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In contrast to the original Kohn-Sham (KS) formalism, we propose a density functional theory (DFT)
with fractional orbital occupations for the study of ground states of many-electron systems, wherein
strong static correlation is shown to be described. Even at the simplest level represented by the lo-
cal density approximation (LDA), our resulting DFT-LDA is shown to improve upon KS-LDA for
multi-reference systems, such as dissociation of H2 and N2, and twisted ethylene, while performing
similar to KS-LDA for single-reference systems, such as reaction energies and equilibrium geome-
tries. Because of its computational efficiency (similar to KS-LDA), this DFT-LDA is applied to the
study of the singlet-triplet energy gaps (ST gaps) of acenes, which are “challenging problems” for
conventional electronic structure methods due to the presence of strong static correlation effects. Our
calculated ST gaps are in good agreement with the existing experimental and high-level ab initio data.
The ST gaps are shown to decrease monotonically with the increase of chain length, and become van-
ishingly small (within 0.1 kcal/mol) in the limit of an infinitely large polyacene. In addition, based
on our calculated active orbital occupation numbers, the ground states for large acenes are shown to
be polyradical singlets. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3703894]

I. INTRODUCTION

As the problem of solving the N-electron Schrödinger
equation quickly becomes intractable as the size of a system
increases, the development of efficient and accurate electronic
structure methods for large systems, continues being the sub-
ject of intense current interest. Over the past two decades,
Kohn-Sham density functional theory (KS-DFT) (Refs. 1 and
2) has become one of the most popular theoretical approaches
for calculations of electronic properties of large ground-state
systems (up to a few thousand electrons), due to its favor-
able balance between cost and performance.3–7 Recently, its
time-dependent extension, time-dependent density functional
theory (TDDFT), has also been actively developed for treat-
ing electron dynamics and excited states of large systems with
considerable success.8, 9

Although the exact exchange-correlation (XC) functional
Exc[ρ] in KS-DFT has not been known, functionals based
on the standard density functional approximations (DFAs),
such as the local density approximation (LDA) and gener-
alized gradient approximations (GGAs), can accurately de-
scribe short-range XC effects (due to the accurate treatment
of on-top hole density), and are computationally favorable for
large systems.3–7 Although KS-DFAs have been successful
in many applications, due to the lack of accurate treatment
of nonlocality of XC hole, KS-DFAs can exhibit the follow-
ing three types of qualitative failures: (i) self-interaction er-
ror (SIE), (ii) noncovalent interaction error (NCIE), and (iii)
static correlation error (SCE). In situations where these fail-
ures occur, KS-DFAs can produce erroneous results.10 There-
fore, resolving the qualitative failures of KS-DFAs at a rea-
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sonable computational cost seems to be the first step toward
finding an efficient and accurate electronic structure method
for large systems.

The SIEs of KS-DFAs lead to drastic failures for prob-
lems such as barrier heights of chemical reactions, band gaps
of solids, and dissociation of symmetric radical cations.11 In
TDDFT, SIE causes failures for problems such as Rydberg
excitations in molecules and long-range charge transfer exci-
tations between two well-separated molecules.12 The SIEs of
KS-DFAs can be greatly reduced by hybrid DFT methods,13

incorporating some of the exact Hartree-Fock (HF) exchange
into the KS-DFAs. Over the past 20 years, several hybrid
functionals, such as global hybrid functionals14, 15 and long-
range corrected (LC) hybrid functionals,16–20 have been de-
veloped to improve the accuracy of Exc[ρ], extending the ap-
plicability of KS-DFT to a wide range of systems.

The proper treatment of noncovalent interactions requires
the accurate description of dynamical correlation effects at
medium and long ranges, which cannot be properly captured
by KS-DFAs.21 In particular, for dispersion-dominated (van
der Waals (vdW)) interactions, KS-LDA tends to overesti-
mate the binding energies, while KS-GGAs tend to give in-
sufficient binding or even unbound results. The NCIEs of
KS-DFAs can be efficiently reduced by the DFT-D (KS-DFT
with empirical dispersion corrections) schemes,22–25 which
have shown generally satisfactory performance on a large
set of noncovalent systems.26, 27 The dispersion corrections
can also be computed less empirically by the exchange-hole
dipole moment method28 or by the local response disper-
sion method.29 Alternatively, a fully nonlocal density func-
tional for vdW interactions (vdW-DF) (Ref. 30) can also be
adopted to reduce the NCIEs of KS-DFAs. Currently, perhaps
the most successful approach to taking into account nonlocal
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dynamical correlation effects is provided by the double hy-
brid (DH) methods,31–33 which mix some of the HF ex-
change and some of the nonlocal orbital correlation energy
from the second-order Møller-Plesset perturbation theory34

into the KS-DFAs. DH functionals have shown an over-
all satisfactory accuracy for thermochemistry, kinetics, and
noncovalent interactions. In addition, the sharp increase in
HF exchange in typical DH functionals has also greatly re-
duced the SIEs relative to KS-DFAs and conventional hybrid
functionals.

Systems with strong static (nondynamical) correlation ef-
fects, such as bond-breaking reactions, diradicals, conjugated
polymers, magnetic materials, and transition metal com-
pounds, belong to the class of strongly correlated (SC) sys-
tems (multi-reference systems). Such a system is usually char-
acterized by a small (or vanishing) energy gap between the
highest occupied molecular orbital (HOMO) and the lowest
unoccupied molecular orbital (LUMO), the HOMO-LUMO
gap. Despite their computational efficiency, the accurate treat-
ment of SC systems poses a great challenge to KS-DFAs and
hybrid DFT methods.10, 35 The DH methods may also be inad-
equate for SC systems, as the second-order perturbation en-
ergy components diverge to minus infinity for systems with
vanishing HOMO-LUMO gaps. Within the framework of KS-
DFT, fully nonlocal XC functionals, such as those based on
random phase approximation (RPA), are believed to be es-
sential for the accurate treatment of SC systems.6, 7 However,
compared with KS-DFAs, hybrid functionals, and DH func-
tionals, RPA-type functionals are computationally very de-
manding for large systems, and their applications to SC sys-
tems are too scarce to make a firm judgment on their accuracy.
Recently, the SIEs of RPA-type functionals have been shown
to be severe, even for a simple one-electron system such as
H+

2 .36

Aiming to reduce the SCEs of KS-DFAs without extra
computational cost, we propose a DFT with fractional orbital
occupations, rather than a fully nonlocal XC functional in KS-
DFT. The rest of this paper is organized as follows. In Sec. II,
we briefly describe the rationale for fractional orbital occu-
pations. In Sec. III, we describe the formulation of this DFT
and explain how strong static correlation is described by this
DFT. At the simple LDA level, the performance of our result-
ing DFT-LDA is compared with KS-LDA for several single-
and multi-reference systems in Sec. IV. Based on physical ar-
guments and numerical investigations, the optimal parameter
for this DFT-LDA is defined in Sec. V. Our conclusions are
given in Sec. VI.

