due to the additional ingredient of ki-
netic energy density in global hybrid MGGA functionals.

In global hybrid functionals, a small fraction of the
exact HF exchange is added to a semilocal density func-
tional. In certain situations, especially in the asymptotic re-
gions of molecular systems, a large fraction (even 100%)
of HF exchange is needed. Aiming to remedy this, long-
range corrected (LC) hybrid DFT schemes have been actively
developed.27–37 LC hybrids retain the full HF exchange only
for the long-range electron-electron interactions, and thereby
resolve a significant part of the self-interaction problems as-
sociated with global hybrid functionals.

On the other hand, the development of accurate short-
range (SR) exchange density functionals ESR

x [ρ], plays an
important role in the progress of LC-DFT. In the first LC
scheme, an ansatz for the conversion of any Ex to ESR

x

was proposed by Iikura et al.,27 and has become widely
used. However, their resulting LC hybrid GGA functionals
do not outperform the corresponding global hybrid GGA
functionals for thermochemistry. In 2006, Vydrov et al. pro-
posed a different LC scheme,31 based on integrating a GGA
model exchange hole. Their resulting LC-ωPBE functional
has shown improved performance for thermochemistry and
barrier heights, and is comparable to global hybrid GGA func-
tionals such as B3LYP.38, 39 However, further improvements
following this direction require the development of more ac-
curate model exchange holes, which is a quite challenging
task.

0021-9606/2012/136(15)/154109/12/$30.00 © 2012 American Institute of Physics136, 154109-1
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Another approach to more accurate LC hybrid function-
als was proposed by Chai and Head-Gordon.35 First, aug-
menting the SR local spin density exchange energy density by
a flexible enhancement factor (of the Becke’s 1997 form40)
and fully reoptimizing the LC functional on a diverse train-
ing set, yields the ωB97 functional. Second, including an ad-
justable fraction of SR HF exchange in the ωB97 functional
with the similar reoptimization procedure, leads to the ωB97X
functional. ωB97 and ωB97X have been shown to be accurate
across a diverse set of test data, containing thermochemistry,
kinetics, and noncovalent interactions.35

However, problems associated with the lack of nonlocal-
ity of the DFA correlation hole, such as the lack of disper-
sion interactions (the missing of van der Waals forces), are
not resolved by the LC hybrid schemes. The correlation func-
tionals in typical LC hybrids are treated semilocally, which
cannot capture the long-range (LR) correlation effects.41, 42 To
remedy this, the DFT-D scheme was applied43 to extend the
ωB97X functional with damped atom-atom dispersion cor-
rections, denoted as ωB97X-D.36 Consequently, ωB97X-D
can obtain dispersive effects with essentially zero additional
computational cost relative to ωB97X. As an alternative ap-
proach, ωB97X has also been combined with the double-
hybrid methods,44–48 which mix both the HF exchange and
nonlocal orbital correlation energy from the second-order per-
turbation energy expression in wave function theory. The re-
sulting ωB97X-2 functional37 has yielded very high accuracy
for thermochemistry, kinetics, and noncovalent interactions,
though its fifth-order scaling with respect to system size may
limit its applicability to larger systems.

As the ωB97 series are LC hybrid GGAs, it seems a natu-
ral step to develop LC hybrid MGGAs and to assess their per-
formance. In this work, we propose a new LC hybrid MGGA-
D functional, denoted as ωM05-D, which is shown to be ac-
curate for a wide range of applications, when compared with
the two closely related functionals: a global hybrid MGGA
functional (M05-2X) (Ref. 19) and a LC hybrid GGA-D func-
tional (ωB97X-D).36 The rest of this paper is organized as
follows. In Sec. II, we briefly describe the relevant schemes
developed in the LC hybrid approach. In Sec. III, we propose
a new SR exchange functional, which serves as suitable basis
functionals for systematically generating accurate LC hybrid
MGGA functionals. The performance of the ωM05-D func-
tional is compared with other functionals in Sec. IV (on the
training set), and in Sec. V (on some test sets). In Sec. VI, we
give our conclusions.

II. RATIONALES OF LC HYBRID SCHEMES

For the LC hybrid schemes, one first defines the long-
range and short-range operators to partition the Coulomb op-
erator. The most popular type of splitting operator used is the
standard error function (erf),

1
r12

= erf(ωr12)
r12

+ erfc(ωr12)
r12

, (1)

where r12 ≡ |r12| = |r1 − r2| (atomic units are used through-
out this paper). On the right hand side of Eq. (1), the first term

is long-ranged, while the second term is short-ranged. The pa-
rameter ω defines the range of these operators.

In this work, we employ the erf/erfc partition, and use
the following expression (as suggested in the recent LC hy-
brid schemes35, 36, 49) for the LC hybrid functionals (cx is a
fractional number to be determined):

ELC-DFA
xc = ELR-HF

x + cxE
SR-HF
x + (1 − cx)ESR-DFA

x + EDFA
c ,

(2)
where ELR-HF

x , the LR-HF exchange, is computed by the oc-
cupied KS orbitals ψ iσ (r) with the LR operator,

ELR-HF
x = −1

2

∑

σ

occ.∑

i,j

∫∫
ψ∗

iσ (r1)ψ∗
jσ (r2)

× erf(ωr12)
r12

ψjσ (r1)ψiσ (r2)dr1dr2. (3)

ESR-HF
x , the SR-HF exchange, is computed similarly to the

above but with the SR operator,

ESR-HF
x = −1

2

∑

σ

occ.∑

i,j

∫∫
ψ∗

iσ (r1)ψ∗
jσ (r2)

× erfc(ωr12)
r12

ψjσ (r1)ψiσ (r2)dr1dr2. (4)

ESR-DFA
x is the SR exchange approximated by DFAs, and

EDFA
c is the correlation functional the same as that of the full

Coulomb interaction.
In view of the ELC-DFA

xc in Eq. (2), as ELR-HF
x and ESR-HF

x

are well defined, and accurate approximations for EDFA
c are

widely available, the accuracy of ESR-DFA
x is thus closely re-

lated to the accuracy of a LC hybrid functional.35, 36 The ana-
lytical form of the SR-LDA (the simplest SR-DFA) exchange
functional ESR-LDA

x can be obtained by the integration of the
square of the LDA density matrix with the SR operator,50