II. RATIONALE FOR FRACTIONAL ORBITAL
OCCUPATIONS

For the exact DFT, the exact ground-state energy can
be obtained, only when the exact ground-state density is
available to insert into the exact ground-state energy func-
tional. Therefore, the development of a generally accurate
DFT method should involve not only an accurate approxima-
tion for the ground-state energy functional but also an appro-
priate representation (possibly in terms of orbitals and occu-
pation numbers) of the ground-state density. However, much

less attention has been paid to the latter (representation of
ground-state density) than to the former (ground-state energy
functional). Due to the search over a restricted domain of
densities, the exact ground-state density of interest may not
be obtained within the framework of KS-DFT, in which case
even the exact KS-DFT will fail (i.e., the exact XC functional
may not be differentiable at the exact ground-state density).7

Noticeably, some of these situations occur for systems with
vanishingly small HOMO-LUMO gaps (SC systems), indi-
cating the close relationship between strong static correlation
effects and representations of the ground-state density. There-
fore, to accurately describe SC systems, it seems intuitive to
focus on devising an appropriate representation for the ex-
act ground-state density and a DFT associated with such a
representation.

A ground-state density ρ(r) is said to be interacting v-
representable, if it can be obtained from a ground-state wave
function of an interacting N-electron Hamiltonian for some
external potential v(r). The exact ρ(r) can be obtained by
the full configuration interaction (FCI) method at the com-
plete basis set limit (i.e., interacting v-representable),37 and
can be compactly expressed in terms of the natural or-
bitals (NOs) {χ i(r)} and natural orbital occupation numbers
(NOONs) {ni},38

ρFCI(r) =
∞∑
i=1

ni |χi(r)|2, (1)

where {ni}, obeying the following two conditions:

∞∑
i=1

ni = N, 0 ≤ ni ≤ 1, (2)

are related to the variationally determined coefficients of the
FCI expansion. As shown in Eq. (1), the exact ρ(r) can be
represented by orbitals and occupation numbers, highlighting
the importance of ensemble-representable densities.

By contrast, in KS-DFT,2 ρ(r) is assumed to be nonin-
teracting pure-state (NI-PS) vs-representable, as it belongs to
a one-determinantal ground-state wave function of a nonin-
teracting N-electron Hamiltonian (KS Hamiltonian) for some
local potential vs(r) (KS potential).39–41 Correspondingly, the
KS orbital occupation numbers should be either 0 or 1. As the
Aufbau principle (i.e., filling the KS orbitals in order of in-
creasing energy) should be obeyed, ρ(r) can be expressed as
the sum of the densities of the lowest N occupied KS orbitals
{φi(r)},3

ρKS-DFT(r) =
N∑

i=1

|φi(r)|2. (3)

As ground-state densities of most nondegenerate atomic and
molecular systems (e.g., closed-shell systems with sizable
HOMO-LUMO gaps) are likely to be NI-PS vs-representable,
the commonly used XC functionals in KS-DFT are reli-
ably accurate for these systems (assuming that the SIEs and
NCIEs of these functionals are not severe). However, if a
one-determinantal ground-state wave function is insufficient
to represent ρ(r), these XC functionals may not be reliably
accurate, as they are all developed based on general properties
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of systems where the KS wave function is a one-determinantal
wave function.7

As shown by several researchers,40–44 there are some
reasonable ground-state densities that are not NI-PS vs-
representable. Clearly, such densities cannot be obtained
within the framework of KS-DFT. To remedy this situa-
tion, KS-DFT has been extended to ensemble DFT (E-DFT),
wherein ρ(r) is assumed to be noninteracting ensemble (NI-
E) vs-representable, as it belongs to an ensemble of pure de-
terminantal states of the noninteracting KS system.45, 46 Cor-
respondingly, ρ(r) can be expressed as

ρE-DFT(r) =
∞∑
i=1

gi |φi(r)|2, (4)

where the occupation numbers {gi}, obeying the following
two conditions:

∞∑
i=1

gi = N, 0 ≤ gi ≤ 1, (5)

are given by

gi =

⎧⎪⎨
⎪⎩

1, for εi < εF

xi, for εi = εF

0, for εi > εF .

(6)

Here, εi is the orbital energy of the i-th KS orbital φi(r), εF

is the Fermi energy, and xi is a fractional number (between
0 and 1). As can be seen, fractional orbital occupations can
occur only for the orbitals at the Fermi level.

In 1998, the close relationship between strong static cor-
relation effects and non-NI-PS vs-representable densities was
observed by Baerends and co-workers,42 who studied the 1�+

g

ground state of the C2 molecule (a system where the ground-
state wave function is nondegenerate but has a strong multi-
reference character), and investigated the possibility that the
ground-state density ρ(r) may be NI-E vs-representable (as
assumed in E-DFT), rather than NI-PS vs-representable (as
assumed in KS-DFT). In their study, ρ(r) was first obtained
from the highly accurate ab initio CI wave function method,
wherein ρ(r) can be represented by the NOs {χ i(r)} and
NOONs {ni} in Eq. (1). An iterative method for the con-
struction of the KS orbitals and the KS potential from the
CI density was then adopted,47 combined with the constraint
of integer occupations of the KS orbitals. The ρ(r) of C2

was found to be NI-PS vs-representable at a bond distance
shorter than the equilibrium distance, while being non-NI-
PS vs-representable at the longer bond distances, leading to
non-Aufbau solutions with unoccupied KS orbitals having
energies lower than those of the highest occupied KS or-
bitals (i.e., holes below the Fermi level). On the other hand,
when the ρ(r) of C2 was represented by the ensemble so-
lution during the above iterative procedure, no holes below
the Fermi level were found, and the corresponding KS or-
bitals were close to the NOs. Based on their results, Baerends
and co-workers42 argued that the KS orbitals (generated from
Aufbau solutions) for a NI-PS vs-representable ground-state
density are comparable to the NOs, while the KS orbitals
(generated from non-Aufbau solutions) for a non-NI-PS vs-

representable ground-state density can be distinctly different
from the NOs in order to incorporate the effect of the config-
uration mixing on the ground-state density. They concluded
that the ground-state density of a system with strong static
correlation effects is likely to be non-NI-PS vs-representable,
in which case an ensemble representation (via fractional or-
bital occupations) of the ground-state density is crucial. Ar-
guments in support of this are also available in Refs. 43
and 48.

The idea of simulating strong static correlation effects by
fractional occupation numbers (FONs) in DFT has spurred the
development of the DFT-FON method,48–52 the spin-restricted
ensemble-referenced KS method,53, 54 and the fractional-spin
DFT method,10, 35 with great success for some SC systems.
The practical implementation of E-DFT and related meth-
ods has, however, been impeded by a few factors as fol-
lows. First, a double-counting of correlation effects may oc-
cur, when the conventional approximate XC functional is
evaluated with an ensemble density in Eq. (4), rather than
a NI-PS vs-representable density in Eq. (3). By taking into
account the double-counting effects, the XC functional in E-
DFT may need to be re-derived. Second, the computational
cost of E-DFT is more expensive than that of KS-DFT, which
makes E-DFT less practical for the study of large ground-state
systems. Third, the computational cost of analytical nuclear
gradients (if available) for E-DFT is more expensive than
that for KS-DFT, which makes it a formidable computational
task to perform geometry optimization of large molecules for
E-DFT.