ESR-LDA
x =

∑

σ

∫
eSR-LDA
xσ (ρσ )dr. (5)

Here, eSR-LDA
xσ (ρσ ) is the SR-LDA exchange energy density for

σ -spin,

eSR-LDA
xσ (ρσ ) = eLDA

xσ F (aσ ), (6)

where

eLDA
xσ (ρσ ) = −3

2

(
3

4π

)1/3

ρ4/3
σ (r) (7)

is the LDA exchange energy density for σ -spin, kFσ

≡ (6π2ρσ (r))1/3 is the local Fermi wave vector, and aσ

≡ ω/(2kFσ ) is a dimensionless parameter controlling the value
of the attenuation function F(aσ ),

F (aσ ) = 1 − 8
3
aσ

[√
πerf

(
1

2aσ

)
− 3aσ + 4a3

σ

+
(
2aσ − 4a3

σ

)
exp

(
− 1

4a2
σ

) ]
. (8)

To develop a possible SR-DFA exchange functional
ESR-DFA

x based on the knowledge of a DFA exchange func-
tional EDFA

x , there are three schemes as follows. Consider the
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general expression of DFA exchange functional, which is

EDFA
x =

∑

σ

∫
eLDA
xσ (ρσ )F DFA

xσ dr, (9)

where F DFA
xσ is the DFA enhancement factor for σ -spin. De-

pending on the type of DFA, F DFA
xσ = 1 for a LDA, F DFA

xσ

= F GGA
xσ (ρσ ,∇ρσ ) for a GGA, F DFA

xσ = F MGGA
xσ (ρσ ,∇ρσ , τσ )

for a meta-GGA, where ρσ (r) is the spin density, ∇ρσ (r) is
the spin density gradient, and

τσ = 1
2

occ.∑

i

|∇ψiσ |2 (10)

is the spin kinetic energy density.
The first scheme was proposed by Iikura, Tsuneda, Yanai,

and Hirao (ITYH),27, 28, 33 where ESR-DFA
x can be obtained by

substituting a modified Fermi wave vector,

kσ = kFσ√
F DFA

xσ

(11)

into SR exchange energy density of Eq. (6), which
a priori produces ESR-DFA

x from any EDFA
x , and reduces nicely

to ESR-LDA
x from a ELDA

x . Although the ITYH scheme pos-
sesses an admirable simplicity, some of its deficiencies (which
potentially limit its accuracy) have been found.51

The second scheme was proposed by Vydrov, Heyd,
Krukau, and Scuseria (VHKS),31, 32 where for a given spher-
ically averaged exchange hole hDFA

x (r, r12), ESR-DFA
x is evalu-

ated as

ESR-DFA
x = 2π

∫
ρ(r)dr

∫ ∞

0
erfc(ωr12)hDFA

x (r, r12)r12dr12.

(12)
The pivot of this scheme is the engineering of the DFA
exchange hole. The GGA model exchange hole of Ernzer-
hof and Perdew52 (EP) provides a framework for modeling
any GGA exchange hole. It has made considerable appear-
ances in real applications after parametrization to reproduce
the Perdew, Burke, and Ernzerhof (PBE) GGA.53 In 2008,
Henderson, Janesko, and Scuseria51 (HJS) proposed another
general model for the spherically averaged exchange hole cor-
responding to a GGA exchange functional, based on the work
of EP. The HJS model improves upon the EP model by pre-
cisely reproducing the energy of the parent GGA, and by
enabling fully analytic evaluation of range-separated hybrid
density functionals. For meta-GGA, the TPSS exchange and
correlation hole models have been “reverse-engineered”.54

However, the resulting LC-TPSS functional (a LC hybrid
MGGA) has no satisfactory long-range correction effect.31

The third scheme was proposed by Chai and Head-
Gordon (CHG),35, 36 where ESR-DFA

x is evaluated as

ESR-DFA
x =

∑

σ

∫
eSR-LDA
xσ (ρσ )F DFA

xσ dr. (13)

This simple scheme is expected to work well for a small ω.
For highly parametrized EDFA

x , such as the B97,40 M05,18 and
M08 (Ref. 26) functionals, the CHG scheme is particularly
attractive due to its simplicity. However, how large is not too
large for the ω suitable for the CHG scheme? In Secs. III–
V, we will compare the performance of two new LC hybrid

MGGA-D functionals, where one is developed by the CHG
scheme, while the other is developed by a new scheme pro-
vided in this work, and our results help to answer the above
question.

III. LC HYBRID MGGA-D FUNCTIONALS

In this section, we introduce our new LC hybrid MGGA-
D functionals. Note that LC-TPSS has been developed by
utilizing the TPSS exchange hole (based on the VHKS
scheme),31 but it is found that LC-TPSS does not benefit much
by admixture of HF exchange. The M11 functional49 has been
developed based on the extension of a global hybrid MGGA
functional, M08,26 to LC-DFT, following the CHG scheme.35

Parallel to the strategy of the ωB97 series,35, 36 we choose
to modify the M05 functional. The M05 functional is a global
hybrid MGGA functional with a powerful form,18, 19 and our
work is based on modifying this functional. Its exchange
part consists of the PBE exchange functional and a reason-
able kinetic-energy-density enhancement factor. The PBE ex-
change is a theoretically sound starting point because it satis-
fies the correct UEG limit and also has reasonable behavior at
large values of the reduced spin density gradient sσ .

To satisfy the UEG limit of SR exchange, we replace the
PBE exchange energy density ePBE

xσ (ρσ ,∇ρσ ) with the SR-
PBE exchange energy density eSR-PBE

xσ (ρσ ,∇ρσ ) generated by
the HJS model exchange hole (based on the VHKS scheme),
whose virtues are indicated in Sec. II. To achieve a flexi-
ble functional form, we retain the kinetic-energy-density en-
hancement factor (similar to the CHG scheme). We denote
this resulting functional as SR-M05 (short-range M05) ex-
change, as it reduces to the M05 exchange at ω = 0.