In view of the above difficulties, we focus on the
representation of the ground-state density from the exact the-
ory in Eq. (1). Although the exact orbital occupation num-
bers for interacting electrons are intractable for large sys-
tems due to the exponential complexity, the approximate ones
can, however, be properly simulated. Based on the statistical
properties of strongly correlated eigenstates, Flambaum et al.
argued that the distribution of occupation numbers (the mi-
crocanonical averaging of the occupation numbers) for a
finite number of interacting Fermi particles (with two-body
interaction) practically does not depend on a particular many-
body system and has a universal form that can be ap-
proximately described by the Fermi-Dirac distribution with
renormalized parameters (i.e., orbital energies, chemical po-
tential, and temperature).55–57 Statistical effects of the inter-
action have been shown to be absorbed by introduction of the
effective temperature.

In view of the close relationship between strong static
correlation effects and representations of the ground-state
density as well as the close relationship between the distri-
bution of occupation numbers for interacting electrons (in the
sense of statistical average) and the Fermi-Dirac distribution
for noninteracting electrons, in this work, the ground-state
density ρ(r) of a system of N interacting electrons (at zero
temperature) in the presence of an external potential vext (r),
is assumed to be noninteracting thermal ensemble (NI-TE) vs-
representable, as it is represented by the thermal equilibrium
density of an auxiliary system of N noninteracting electrons at
a fictitious temperature θ ≡ kBTel (where kB is the Boltzmann
constant, Tel is the temperature measured in absolute
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temperature, and θ is the temperature measured in energy
units) in the presence of a local potential vs(r). Correspond-
ingly, ρ(r) can be expressed as

ρ(r) =
∞∑
i=1

fi |ψi(r)|2, (7)

where the occupation number fi is the Fermi-Dirac function

fi = {1 + exp[(εi − μ)/θ ]}−1, (8)

which obeys the following two conditions:

∞∑
i=1

fi = N, 0 ≤ fi ≤ 1, (9)

εi is the orbital energy of the i-th orbital ψ i(r), and μ is the
chemical potential chosen to conserve the number of electrons
N.

In Sec. III, we demonstrate how a DFT associated with
the NI-TE vs-representable ρ(r) in Eq. (7), can be formu-
lated. In other words, for a given fictitious temperature θ , the
remaining “renormalized parameters” ({εi} and μ) and
the {ψ i(r)}, can be self-consistently determined to represent
the ρ(r) in Eq. (7), which then determines the ground-state
energy of the system. Strong static correlation is shown to be
described by a term related to the θ and {fi} in this DFT.

To avoid any possible confusion with KS-DFT, E-DFT,
and finite-temperature DFT (FT-DFT),58 we refer to this DFT
as thermally-assisted-occupation DFT (TAO-DFT). We wish
to develop TAO-DFT with the following characteristics.

� It is developed for ground-state systems at zero tem-
perature.

� It represents the ground-state density with orbitals and
occupation numbers.

� It may be used together with existing XC functionals
in KS-DFT.

� It reduces to KS-DFT in the absence of strong static
correlation effects.

� It treats single- and multi-reference systems in a more
balanced way than KS-DFT.

� It has similar computational cost as KS-DFT (e.g., en-
ergy and analytical nuclear gradients).

III. TAO-DFT

A. Self-consistent equations

Consider a system of N interacting electrons moving in
an external potential vext (r) at zero temperature. Based on the
HK theorems,1 the ground-state energy E[ρ], a functional of
the ground-state density ρ(r), can be written as

E[ρ] = F [ρ] +
∫

ρ(r)vext (r)dr, (10)

where the universal functional

F [ρ] = T [ρ] + Vee[ρ] (11)

is the sum of the interacting kinetic energy T[ρ] and the
electron-electron repulsion energy Vee[ρ].

In KS-DFT,1, 2 F[ρ] is usefully partitioned as

F [ρ] = Ts[ρ] + EH [ρ] + (T [ρ] + Vee[ρ] − Ts[ρ] − EH [ρ])

= Ts[ρ] + EH [ρ] + Exc[ρ]. (12)

Here, Ts[ρ] is the noninteracting kinetic energy at zero
temperature,

EH [ρ] ≡ e2

2

∫ ∫
ρ(r)ρ(r′)
|r − r′| drdr′ (13)

is the Hartree energy, and Exc[ρ] ≡ (T [ρ] + Vee[ρ]
− Ts[ρ] − EH [ρ]) is the XC energy defined in KS-DFT. In
KS-DFT, Ts[ρ], the big unknown in terms of the density,
is exactly treated by the use of KS orbitals. However, as
previously discussed, the basic ansatz of KS-DFT (i.e., NI-PS
vs-representability of the given ρ(r)) can be violated for SC
systems, in which case even the exact KS-DFT will fail to
convey reliably accurate results.7

To make progress, a different representation of the
ground-state density is adopted in TAO-DFT, wherein ρ(r) is
represented by the thermal equilibrium density of an auxiliary
system of N noninteracting electrons at a fictitious tempera-
ture θ in the presence of some local potential vs(r). Aiming
to achieve this representation, in contrast to the original KS
partition, F[ρ] is partitioned into the following set of terms:

F [ρ] = Aθ
s [ρ]+EH [ρ] + (T [ρ] + Vee[ρ]−Aθ

s [ρ]−EH [ρ])

= Aθ
s [ρ] + EH [ρ] + (T [ρ] + Vee[ρ]

− Ts[ρ] − EH [ρ]) + (Ts[ρ] − Aθ
s [ρ])

= Aθ
s [ρ] + EH [ρ] + Exc[ρ] + Eθ [ρ]. (14)

Here, Ts[ρ], EH[ρ], and Exc[ρ] are the same as those defined
in KS-DFT, Aθ

s [ρ] is the noninteracting kinetic free energy
at temperature θ , and Eθ [ρ] ≡ Ts[ρ] − Aθ

s [ρ] = Aθ=0
s [ρ]

− Aθ
s [ρ] is the difference between the noninteracting kinetic

free energy at zero temperature and that at temperature θ .
Substituting Eq. (14) into Eq. (10) and minimizing the

E[ρ] with respect to ρ(r) (subject to the constraint that the
number of electrons be N), yields the following Euler equation
for the ground-state density ρ(r),

μ = δAθ
s [ρ]

δρ(r)
+ vext (r) + e2

∫
ρ(r′)

|r − r′|dr′

+ δExc[ρ]

δρ(r)
+ δEθ [ρ]

δρ(r)
, (15)

where μ is the chemical potential of the system.
To bypass the exact functional form of Aθ

s [ρ] (the big
unknown in terms of the density) needed in Eq. (15), consider
an auxiliary system of N noninteracting electrons moving in
a local potential vs(r) at temperature θ . Based on Mermin’s
theorems,58 the grand-canonical potential 
θ

s of this reference
system, a functional of the thermal equilibrium density ρs(r),
can be written as


θ
s [ρs] = Aθ

s [ρs] +
∫

ρs(r)[vs(r) − μs]dr, (16)

where μs is the chemical potential of the reference system.
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Minimization of the 
θ
s [ρs] with respect to ρs(r), gives

the following Euler equation for the thermal equilibrium den-
sity ρs(r):

μs = δAθ
s [ρs]

δρs(r)
+ vs(r). (17)

Comparing Eq. (17) with Eq. (15), shows that both minimiza-
tions have the same solution ρs(r) = ρ(r), if we choose vs(r)
(up to a constant) as

vs(r) = vext (r) + e2
∫

ρ(r′)
|r − r′|dr′ + δExc[ρ]

δρ(r)
+ δEθ [ρ]

δρ(r)
.