ESR-M05
x =

∑

σ

∫
eSR-PBE
xσ (ρσ ,∇ρσ )f (wσ )dr, (14)

where f (wσ ) is the kinetic-energy-density enhancement
factor,

f (wσ ) =
m∑

i=0

aiw
i
σ . (15)

wσ is a function of tσ , and tσ is a function of the kinetic energy
density τσ of electrons with spin σ , as designed by Becke,23

wσ = (tσ − 1)/(tσ + 1), (16)

where

tσ = τLDA
σ /τσ , (17)

τLDA
σ ≡ 3

10
(6π2)2/3ρ5/3

σ . (18)

In general, the enhancement factor should be ω-dependent.
But from the works of LC-TPSS (Ref. 31) and M11,49 the
optimal ω for a LC hybrid MGGA is expected to be small as
well. For a sufficiently small ω value, our proposed functional
form, inspired by the VHKS and CHG schemes, should be a
good approximation.

We use the same form for the correlation functional as the
M05 correlation functional, which can be decomposed into
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same-spin EM05
cσσ and opposite-spin EM05

cαβ components,

EM05
c =

∑

σ

EM05
cσσ + EM05

cαβ . (19)

For the opposite-spin terms,

EM05
cαβ =

∫
eLDA
cαβ gαβ

(
s2
av

)
dr, (20)

gαβ

(
s2
av

)
=

n∑

i=0

cαβ,iu
i
αβ , (21)

uαβ = γαβs2
av

1 + γαβs2
av

, (22)

γαβ = 0.0062, (23)

s2
av = 1

2

(
s2
α + s2

β

)
, (24)

and for the same-spin terms,

EM05
cσσ =

∫
eLDA
cσσ gσσ

(
s2
σ

) (
1 − τW

σ

τσ

)
dr, (25)

gσσ

(
s2
σ

)
=

n∑

i=0

cσσ,iu
i
σσ , (26)

uσσ = γσσ s2
σ

1 + γσσ s2
σ

, (27)

γσσ = 0.06. (28)

1 − τW
σ /τσ is a self-interaction correction factor proposed by

Becke,22 in which τW
σ is the von Weizsac̈ker kinetic energy

density55 given by

τW
σ =

|∇ρσ |2

8ρσ

. (29)

In a one-electron case, τσ = τW
σ , so Eq. (25) vanishes in any

one-electron system. The correlation energy densities eLDA
cαβ

and eLDA
cσσ are derived from the Perdew-Wang parametrization

of the LDA correlation energy,56 using the approach of Stoll
et al.,57

eLDA
cαβ (ρα, ρβ) = eLDA

c (ρα, ρβ ) − eLDA
c (ρα, 0) − eLDA

c (0, ρβ ),
(30)

eLDA
cσσ = eLDA

c (ρσ , 0). (31)

Based on the above functional expansions, we propose
a new LC hybrid MGGA functional, ωM05-D. It contains a
fraction of the SR-HF exchange,

EωM05-D
xc = ELR-HF

x + cxE
SR-HF
x + ESR-M05

x + EM05
c . (32)

We enforce the exact UEG limit for the ωM05-D func-
tional by imposing the following constraints:

cσσ,0 = 1, (33)

cαβ,0 = 1, (34)

and

a0 + cx = 1. (35)

Following the general form of the DFT-D scheme,43 our
total energy

EDFT-D = EKS-DFT + Edisp (36)

is computed as the sum of a KS-DFT part and an empirical
atomic-pairwise dispersion correction. We choose to use the
same form of unscaled dispersion correction as implemented
in ωB97X-D,36

Edisp = −
Nat−1∑

i=1

Nat∑

j=i+1

C
ij
6

R6
ij

fdamp(Rij ), (37)

where Nat is the number of atoms in the system, C
ij
6 is the

dispersion coefficient for atom pair ij, and Rij is an interatomic
distance. The damping function,

fdamp(Rij ) = 1
1 + a(Rij/Rr )−12

(38)

enforces the conditions of zero dispersion correction at short
interatomic separations and correct asymptotic pairwise vdW
potentials. Here, Rr is the sum of vdW radii of the atomic pair
ij, and the only non-linear parameter, a, controls the strength
of dispersion corrections.

To achieve an optimized functional for well-balanced
performance across typical applications, we use the same
diverse training set described in Ref. 35, which contains
412 accurate experimental and accurate theoretical results,
including the 18 atomic energies from the H atom to the
Ar atom,58 the atomization energies of the G3/99 set (223
molecules),59–61 the ionization potentials (IPs) of the G2-1
set62 (40 molecules, excluding SH2(2A1) and N2(2*) cations
due to the known convergence problems for semilocal density
functionals60), the electron affinities (EAs) of the G2-1 set
(25 molecules), the proton affinities (PAs) of the G2-1 set (8
molecules), the 76 barrier heights of the NHTBH38/04 and
HTBH38/04 sets,15, 63 and the 22 noncovalent interactions of
the S22 set.64 The S22 data are weighted ten times more than
the others. All the parameters in ωM05-D are determined
self-consistently by a least-square fitting procedure described
in Ref. 35. For the non-linear parameter optimization, we
focus on a range of possible ω values (0.0, 0.1, 0.2, 0.3, and
0.4 bohr−1), and optimize the corresponding a values in the
steps described in Ref. 36.

M05 and M05-2X (Refs. 18 and 19) both used m= 11 in
Eq. (15) and n = 4 in Eqs. (21) and (26). However, during the
optimization procedure of ωM05-D, we found that the statis-
tical errors are close for m= 10 and m= 11, while the one with
m= 11 has parameters significantly larger. A recent study by
Wheeler and Houk has shown that large magnitude of the pa-
rameters in Eq. (15) may result in large grid errors.65 More-
over, the use of large parameters increases the possibility of
convergence difficulty as well as the over-fitting effects. Thus,
we choose m = 10 instead of 11 in Eq. (15). The optimized
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TABLE I. Optimized parameters for ωM05-D. Here, the non-linear param-
eter a is defined in Eq. (38), and others are defined in Eq. (32).

a 30.0
ω 0.2 bohr−1

cx 0.369592

i ai cαβ, i cσσ , i

0 0.630408 1.00000 1.00000
1 − 0.219121 − 0.95491 − 5.26863
2 − 0.14411 12.138 17.9935
3 1.27732 − 35.1041 − 17.6408
4 − 1.59959 19.5804 0.625687
5 − 5.94702
6 13.5822
7 10.5048
8 − 28.7168
9 − 6.89761
10 19.0574

parameters of the ωM05-D functional are given in Table I, in
which the ω value is same as that of ωB97X-D, while the frac-
tion of SR-HF exchange, cx, is larger than that of ωB97X-D
(≈0.22). This helps to reduce the self-interaction error (SIE)
of the functional, as can be seen in Sec. V.