(18)

Alternatively, as Aθ
s [ρ] can be expressed exactly in terms

of orbitals and occupation numbers (see below), Eq. (17) can
also be handled, in an exact manner, by solving the one-
electron Schrödinger equations for the potential vs(r), given
by {

− ¯
2

2me

∇2 + vs(r)

}
ψi(r) = εiψi(r), (19)

and construct

ρ(r) = ρs(r) =
∞∑
i=1

fi |ψi(r)|2, (20)

where the occupation number fi is the Fermi-Dirac function

fi = {1 + exp[(εi − μ)/θ ]}−1, (21)

and the chemical potential μ is chosen to conserve the number
of electrons N,

∞∑
i=1

{1 + exp[(εi − μ)/θ ]}−1 = N. (22)

The formulation of TAO-DFT leads to a set of self-consistent
equations, Eqs. (18)–(22).

To obtain a self-consistent ground-state density in TAO-
DFT: (i) Choose a trial ρ(r) to construct vs(r) by Eq. (18); (ii)
solve Eq. (19), which gives {εi, ψ i(r)}; (iii) find μ by solving
Eq. (22); (iv) determine {fi} by Eq. (21) and new ρ(r) by
Eq. (20). This process is coupled with Eq. (18) to achieve self-
consistency. When converged, the entropy functional reads

Sθ
s [{fi}] = −kB

∞∑
i=1

[fi ln(fi) + (1 − fi) ln(1 − fi)].

(23)
The exact noninteracting kinetic free energy Aθ

s at the ficti-
tious temperature θ , can be expressed in terms of {fi, ψ i},

Aθ
s [{fi, ψi}] = T θ

s [{fi, ψi}] − θ

kB

Sθ
s [{fi}], (24)

which is the sum of the kinetic energy

T θ
s [{fi, ψi}] = − ¯

2

2me

∞∑
i=1

fi

∫
ψ∗

i (r)∇2ψi(r)dr

=
∞∑
i=1

fiεi −
∫

ρ(r)vs(r)dr (25)

and entropy contribution

− θ

kB

Sθ
s [{fi}] = θ

∞∑
i=1

[fi ln(fi) + (1 − fi) ln(1 − fi)]

(26)
of noninteracting electrons at temperature θ . Based on
Eqs. (10) and (14), the total ground-state energy E[ρ] can be
evaluated by

E[ρ] = Aθ
s [{fi, ψi}] +

∫
ρ(r)vext (r)dr

+EH [ρ] + Exc[ρ] + Eθ [ρ]. (27)

To sum up, in TAO-DFT, the partition of F[ρ] in
Eq. (14) and the exact treatment of Aθ

s [ρ] in Eq. (24), are
shown to yield a set of self-consistent equations for the NI-
TE vs-representable ρ(r) in Eq. (20). Note that these equa-
tions resemble the finite-temperature KS equations,2, 58 so the
implementation of TAO-DFT can be easily achieved using ex-
isting FT-DFT codes with a slight modification (i.e., replacing
the XC free energy in FT-DFT to the sum of Exc[ρ] and Eθ [ρ]
in TAO-DFT). Hence, the computational cost of TAO-DFT is
similar to that of KS-DFT or FT-DFT. Similar to FT-DFT,2, 58

due to the explicit inclusion of Fermi-Dirac occupation func-
tion in TAO-DFT, the entropy contribution (− θ

kB
Sθ

s [{fi}])
in Eq. (26) is essential to make the total ground-state en-
ergy functional E[ρ] variational59 (e.g., making the nu-
clear gradients of E[ρ] equal to the Hellmann-Feynman
forces60).

B. Spin-polarized formalism

For a system with Nα up-spin electrons and Nβ down-spin
electrons, the standard computational approach is the spin-
polarized (spin-unrestricted) formalism, wherein the funda-
mental variables are the up-spin density ρα(r) and down-spin
density ρβ (r) of the ground-state density

ρ(r) = ρα(r) + ρβ(r) =
∑

σ=α,β

ρσ (r). (28)

In analogy to the two-Fermi-level picture of spin-polarized
KS-DFT,48, 61 spin-polarized TAO-DFT can also be formu-
lated with the two-chemical-potential picture, wherein two
noninteracting auxiliary systems at the same fictitious tem-
perature θ are adopted: one described by the spin function
α and the other by function β, with the corresponding ther-
mal equilibrium density distributions ρs, α(r) and ρs, β(r) ex-
actly equal to ρα(r) and ρβ (r), respectively, in the original
interacting system at zero temperature. Similar to the previ-
ous derivations (but using the spin-polarized extensions of
the HK theorems48, 61 and the Mermin theorems62, 63 for the
physical and auxiliary systems, respectively), one-electron
Schrödinger equations for electrons with σ -spin (σ = α

or β), can be obtained as follows (i runs for the orbital
index):

{
− ¯

2

2me

∇2 + vs,σ (r)

}
ψi,σ (r) = εi,σψi,σ (r), (29)
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with a local potential

vs,σ (r) = vext (r) + e2
∫

ρ(r′)
|r − r′|dr′

+ δExc[ρα, ρβ ]

δρσ (r)
+ δEθ [ρα, ρβ ]

δρσ (r)
. (30)

Here, Exc[ρα , ρβ ] is the same as the XC energy
defined in spin-polarized KS-DFT,48, 61 and Eθ [ρα, ρβ]
≡ Ts[ρα, ρβ ] − Aθ

s [ρα, ρβ ] = Aθ=0
s [ρα, ρβ] − Aθ

s [ρα, ρβ ] is
the spin-polarized version of Eθ [ρ]. The σ -spin density can
be constructed by

ρσ (r) =
∞∑
i=1

fi,σ |ψi,σ (r)|2, (31)

where the occupation number fi, σ is the Fermi-Dirac function

fi,σ = {1 + exp[(εi,σ − μσ )/θ ]}−1, (32)

and a chemical potential μσ is chosen to conserve the number
of σ -spin electrons Nσ ,

∞∑
i=1

{1 + exp[(εi,σ − μσ )/θ ]}−1 = Nσ . (33)

The formulation of spin-polarized TAO-DFT yields two sets
(one for each spin function) of self-consistent equations,
Eqs. (29)–(33), for ρα(r) and ρβ (r), respectively, which are
coupled with ρ(r) by Eq. (28).