We also tried a simple model (based on the CHG
scheme), where the SR-PBE exchange energy density
eSR-PBE
xσ (ρσ ,∇ρσ ) used in Eq. (14) is substituted with

eSR-LDA
xσ (ρσ )F PBE

x (sσ ), that is, the SR-LDA exchange energy
density in Eq. (6) multiplied by the PBE enhancement factor.
We tried this because the mathematical form of the latter is
significantly simpler than that of the former, and is the model
on which M11 based. The parametrization is the same for this
simple model, which we denoted by ωM05s-D. Compared to
ωM05-D, the optimal ω value is also 0.2 bohr−1, but the cor-
responding optimal a value is found to be 100 and the linear
parameters are also larger.

IV. RESULTS FOR THE TRAINING SET

All calculations are performed with a development ver-
sion of Q-CHEM 3.2.66 Spin-restricted theory is used for
singlet states and spin-unrestricted theory for others, unless
noted otherwise. For the binding energies of the weakly bound
systems, the counterpoise correction67 is employed to reduce
basis set superposition error (BSSE).

Results for the training set are computed using the 6-
311++G(3df,3pd) basis set with the fine grid, EML(75,302),
consisting of 75 Euler-Maclaurin radial grid points68 and
302 Lebedev angular grid points.69 The error for each en-
try is defined as error = theoretical value − reference
value. The notation used for characterizing statistical er-
rors is as follows: mean signed errors (MSEs), mean ab-
solute errors (MAEs), root-mean-square (rms) errors, maxi-
mum negative errors (Max(−)), and maximum positive errors
(Max(+)).

First, we show the results of the first iteration of fit-
ting procedure, comparing the new LC scheme with the
CHG scheme (the simple model) for ω = 0.1, 0.2, 0.3,
and 0.4 bohr−1. We optimize ωM05 and ωM05s using the
corresponding ωPBE and ωPBEs orbitals, and denote these
optimized functionals as ωM05* and ωM05s*. The statistical
errors are believed to be quite close to those obtained
self-consistently. As can be seen in Table II, the difference
between the performance of ωM05* and ωM05s* is notice-
able for ω = 0.2 bohr−1, and becomes larger for a larger ω

value. Therefore, a LC hybrid MGGA functional with a larger
ω value (such as M11 with ω = 0.25 bohr−1) may perform
better with our new scheme than with the CHG scheme.

In subsequent iterations, we include the dispersion cor-
rections, increase the training weight of S22 set, and found the
functionals optimized with ω = 0.2 bohr−1. To view the effect
of the long-range correction and the dispersion corrections,
we also consider the functional form M05 and M05-D. The
latter is the limiting case where ω = 0 for ωM05-D, of which

TABLE II. Comparisons between the ωM05* and ωM05s* functionals (defined in the text) for different ω values. Statistical errors are in kcal/mol.

ω (bohr−1) 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4
System Error ωM05* ωM05s* ωM05* ωM05s* ωM05* ωM05s* ωM05* ωM05s*

Atoms MSE − 0.15 0.24 0.05 0.63 0.23 0.97 0.46 1.33
(18) MAE 2.02 2.09 1.81 2.35 2.00 3.36 3.22 5.05
G3/99 MSE 0.06 0.09 0.05 0.03 − 0.04 − 0.12 − 0.18 − 0.27
(223) MAE 1.77 1.79 1.66 1.76 1.78 2.02 2.10 2.35
IP MSE − 0.58 − 1.48 − 0.84 − 1.36 − 0.38 − 0.32 0.30 0.73
(40) MAE 2.75 3.06 2.81 3.08 2.68 2.81 2.64 2.79
EA MSE − 1.50 − 1.70 − 1.29 − 1.15 − 0.94 − 0.70 − 0.64 − 0.39
(25) MAE 2.50 2.56 2.33 2.22 2.07 1.97 1.98 1.91
PA MSE − 1.65 − 2.68 − 1.49 − 2.71 − 1.07 − 2.11 − 0.78 − 1.54
(8) MAE 1.87 2.68 1.83 2.82 1.79 2.53 1.86 2.43
NHTBH MSE − 1.26 − 1.09 − 0.68 − 0.39 0.08 0.40 0.85 1.17
(38) MAE 1.98 1.82 1.51 1.40 1.46 1.67 1.71 1.95
HTBH MSE − 1.96 − 1.95 − 1.95 − 1.68 − 1.61 − 1.24 − 1.21 − 0.84
(38) MAE 2.19 2.08 2.12 1.84 1.95 1.56 1.86 1.47
S22 MSE 2.65 1.91 1.80 1.06 1.01 0.56 0.45 0.26
(22) MAE 2.65 1.91 1.80 1.06 1.02 0.67 0.71 0.63
All MSE − 0.31 − 0.42 − 0.30 − 0.35 − 0.21 − 0.18 − 0.11 − 0.02
(412) MAE 2.03 2.03 1.86 1.90 1.84 2.01 2.06 2.28
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TABLE III. Statistical errors (in kcal/mol) of the training set. The M05-D* and M05* functionals are defined in the text. M05-2X was not particularly
parametrized using this training set.