To obtain self-consistent spin densities (and the ground-
state density) in spin-polarized TAO-DFT: (i) Choose trial
spin densities ρα(r) and ρβ(r) to compute the ground-state
density ρ(r) by Eq. (28); (ii) for the σ -spin (σ = α or β) elec-
trons, construct vs,σ (r) by Eq. (30); (iii) solve Eq. (29), which
gives {εi, σ , ψ i, σ (r)}; (iv) find μσ by solving Eq. (33); (v) de-
termine {fi, σ } by Eq. (32) and new ρσ (r) by Eq. (31). This
process is coupled with Eq. (28) to achieve self-consistency.
When converged, Aθ

s,σ , the sum of the kinetic energy and en-
tropy contribution of noninteracting σ -spin electrons at the
fictitious temperature θ , is given by

Aθ
s,σ [{fi,σ , ψi,σ }]

= − ¯
2

2me

∞∑
i=1

fi,σ

∫
ψ∗

i,σ (r)∇2ψi,σ (r)dr

+ θ

∞∑
i=1

[fi,σ ln(fi,σ ) + (1 − fi,σ ) ln(1 − fi,σ )]

=
∞∑
i=1

{fi,σ εi,σ + θ [fi,σ ln(fi,σ ) + (1 − fi,σ )

× ln(1 − fi,σ )]} −
∫

ρσ (r)vs,σ (r)dr, (34)

and the total ground-state energy E[ρα , ρβ] in spin-polarized
TAO-DFT is evaluated by

E[ρα, ρβ ] =
∑

σ=α,β

Aθ
s,σ [{fi,σ , ψi,σ }] +

∫
ρ(r)vext (r)dr

+EH [ρ] + Exc[ρα, ρβ ] + Eθ [ρα, ρβ ]. (35)

Spin-unpolarized (spin-restricted) TAO-DFT can be for-
mulated by imposing the constraints of ψ i, α(r) = ψ i, β(r) and
fi, α = fi, β to spin-polarized (spin-unrestricted) TAO-DFT.

C. Analytical nuclear gradients

The analytical computation of nuclear gradients is cru-
cial for the efficient optimization of molecular geometries. In
light of the similarity of TAO-DFT and FT-DFT,2, 58 analytical
nuclear gradients for TAO-DFT can be easily obtained from
those for FT-DFT with a slight modification (mentioned pre-
viously). Therefore, the computational cost of the analytical
nuclear gradients for TAO-DFT is similar to that for KS-DFT
or FT-DFT. For nonorthogonal atomic orbital representations
(e.g., Gaussian-type orbitals), the generalized Pulay force for
a noninteracting thermal ensemble64 should be included to
add the effect of the basis-set dependent response to the ana-
lytical nuclear gradients for TAO-DFT.

D. Local density approximation

In TAO-DFT, as the exact Exc[ρ] and Eθ [ρ], in terms
of the ground-state density ρ(r), remain unknown, DFAs for
both of them (denoted as TAO-DFAs) are needed for practi-
cal applications. The performance of TAO-DFAs depends on
the accuracy of DFAs and the choice of the fictitious tem-
perature θ . In this work, we adopt the LDA (the simplest
DFA) for both the Exc[ρ] and Eθ [ρ] in TAO-DFT (denoted
as TAO-LDA). As TAO-LDA is exact for a uniform electron
gas, it provides a good starting point for more accurate and so-
phisticated TAO-DFAs. Besides, TAO-LDA is readily avail-
able, as ELDA

xc [ρ] can be directly obtained from that of KS-
LDA,65, 66 and ELDA

θ [ρ] can be obtained with the knowledge
of ALDA,θ

s [ρ] as follows:

ELDA
θ [ρ] ≡ ALDA,θ=0

s [ρ] − ALDA,θ
s [ρ]. (36)

Here, Perrot’s parametrization of ALDA,θ
s [ρ] (in its spin-

unpolarized form) (Ref. 67) is adopted to obtain ELDA
θ [ρ] (in

its spin-unpolarized form) by Eq. (36). For completeness of
this work, ALDA,θ

s [ρ] (after correcting some typos in Ref. 67)
is explicitly shown here (in atomic units),

ALDA,θ
s [ρ] =

∫
aLDA,θ

s (r)dr, (37)

where aLDA,θ
s (r) ≡ θρ(r)f (y) and y ≡ (π2/

√
2)θ−3/2ρ(r).

The function f(y) was parametrized separately for the two re-
gions y ≤ y0 and y ≥ y0 (y0 ≡ 3π

4
√

2
),67

f (y) = lny − 0.8791880215 + 0.1989718742y

+ 0.1068697043 × 10−2y2

− 0.8812685726 × 10−2y3 + 0.1272183027

× 10−1y4 − 0.9772758583 × 10−2y5

+ 0.3820630477 × 10−2y6 − 0.5971217041

× 10−3y7, for y ≤ y0, (38)

f (y) = 0.7862224183u − 0.1882979454

× 101u−1 + 0.5321952681u−3
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+ 0.2304457955 × 101u−5 − 0.1614280772

×102u−7 + 0.5228431386 × 102u−9

− 0.9592645619 × 102u−11

+ 0.9462230172 × 102u−13

− 0.3893753937 × 102u−15,

for y ≥ y0 with u ≡ y2/3. (39)

The θ = 0 case, ALDA,θ=0
s [ρ], is the same as the Thomas-

Fermi kinetic energy density functional,3, 4

ALDA,θ=0
s [ρ] = CF

∫
ρ5/3(r)dr, (40)

where CF = 3
10 (3π2)2/3.

For spin-polarized (spin-unrestricted) TAO-LDA, the
corresponding spin-polarized forms, ELDA

xc [ρα, ρβ ] (avail-
able from that of spin-polarized KS-LDA; Refs. 65 and
66) and ELDA

θ [ρα, ρβ ], should be adopted. From the spin-
scaling relation of Aθ

s [ρα, ρβ ] (same as that of Ts[ρα , ρβ ]68),
ELDA

θ [ρα, ρβ ] can be conveniently expressed by its spin-
unpolarized form ELDA

θ [ρ],

ELDA
θ [ρα, ρβ ] ≡ ALDA,θ=0

s [ρα, ρβ ] − ALDA,θ
s [ρα, ρβ ]

= 1

2
(ALDA,θ=0

s [2ρα] + ALDA,θ=0
s [2ρβ])

− 1

2
(ALDA,θ

s [2ρα] + ALDA,θ
s [2ρβ])

= 1

2
{(ALDA,θ=0

s [2ρα] − ALDA,θ
s [2ρα])

+ (ALDA,θ=0
s [2ρβ] − ALDA,θ

s [2ρβ])}

= 1

2
{ELDA

θ [2ρα] + ELDA
θ [2ρβ]}. (41)

E. Strong static correlation from TAO-LDA

The ground-state density ρ(r) of a strongly correlated
system containing a sufficiently large number of electrons,
can be represented by Eq. (1) (with the exact NOs {χ i(r)}
and NOONs {ni}). Assume that the ρ(r) can also be repre-
sented by Eq. (20) (with the orbitals {ψ i(r)} and their occu-
pation numbers {fi} from the exact TAO-DFT). Note that for
such a NI-TE vs-representable ρ(r), its “internal variables”
{fi} and {ψ i(r)} in Eq. (20), can still be tuned by changing
the fictitious temperature θ . If a θ is chosen so that {ni} ≈ {fi}
(in the sense of statistical average, as mentioned previously),
we have {χ i(r)} ≈ {ψ i(r)} (as both Eqs. (1) and (20) repre-
sent the same ρ(r)). In fact, the NI-TE vs-representability of
ρ(r) is likely to be fulfilled for this θ , due to the similarity of
Eqs. (1) and (20).

Consequently, the exact kinetic energy of interacting
electrons T[ρ] can be properly simulated by T θ

s [{fi, ψi}]
(as appeared in Aθ

s [{fi, ψi}] = T θ
s [{fi, ψi}] − θ

kB
Sθ

s [{fi}]),
namely,

T [ρ] = T [{ni, χi}] ≈ T θ
s [{fi, ψi}], (42)

due to their similar expressions,5 while the electron-electron
repulsion energy Vee[ρ] = F [ρ] − T [ρ] (see Eqs. (11)

and (14)) is given by

Vee[ρ] ≈ EH [ρ] + Exc[ρ] + Eθ [ρ] − θ

kB

Sθ
s [{fi}]. (43)

On the right-hand side of Eq. (43), the first term is the
Hartree energy, and the sum of the remaining terms (Exc[ρ]
+ Eθ [ρ] − θ

kB
Sθ

s [{fi}]) should properly describe the XC en-
ergy defined in the exact wave function theory.

Here, we explain how strong static correlation is de-
scribed by TAO-LDA, with arguments similar to the above.
Suppose that the exact ρ(r) in Eq. (1) can be reasonably rep-
resented by Eq. (20) (with the orbitals {ψ i(r)} and their oc-
cupation numbers {fi} from TAO-LDA). When applying the
above arguments for TAO-LDA (i.e., choosing a θ so that {ni}
≈ {fi}, which gives {χ i(r)} ≈ {ψ i(r)}), T[ρ] can still be prop-
erly simulated by T θ

s [{fi, ψi}] (see Eq. (42)), while Vee[ρ] is
only approximated by

Vee[ρ] ≈ EH [ρ] + ELDA
xc [ρ] + ELDA

θ [ρ] − θ

kB

Sθ
s [{fi}].

(44)
On the right-hand side of Eq. (44), the first two terms (EH[ρ]
and ELDA

xc [ρ]) are the same as those defined in KS-LDA, the
third term ELDA

θ [ρ] locally accounts for the difference be-
tween the exact Ts and Aθ

s (at the LDA level), and the last
term is the entropy contribution (− θ

kB
Sθ

s [{fi}] ≈ − θ
kB

Sθ
s [{ni}]

= θ
∑∞

i=1[ni ln(ni) + (1 − ni) ln(1 − ni)]) (see Eq. (26)).
Due to their local treatment, ELDA

xc [ρ] and ELDA
θ [ρ]

are not expected to properly describe nonlocal XC effects
(e.g., long-range dynamical correlation and strong static cor-
relation). However, as the entropy contribution is a fully
nonlocal density functional ({fi} are implicit density function-
als), it may describe nonlocal correlation effects. There is cer-
tainly a close relationship between the entropy (defined by the
NOONs {ni}) and correlation energy of a system. A famous
example is given by the Collins conjecture69 that the corre-
lation energy of a system is proportional to the Jaynes (in-
formation) entropy SJaynes[{ni}] = −∑∞

i=1 ni ln(ni).70 Inter-
estingly, the entropy contribution in Eq. (44) is proportional
to the Gibbs (thermodynamic) entropy (Sθ

s [{fi}] ≈ Sθ
s [{ni}]

= −kB

∑∞
i=1[ni ln(ni) + (1 − ni) ln(1 − ni)]), with the con-

stant of proportionality being explicitly given by (− θ
kB

). Note
that the similarity of information entropy and thermodynamic
entropy in a many-body quantum system (with strong in-
teractions) has been shown in Ref. 71, based on statistical
arguments.

As the entropy contribution (− θ
kB

Sθ
s [{fi}]) in Eq. (44) es-

sentially provides no contributions for a single-reference sys-
tem ({fi} ≈ {ni} are close to either 0 or 1), and significantly
lowers the total energy of a multi-reference system ({fi}
≈ {ni} are fractional for active orbitals, and are close to ei-
ther 0 or 1 for others), we expect that this term (absent in
KS-LDA) plays a crucial role in simulating strong static cor-
relation (rather than dynamical correlation).

IV. NUMERICAL INVESTIGATIONS
OF AN OPTIMAL θ VALUE

The fictitious (reference) temperature θ for TAO-DFT,
controlling the orbital occupation numbers {fi}, is closely
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TABLE I. Statistical errors (in kcal/mol) of the reaction energies of 30 chemical reactions, Ref. 20, calculated
by TAO-LDA (with various θ (in mHartree)). The θ = 0 case corresponds to KS-LDA.

θ 0 1 3 5 7 10 15 20 30 40

MSE − 0.41 − 0.72 − 0.94 − 1.13 − 1.32 − 1.59 − 1.96 − 2.25 − 2.73 − 3.04
MAE 8.51 8.27 7.75 7.36 7.09 6.95 7.53 8.92 12.28 15.21
rms 11.10 10.89 10.31 9.76 9.38 9.16 9.75 11.25 15.20 19.03
Max(−) − 18.31 − 17.43 − 15.65 − 15.73 − 15.92 − 16.55 − 18.63 − 22.61 − 30.65 − 39.72
Max(+) 35.68 35.59 33.88 32.18 30.50 28.01 23.95 20.08 17.09 25.45

related to the strength of static correlation. At the LDA
level, an immediate question is how the θ for the resulting
TAO-LDA should be chosen. As previously argued, the en-
tropy contribution, − θ

kB
Sθ

s [{fi}] = θ
∑∞

i=1[fi ln(fi) + (1 −
fi) ln(1 − fi)], can be responsible for strong static correla-
tion effects, especially when the {fi} (tunable by the θ ) prop-
erly simulate the exact NOONs {ni}. To numerically inves-
tigate this conjecture, the performance of TAO-LDA (with θ

= 0, 1, 3, 5, 7, 10, 15, 20, 30, and 40 mHartree) is exam-
ined for both single-reference systems (reaction energies and
equilibrium geometries) and multi-reference systems (disso-
ciation of H2 and N2, twisted ethylene, and singlet-triplet (ST)
energy gaps of linear acenes). The limiting case where θ = 0
for TAO-LDA is especially interesting, as this reduces to KS-
LDA. Therefore, it is important to know how well KS-LDA
performs here to assess the significance of the extra parameter
θ for TAO-LDA.