System Error ωM05-D ωM05s-D M05-D* M05* M05-2X ωB97X-D

Atoms MSE 0.37 0.83 0.18 − 0.48 − 3.01 − 0.05
(18) MAE 2.02 2.28 2.61 1.98 5.10 2.57
G3/99 MSE − 0.03 − 0.03 − 0.10 − 0.05 2.01 − 0.24
(223) MAE 1.62 1.73 1.78 1.78 3.65 1.93
IP MSE − 0.80 − 1.33 0.06 0.27 1.10 0.19
(40) MAE 2.86 3.04 2.84 2.51 3.35 2.74
EA MSE − 1.02 − 0.98 − 0.54 − 0.84 − 0.23 0.07
(25) MAE 2.12 2.13 2.13 2.35 2.48 1.91
PA MSE − 1.48 − 2.66 − 0.94 − 1.76 − 1.26 1.42
(8) MAE 2.10 3.07 1.31 2.17 1.51 1.50
NHTBH MSE − 0.94 − 0.59 − 1.38 − 1.32 0.13 − 0.45
(38) MAE 1.57 1.53 2.04 2.08 1.75 1.51
HTBH MSE − 2.82 − 2.33 − 2.95 − 1.77 − 0.65 − 2.57
(38) MAE 2.83 2.37 3.08 2.14 1.51 2.70
S22 MSE − 0.01 − 0.01 0.04 3.46 0.73 − 0.08
(22) MAE 0.27 0.21 0.23 3.46 0.87 0.21
All MSE − 0.51 − 0.49 − 0.49 − 0.21 1.02 − 0.36
(412) MAE 1.83 1.89 1.99 2.05 3.05 1.96

the corresponding optimal a value is found to be 2. We reop-
timize M05 and M05-D functionals on the same training set
using the M05-2X orbitals, truncate their functional expan-
sions at the same orders m = 10 and n = 4, and denote these
two reoptimized functionals as M05* and M05-D*. Just like
the ωB97X functional without dispersion correction, all data
in the training set are equally weighted in the least-squares
fitting for M05*.

The overall performance of our new ωM05-D is com-
pared with the trial simple model ωM05s-D, M05-D*, M05*,
and M05-2X,19 as well as existing ωB97X-D (a LC hybrid
GGA-D).36 Note that M05 (Ref. 18) and M05-2X share the
same functional form, but the former is distracted to deal with
transition-metal compounds, so the latter should be our con-
cern. In the ωB97 series, ωB97X-D has the closest relation-
ship to ωM05-D, while ωB97 and ωB97X, developed with-
out dispersion corrections, are expected to perform poorly for
noncovalent interactions.

In Table III, the first comparison (ωM05-D vs. ωM05s-
D) partially determines the choice of our proposed func-
tional. Although ωM05-D performs worse than ωM05s-D for
HTBH, the overall performance of ωM05-D in the training set
is the best.

A second comparison between ωM05-D and M05-D* in-
dicates that the exact long-range exchange indeed leads to an
overall improvement to MGGA, although not as large as that
to GGA.31, 35, 36 The third comparison is between M05-D* and
M05*. The cooperation of the training weight and the empir-
ical dispersion corrections leads to a significant improvement
in the results for noncovalent interactions (the S22 data) and
a modest overall change. Recently, there have been the up-
dated reference values for the S22 set.70 We have also ex-
amined the performance of ωM05-D against the updated S22
reference values. As shown in the supplementary material,71

the overall performance of the functional against the up-
dated reference values is similar to that against the original
ones.

V. RESULTS FOR THE TEST SETS

To test the performance of ωM05-D outside its training
set, we also evaluate its performance on various test sets in-
volving 48 atomization energies in the G3/05 test set,72 30
chemical reaction energies taken from the NHTBH38/04 and
HTBH38/04 databases,15, 63 29 noncovalent interactions,63, 64

166 optimized geometry properties of covalent systems,73 12
intermolecular bond lengths,64 4 dissociation curves of sym-
metric radical cations as well as three new databases, consist-
ing of 131 vertical IPs, 115 vertical EAs, and 115 fundamen-
tal gaps. For excitation energies, we perform TDDFT calcu-
lations for 19 valence excitation energies, 23 Rydberg exci-
tation energies, and one long-range charge-transfer excitation
curve of two well-separated molecules. Each EA can be eval-
uated by two different ways, and each fundamental gap can
be evaluated by three different ways, so there are a total of
1038 pieces of data in the test sets, which are larger and more
diverse than the training set. Unspecified detailed information
of the test sets as well as the basis sets, and numerical grids
used is given in Ref. 35.

A. Atomization energies, reaction energies, and
noncovalent interactions

Table IV summarized the general energetic results in the
same way as in Ref. 36, for convenience of further compar-
isons. Since the 30 chemical reaction energies are taken from
the NHTBH38/04 and HTBH38/04 databases calculated in
Table III, the EML(75,302) grid is used. In Table IV, the com-
parison between ωM05-D and ωM05s-D shows noticeable
difference in atomization energies, and makes great influence
on the choice of our proposed functional.

B. Equilibrium geometries

Satisfactory predictions of molecular geometries of co-
valent and non-covalent systems by density functionals are
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TABLE IV. Statistical errors (in kcal/mol) of the test sets.

System Error ωM05-D ωM05s-D M05-2X ωB97X-D

G3/05 MSE − 0.85 − 1.67 0.00 0.25
(48) MAE 3.21 3.79 5.24 3.02
RE MSE − 0.58 − 0.65 − 0.86 − 0.24
(30) MAE 1.49 1.32 1.65 1.63
Non-covalent MSE − 0.11 − 0.05 0.50 − 0.15
(29) MAE 0.31 0.30 0.61 0.43
All MSE − 0.58 − 0.95 − 0.11 0.01
(107) MAE 1.94 2.15 2.98 1.93

necessary for practical use. For covalent systems, we perform
geometry optimizations for each functional on the equilib-
rium experimental test set (EXTS),73 while for non-covalent
systems, we compute the intermolecular bond lengths of 12
weakly bound complexes taken from the S22 set,64 using 6-
311++G(3df,3pd) basis set with the EML(75,302) grid. As
shown in Table V, performance of all the hybrid functionals in
predicting optimized geometries of EXTS is similar, while the
performance of simple model (ωM05s-D) is somewhat worse
for the intermolecular bond lengths. We decide our proposed
model to be ωM05-D in this subsection. For brevity, the per-
formance of ωM05s-D will not be shown for subsequent cal-
culations.

C. Dissociation of symmetric radical cations

Common semilocal functionals are generally accurate for
systems near equilibrium. However, due to considerable self-
interaction errors in semilocal functionals, spurious fractional
charge dissociation occurs.32, 74, 75 This situation becomes am-
plified for symmetric charged radicals X+

2 , such as H+
2 , He+

2 ,
Ne+

2 , and Ar+2 . Gräfenstein and co-workers have obtained
qualitatively correct result for these systems76, 77 using self-
interaction-corrected DFT proposed by Perdew and Zunger,78

and confirmed that the errors of standard DFT methods should
be dominated by the SIEs.

We perform unrestricted calculations with the aug-cc-
pVQZ basis set and a high-quality EML(250,590) grid. The
DFT results are compared with results from HF theory, and

TABLE V. Statistical errors (in Å) of EXTS (Ref. 73) and bond lengths
of 12 weakly bound complexes from the S22 set (Ref. 64). The results of
ωB97X-D are taken from Ref. 36.

System Error ωM05-D ωM05s-D M05-2X ωB97X-D

EXTS (166) MSE 0.003 0.001 − 0.004 − 0.002
MAE 0.010 0.009 0.009 0.009
rms 0.019 0.014 0.014 0.013
Max(−) − 0.081 − 0.083 − 0.082 − 0.078
Max(+) 0.177 0.067 0.054 0.055

Weak (12) MSE − 0.041 − 0.069 − 0.021 − 0.044
MAE 0.061 0.078 0.062 0.064
rms 0.083 0.102 0.080 0.085
Max(−) − 0.189 − 0.195 − 0.165 − 0.198
Max(+) 0.043 0.029 0.140 0.056

FIG. 1. Dissociation curve of H+
2 . Zero level is set to E(H) + E(H+) for each

method.

the very accurate CCSD(T) theory (coupled-cluster theory
with iterative singles and doubles and perturbative treatment
of triple substitutions).79, 80 The HF method is exact in Fig.
1, and gives qualitatively correct results from Figs. 2–4. Al-
though ωM05-D has the same amount of LR-HF exchange as
ωB97X-D, the larger fraction of SR-HF exchange included in
ωM05-D helps to reduce its remaining SIE. Therefore, the er-
ror of ωM05-D is smaller than that of ωB97X-D, especially
for larger cations (e.g., Ne+

2 and Ar+2 ). The global hybrid
functional M05-2X exhibits the undesirable X+

2 dissociation
curves, displaying a spurious energy barrier at intermediate
bond length R.

D. Frontier orbital energies

Let IP(N) be the ionization potential and EA(N) be the
electron affinity of the N-electron system, which are defined
as

IP(N ) = EN−1 − EN, (39)

FIG. 2. Dissociation curve of He+
2 . Zero level is set to E(He) + E(He+) for

each method.
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FIG. 3. Dissociation curve of Ne+
2 . Zero level is set to E(Ne) + E(Ne+) for

each method.

EA(N ) = EN − EN+1, (40)

respectively, with EN being the total energy of N-electron sys-
tem. For the exact DFT, the vertical ionization potential of a
neutral molecule is identical to the minus HOMO (highest oc-
cupied molecular orbital) energy of the neutral molecule,3, 81

IP(N ) = −εN (N ), (41)

and the vertical electron affinity of a neutral molecule is iden-
tical to the minus HOMO energy of the anion (since EA(N)
= IP(N + 1) by definition),

EA(N ) = −εN+1(N + 1), (42)

where εM(N) is the Mth orbital energy of N-electron system.
The vertical electron affinity of a neutral molecule may also
be approximated by the minus LUMO (lowest unoccupied
molecular orbital) energy of the neutral molecule, but it is
proved that there exists a difference between the vertical EA

FIG. 4. Dissociation curve of Ar+2 . Zero level is set to E(Ar) + E(Ar+) for
each method.

TABLE VI. Statistical errors (in eV) for the IP131 database. Error is de-
fined as −εN(N) − IPvertical. Experimental geometries and reference values
are used for all molecules.

System Error ωM05-D M05-2X ωB97X-D

Atoms MSE − 1.48 − 2.06 − 1.64
(18) MAE 1.48 2.06 1.64

rms 1.74 2.16 1.98

Molecules MSE − 0.68 − 1.23 − 0.92
(113) MAE 0.68 1.23 0.92

rms 0.76 1.27 1.00

Total MSE − 0.79 − 1.34 − 1.02
(131) MAE 0.79 1.34 1.02

rms 0.96 1.43 1.18

and the minus LUMO energy,

,xc = εN+1(N + 1) − εN+1(N ), (43)

where the difference ,xc arises from the discontinuity of
exchange-correlation potentials.82–84 Recent study shows that
,xc is close to zero for LC hybrid functionals,85 so the minus
LUMO energy calculated by a LC hybrid functional should
be close to the vertical EA.

To evaluate the performance of the functionals on
the HOMO energy of the neutral molecule, we collect a
new database, IP131, which consists of experimental ver-
tical IPs of 18 atoms and 113 molecules in the experi-
mental geometries. The geometries and most of the refer-
ence values are collected from the NIST database.86 Other
publications87 are adopted for the experimental vertical IPs
of some molecules. The DFT calculations are performed with
6-311++G(3df,3pd) basis and EML(75,302) grid. As can be
seen in Table VI, ωM05-D gives the best results. The global
hybrid M05-2X gives the worst results here due to its incor-
rect long-range XC-potential behavior.