All calculations are performed with a development ver-
sion of Q-Chem 3.2.72 The error for each entry is defined
as (error = theoretical value − reference value). The nota-
tion used for characterizing statistical errors is as follows:
mean signed errors (MSEs), mean absolute errors (MAEs),
root-mean-square (rms) errors, maximum negative errors
(Max(−)), and maximum positive errors (Max(+)). Results
are computed using the 6-311++G(3df,3pd) basis set, unless
noted otherwise.

A. Single-reference systems

1. Reaction energies

The accurate prediction of reaction energies is usually
one of the major criteria in the assessment of the perfor-
mance of electronic structure methods. The reaction energies
of 30 chemical reactions (a test set described in Ref. 20) are
used to examine the performance of TAO-LDA. As shown
in Table I, TAO-LDA (with a θ smaller than 10 mHartree)

has similar performance to KS-LDA.73 This is unsurpris-
ing, as these systems do not have much static correlation,
the exact NOONs should be close to either 0 or 1, which
can be well simulated by the orbital occupation numbers
of TAO-LDA (with a sufficiently small θ ). Consequently,
T θ

s [{fi, ψi}] (see Eq. (42)) is close to T θ=0
s [{ψi}] (KS kinetic

energy), and ELDA
θ [ρ] (see Eq. (36)) and the entropy contribu-

tion (− θ
kB

Sθ
s [{fi}] = θ

∑∞
i=1[fi ln(fi) + (1 − fi) ln(1 − fi)])

have insignificant contributions to the total energy, relative to
ELDA

xc [ρ] (see Eq. (44)).

2. Equilibrium geometries

Geometry optimizations for TAO-LDA are performed on
the equilibrium experimental test set (EXTS),74 consisting of
166 symmetry unique experimental bond lengths for small
to medium size molecules. As the ground states of these
molecules near their equilibrium geometries can be well de-
scribed by single-reference wave functions, TAO-LDA (with
a θ smaller than 10 mHartree) is also found to perform simi-
larly to KS-LDA,73 as shown in Table II.

B. Multi-reference systems

1. Dissociation of H2 and N2

H2 dissociation, a single-bond breaking system, is partic-
ularly challenging for KS-DFT. Figure 1 shows the potential
energy curves (in total energy) for the ground state of H2,
calculated by both the spin-restricted and spin-unrestricted
formalisms of the HF theory and KS-DFT (with LDA
(Refs. 65 and 66) and B3LYP (Refs. 13 and 14) function-
als), where the exact potential energy curve is calculated
by the coupled-cluster theory with iterative singles and dou-
bles (CCSD).75 Due to the symmetry constraint, the spin-
restricted and spin-unrestricted potential energy curves, cal-
culated by the exact theory, should be the same. Therefore,

TABLE II. Statistical errors (in Å) of EXTS,74 calculated by TAO-LDA (with various θ (in mHartree)). The θ

= 0 case corresponds to KS-LDA.

θ 0 1 3 5 7 10 15 20 30 40

MSE 0.004 0.004 0.004 0.005 0.005 0.005 0.006 0.008 0.015 0.030
MAE 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.014 0.021 0.036
rms 0.017 0.017 0.017 0.017 0.017 0.018 0.019 0.021 0.037 0.080
Max(−) − 0.091 − 0.091 − 0.091 − 0.091 − 0.091 − 0.092 − 0.095 − 0.101 − 0.110 − 0.110
Max(+) 0.081 0.081 0.080 0.080 0.080 0.080 0.078 0.083 0.222 0.581
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FIG. 1. Potential energy curves (in total energy) for the ground state of H2,
calculated by both the spin-restricted and spin-unrestricted formalisms of the
HF theory and KS-DFT (with LDA and B3LYP functionals). The exact po-
tential energy curve is calculated by the CCSD theory.

the difference between the dissociation limits of the spin-
restricted and spin-unrestricted potential energy curves, can
be used as a quantitative measure of SCEs of approximate
methods.10, 35 Spin-restricted KS-DFT yields the proper spin
symmetry and spin densities but has much too high total en-
ergy (leading to a noticeable SCE (Refs. 10 and 35)), due to
the lack of strong static correlation. On the other hand, spin-
unrestricted KS-DFT artificially breaks the correct space- and
spin-symmetries to simulate strong static correlation, yielding
a reasonable energy but wrong spin densities.10 Similar results
are also found for the HF theory. Among the three approxi-
mate methods, HF has the largest SCE due to the complete
neglect of static (and also dynamical) correlation. The SCE of
LDA is smaller than that of B3LYP or HF. In Fig. 2, the poten-
tial energy curves (in relative energy) for the ground state of
H2, calculated by the spin-restricted HF theory and KS-DFT
(with LDA,65, 66 PBE,76 B3LYP,13, 14 M06-2X,15 ωB97X-D,24

and B2PLYP (Ref. 31) functionals), are presented for com-
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FIG. 2. Potential energy curves (in relative energy) for the ground state of
H2, calculated by the spin-restricted HF theory and KS-DFT (with various
XC functionals). The exact potential energy curve is calculated by the CCSD
theory. The zeros of energy are set at the respective spin-unrestricted dissoci-
ation limits.
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FIG. 3. Potential energy curves (in total energy) for the ground state of H2,
calculated by spin-restricted TAO-LDA (with various θ ). The θ = 0 case
corresponds to spin-restricted KS-LDA.

parisons, where the zeros of energy are set at the respective
spin-unrestricted dissociation limits. As can be seen, LDA
still has the smallest SCE, when compared with other approx-
imate methods. Popular hybrid functionals (B3LYP, M06-
2X, and ωB97X-D) perform very well near the equilibrium
geometry (dominated by single-reference character), but fail
drastically at the larger R (dominated by multi-reference char-
acter). B2PLYP (a popular DH functional) leads to an unphys-
ical divergence at the dissociation limit, due to the vanish-
ing HOMO-LUMO gap appeared in the energy denominator
of its second-order perturbation energy components. Clearly,
hybrid and DH functionals, the most popular schemes for re-
ducing the SIEs and NCIEs of KS-DFAs, respectively, can
perform poorly for multi-reference systems due to their inac-
curate treatment of strong static correlation effects.10, 35

To evaluate the performance of the present method, the
potential energy curves for the ground state of H2, calcu-
lated by spin-restricted TAO-LDA, are shown in Figs. 3 (in
total energy) and 4 (in relative energy). Near the equilibrium
geometry, where the multi-reference character is insignifi-
cant, the performance of TAO-LDA (with a θ smaller than
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LDA (with various θ ). The θ = 0 case corresponds to spin-restricted KS-
LDA. The reference data are the FCI NOONs.37

10 mHartree) is very similar to that of KS-LDA. At the dis-
sociation limit, where the multi-reference character is pro-
nounced, the SCE of TAO-LDA is shown to be reducible with
the increase of θ value, at essentially no extra computational
cost! Interestingly, TAO-LDA (with a θ between 30 and 50
mHartree) performs very well, leading to a vanishingly small
SCE.