To evaluate the performance of the functionals on the ver-
tical electron affinity, we construct another database called
EA115, which consists of 18 atoms and 97 molecules. For
the molecular geometries, it is a subset of IP131. Because
experimental vertical EAs are not as widely available as ex-
perimental vertical IPs, the reference values of vertical EAs
are obtained via the accurate CCSD(T) calculations (using
Eq. (40)). The CCSD(T) correlation energies in the basis-
set limit are extrapolated from calculations using the aug-cc-
pVTZ and aug-cc-pVQZ basis sets:88

E∞
XY = Ecorr

X X3 − Ecorr
Y Y 3

X3 − Y 3
, (44)

where X = 3 and Y= 4 for the aug-cc-pVTZ and aug-cc-
pVQZ basis, respectively. The electron affinities are evalu-
ated in two different ways, as shown in Table VII for the mi-
nus HOMO energy of the anion, and Table VIII for the minus
LUMO energy of the neutral molecule. Clearly, the LC hybrid
functionals outperform the global hybrid M05-2X. The refer-
ence values and molecular geometries of IP131 and EA115
are given in the supplementary material71 along with detailed
DFT results.
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TABLE VII. Statistical errors (in eV) for the EA115 database. Error is de-
fined as −εN + 1(N + 1) − EAvertical. Experimental geometries and CCSD(T)
reference values are used for all molecules.

System Error ωM05-D M05-2X ωB97X-D

Atoms MSE − 0.46 − 1.21 − 0.53
(18) MAE 0.49 1.21 0.57

rms 0.73 1.35 0.84

Moelcules MSE − 0.54 − 1.18 − 0.54
(97) MAE 0.55 1.18 0.56

rms 0.80 1.32 0.82

Total MSE − 0.53 − 1.18 − 0.54
(115) MAE 0.55 1.18 0.56

rms 0.79 1.32 0.82

E. Fundamental gaps

The fundamental gap Eg of a molecule with N electrons
is defined as

Eg = IP(N ) − EA(N ). (45)

Following Eqs. (39) and (40) for the definitions of IP and EA,
three self-consistent field (SCF) calculations (for the neutral
molecule, cation and anion) are required to obtain the funda-
mental gap of a molecule. Using Eqs. (41) and (42), the fun-
damental gap of a molecule can also be obtained by two SCF
calculations (for the neutral molecule and anion).

Following Janak’s theorem,89 the fundamental gap can be
approximated by the HOMO-LUMO gap84

,KS = εN+1(N ) − εN (N ), (46)

and we can obtain the fundamental gap of a system using only
one calculation. But from Eqs. (41)–(43), (45), and (46), we
know that there exists a difference between the fundamental
gap and HOMO-LUMO gap,

Eg = ,KS + ,xc. (47)

As previously mentioned, ,xc has been shown to be close to
zero for LC hybrid functionals,85 so the HOMO-LUMO gap
calculated by a LC hybrid functional should be close to the
fundamental gap.

To evaluate the performance of the functionals on fun-
damental gap, we construct another database called FG115,

TABLE VIII. Statistical errors (in eV) of the minus LUMO energy of
the neutral molecule for the EA115 database. Experimental geometries and
CCSD(T) reference values are used for all molecules.

System Error ωM05-D M05-2X ωB97X-D

Atoms MSE − 0.27 0.57 − 0.02
(18) MAE 0.73 1.02 0.74

rms 0.92 1.12 0.89

Moelcules MSE − 0.24 0.60 0.05
(97) MAE 0.60 0.75 0.52

rms 0.69 0.94 0.60

Total MSE − 0.24 0.60 0.04
(115) MAE 0.62 0.79 0.55

rms 0.73 0.97 0.65

TABLE IX. Statistic errors (in eV) of HOMO-LUMO gaps for the FG115
database. The energy gap of each system is evaluated by only one SCF
calculation.

System Error ωM05-D M05-2X ωB97X-D

Atoms MSE − 1.14 − 2.56 − 1.55
(18) MAE 1.43 2.56 1.79

rms 1.62 2.79 2.05

Molecules MSE − 0.62 − 2.00 − 1.15
(97) MAE 0.73 2.00 1.15

rms 0.93 2.13 1.34

Total MSE − 0.70 − 2.08 − 1.21
(115) MAE 0.84 2.08 1.25

rms 1.07 2.24 1.48

which shares the same molecular geometries with the EA115
database. For consistency, the reference values of fundamen-
tal gaps are also obtained via the CCSD(T) calculations de-
scribed in Sec. V D (using Eqs. (39), (40), and (45)).

To examine the performance of density functionals, we
evaluate the fundamental gaps using three different estimates,
with 6-311++G(3df,3pd) basis and EML(75,302) grid. The
results are shown from Tables IX–XI, in order of increasing
the number of SCF calculations required for each molecule. In
the estimate requiring three calculations, the results are sim-
ilar for the three functionals. ωB97X-D gives worse results
than other functionals in the estimate requiring two calcula-
tions. In the simplest estimate, the HOMO-LUMO gap, which
requires only one SCF calculation for each system, ωM05-D
significantly outperforms the other two functionals. The refer-
ence values of FG115 and detailed HOMO-LUMO gap results
by DFT methods are given in the supplementary material.71

F. Excitation energies

To assess the performance of density functionals on
excitation energies, we perform TDDFT calculations on
five small molecules,90 which include nitrogen gas (N2),
carbon monoxide (CO), water (H2O), ethylene (C2H4), and
formaldehyde (CH2O), with 6-311(2+,2+)G** basis and
EML(99,590) grid. The molecular geometries, experimental
values of excitation energy are taken from Ref. 90. The detail

TABLE X. Statistic errors (in eV) of fundamental gaps for the FG115
database, each evaluated by the difference of HOMO energies between the
neutral molecule and anion. The energy gap of each system is evaluated by
two SCF calculations.

System Error ωM05-D M05-2X ωB97X-D

Atoms MSE − 0.95 − 0.83 − 1.04
(18) MAE 0.98 0.87 1.08

rms 1.17 1.00 1.30

Molecules MSE − 0.31 − 0.42 − 0.55
(97) MAE 0.56 0.51 0.72

rms 0.70 0.60 0.85

Total MSE − 0.41 − 0.48 − 0.63
(115) MAE 0.62 0.57 0.78

rms 0.79 0.68 0.93
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TABLE XI. Statistic errors (in eV) of IP-EA values for the FG115 database.
The energy gap of each system is evaluated by three SCF calculations.

System Error ωM05-D M05-2X ωB97X-D

Atoms MSE 0.28 0.33 0.28
(18) MAE 0.35 0.36 0.36

rms 0.60 0.63 0.59
Molecules MSE 0.34 0.42 0.22
(97) MAE 0.44 0.50 0.39

rms 0.73 0.78 0.68
Total MSE 0.33 0.40 0.23
(115) MAE 0.43 0.48 0.39

rms 0.71 0.75 0.66

FIG. 5. The lowest CT excitation of C2H4···C2F4 dimer along the inter-
molecular distance R (in Å). For all functionals, the excitation at 5 Å is set to
zero.

FIG. 6. The lowest CT excitation of C2H4···C2F4 dimer along the inter-
molecular distance R (in Å).

TABLE XII. Vertical excitation energies (in eV) of several low-lying
excited states of N2, CO, water, formaldehyde, and ethylene using 6-
311(2+,2+)G** basis set. The geometries and experimental values are taken
from Ref. 90.

Molecule State Expt. ωM05-D M05-2X ωB97X-D

V1*g 9.31 9.30 9.42 9.38
V1-−

u 9.97 8.76 8.35 9.31
V1,u 10.27 10.14 10.51 9.82

N2 V3-+
u 7.75 7.86 8.30 7.17

V3*g 8.04 7.94 8.12 7.82
V3,u 8.88 8.74 8.35 8.23
V3-−

u 9.67 8.76 9.26 9.31
V3*u 11.19 11.30 11.72 10.98

V1* 8.51 8.51 8.74 8.47
V1-− 9.88 9.36 9.11 9.78

CO V3* 6.32 6.66 7.03 6.07
V3-+ 8.51 8.47 8.87 8.00
V3, 9.36 9.19 9.11 8.88
V3-− 9.88 9.36 9.55 9.78

R1B1 7.4 7.68 8.04 7.23
R1A2 9.1 9.14 9.60 8.63

H2O R1A1 9.7 9.73 10.29 9.20
R1B1 10.0 9.72 10.32 9.17
R1A1 10.17 10.06 10.71 9.49
R3B1 7.2 7.27 7.66 6.89

R1B3u 7.11 7.53 7.61 7.02
V1B1u 7.60 7.80 8.07 7.52
R1B1g 7.80 7.87 8.07 7.59
R1B2g 8.01 8.15 8.19 7.66
R1Ag 8.29 8.36 8.52 7.87

C2H4 R1B3u 8.62 8.76 8.80 8.36
V3B1u 4.36 4.64 4.99 4.12
R3B3u 6.98 7.43 7.48 6.92
R3B1g 7.79 7.47 7.82 7.50
R3B2g 7.79 8.06 8.07 7.56
R3Ag 8.15 8.12 8.11 7.63

V1A2 4.07 3.63 3.68 3.88
R1B2 7.11 7.48 7.92 6.96
R1B2 7.97 8.13 8.58 7.66
R1A1 8.14 9.13 9.47 8.74
R1A2 8.37 8.30 8.84 7.84

CH2O R1B2 8.88 8.86 9.21 8.52
V3A2 3.50 3.02 3.12 3.21
V3A1 5.86 5.70 6.02 5.29
R3B2 6.83 7.33 7.74 6.81
R3B2 7.79 7.97 8.37 7.50
R3A1 7.96 8.06 8.45 7.56

MAE Valence 0.31 0.46 0.32
Rydberg 0.22 0.47 0.35

results and mean absolute errors of all excited states are listed
in Table XII. The new ωM05-D functional yields excellent
performance, especially for the Rydberg excitations. Note that
ωM05-D outperforms ωB97X-D in both HOMO energies and
Rydberg excitations due to the larger fraction of short-range
HF exchange included in ωM05-D (both functionals possess
the same amount of LR-HF exchange).

Following Dreuw et al., we perform TDDFT calculations
for the lowest charge-transfer (CT) excitation between ethy-
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lene and tetrafluroethylene, with a separation of R. Dreuw
et al. have shown that the exact CT excitation energy from
the HOMO of donor to the LUMO of acceptor should have
the following asymptote:91

ωCT(R → ∞) ≈ − 1
R

+ IPD − EAA, (48)

where IPD is the ionization potential of donor and EAA is the
electron affinity of acceptor. Figure 5 shows the trend of the
excitation curves, and indicates the LC hybrid functionals ob-
viously outperforms the global hybrid M05-2X. For the val-
ues of the excitation energies, as shown in Fig. 6, ωM05-D is
about 0.2 eV better than ωB97X-D.

VI. CONCLUSIONS

We have developed a LC hybrid MGGA-D functional,
called ωM05-D, which includes 100% long-range exact ex-
change, a fraction (≈37%) of short-range exact exchange, a
modified M05 exchange density functional for short-range in-
teraction, the M05 correlation density functional,18, 19 and em-
pirical atomic-pairwise dispersion corrections. For the modi-
fied short-range M05 exchange density functional, we have
investigated two models. After comparisons in the training set
and test sets, we decide to propose the one based on our new
LC scheme ωM05-D, and marked the trial one as ωM05s-
D. When the constraint of ω = 0 is applied, ωM05-D and
ωM05s-D are both reduced to the existing M05 functional
form18, 19 with the same empirical atomic-pairwise dispersion
corrections. The constrained form (ω = 0), when re-optimized
on the same training set, provides worse performance on the
training set, indicating that the single extra degree of freedom
corresponding to long-range exchange is of physical signifi-
cance to a hybrid MGGA.

Since ωM05-D is a parametrized functional, we test
it against the trial simple model ωM05s-D as well as two
closely related functionals (M05-2X (Ref. 19) and ωB97X-D
(Ref. 36)) on a separate independent test set of data, which
includes further atomization energies, reaction energies, non-
covalent interaction energies, equilibrium geometries, energy
curve for homonuclear diatomic cation dissociations, frontier
orbital energies, and fundamental gaps. The three databases
assessing frontier orbital energies and fundamental gaps are
presented for the first time. For excitation energies, we cal-
culate valence and Rydberg excitations, as well as a charge-
transfer excited state. Compared to ωM05s-D, noticeable
difference in transferability for atomization energies largely
decides our proposed model. ωM05-D consistently outper-
forms M05-2X (and performs comparably to ωB97X-D) on
the test sets, and shows smaller SIE and better asymptotic
behavior relative to both the M05-2X and ωB97X-D.
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