To see how this is related to the ensemble representa-
tion (via fractional orbital occupations) of the ground-state
density, the occupation numbers of the 1σ g orbital (HOMO)
for the ground state of H2 as a function of the internu-
clear distance R, calculated by spin-restricted TAO-LDA, are
presented in Fig. 5, where the reference data are the FCI
NOONs.37 At the equilibrium geometry (R = 0.741 Å), the
FCI NOON is 1.9643, indicating the absence of strong static
correlation effects (with doubly occupied 1σ g orbital). How-
ever, the FCI NOON is 1.5162 at R = 2.117 Å, and 1.0000
at R = 7.938 Å, indicating the presence of strong static cor-
relation effects. The 1σ g orbital occupation numbers of spin-
restricted TAO-LDA (with a nonvanishing θ ) are very close
to 2.0 (doubly occupied) near the equilibrium geometry, and
gradually reduced to 1.0 (singly occupied) at the dissociation
limit. The larger the θ value is, the faster the corresponding
1σ g orbital occupation number approaches 1.0 at the larger R.
The 1σ g orbital occupation numbers of spin-restricted TAO-
LDA (with a θ between 30 and 50 mHartree) are shown to
match well with the FCI NOONs, which is closely related to
the vanishingly small SCE of TAO-LDA (with the same θ ).

To examine the entropy contributions (in total energy)
as a function of the internuclear distance R, calculated by
spin-restricted TAO-LDA (θ = 40 mHartree), Fig. 6 shows
the potential energy curves (in relative energy) for the ground
state of H2, calculated by the spin-restricted (with and without
the entropy contributions) and spin-unrestricted TAO-LDA (θ
= 40 mHartree), where the zeros of energy are set at the
spin-unrestricted dissociation limit. As can be seen, the en-
tropy contributions are insignificant near the equilibrium ge-
ometry and pronounced at the larger R (approaching a neg-
ative constant at the dissociation limit), properly simulating
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FIG. 6. Potential energy curves (in relative energy) for the ground state of
H2, calculated by the spin-restricted (with and without the entropy contri-
butions) and spin-unrestricted TAO-LDA (θ = 40 mHartree), where the ze-
ros of energy are set at the spin-unrestricted dissociation limit. The entropy
contributions (in total energy) as a function of the internuclear distance R,
calculated by spin-restricted TAO-LDA (θ = 40 mHartree), are also shown.

the strong static correlation effects to make the spin-restricted
potential energy curve the same as the spin-unrestricted one
(as it should be). By contrast, the entropy contributions as a
function of the internuclear distance R, calculated by spin-
restricted TAO-LDA (θ = 7 mHartree), are still insufficient
to simulate the strong static correlation effects (see Fig. 7),
as the corresponding 1σ g orbital occupation numbers do not
match well with the FCI NOONs (see Fig. 5).

Similar results are also found for N2 dissociation, a triple-
bond breaking system. The potential energy curves for the
ground state of N2, calculated by spin-restricted TAO-LDA,
are shown in Figs. 8 (in total energy) and 9 (in relative en-
ergy). As can be seen, spin-restricted TAO-LDA (with a θ

between 30 and 50 mHartree) can dissociate N2 properly
(yielding a vanishingly small SCE) to the respective spin-
unrestricted dissociation limits, which is closely related to
the fact that the occupation numbers of the 3σ g (in Fig. 10)
and 1πux (in Fig. 11) orbitals for the ground state of N2

as functions of the internuclear distance R, calculated by
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FIG. 7. Same as Fig. 6 but for θ = 7 mHartree.
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LDA. The reference data are the MRCI NOONs.77

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 1  2  3  4  5  6  7  8  9  10

O
cc

up
at

io
n 

N
um

be
r

R (angstrom)

(θ in mHartree)

Reference
θ=0
θ=1
θ=3
θ=5
θ=7

θ=10
θ=15
θ=20
θ=30
θ=40
θ=50

FIG. 11. Same as Fig. 10 but for the 1πux orbital.

spin-restricted TAO-LDA (with the same θ ), match reason-
ably well with the corresponding MRCI NOONs (the refer-
ence data).77

To examine the entropy contributions (in total energy) as
a function of the internuclear distance R, calculated by spin-
restricted TAO-LDA (θ = 40 mHartree), Fig. 12 shows the
potential energy curves (in relative energy) for the ground
state of N2, calculated by the spin-restricted (with and without
the entropy contributions) and spin-unrestricted TAO-LDA (θ
= 40 mHartree), where the zeros of energy are set at the spin-
unrestricted dissociation limit. As shown, the entropy contri-
butions are essentially responsible for simulating the strong
static correlation effects to make the spin-restricted poten-
tial energy curve the same as the spin-unrestricted one (as it
should be). For spin-restricted TAO-LDA (θ = 40 mHartree),
the entropy contribution (−208.90 kcal/mol) at the dissoci-
ation limit of N2, is considerably larger (about three times
larger) than that (−69.64 kcal/mol) at the dissociation limit of
H2, as the number of unpaired electrons (or singly occupied
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FIG. 12. Potential energy curves (in relative energy) for the ground state
of N2, calculated by the spin-restricted (with and without the entropy con-
tributions) and spin-unrestricted TAO-LDA (θ = 40 mHartree), where the
zeros of energy are set at the spin-unrestricted dissociation limit. The entropy
contributions (in total energy) as a function of the internuclear distance R,
calculated by spin-restricted TAO-LDA (θ = 40 mHartree), are also shown.
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orbitals) for N2 dissociation is more (three times more) than
that for H2 dissociation.

To sum up, when the orbital occupation numbers {fi} of
TAO-LDA are close to the exact NOONs {ni}, the strong
static correlation effects are shown to be properly simulated
by the entropy contribution of TAO-LDA. As this feature is
independent of the number of unpaired electrons in a sys-
tem, TAO-LDA seems to be promising for the study of large
polyradical systems, such as linear acenes (as will be shown
later).

2. Twisted ethylene

The π (1b2) and π* (2b2) orbitals in ethylene (C2H4)
should be degenerate when the HCCH torsion angle is 90◦.
Spin-restricted single-reference methods cannot handle such
a degeneracy properly and show an unphysical cusp in the tor-
sion potential near 90◦. In the calculations, we use the exper-
imental geometry of C2H4 (RCC = 1.339 Å, RCH = 1.086 Å,
� HCH = 117.6◦).78 Figure 13 shows the torsion potential en-
ergy curves (in relative energy) for the ground state of twisted
ethylene as a function of the HCCH torsion angle, calculated
by spin-restricted TAO-LDA, where the zeros of energy are
set at the respective minimum energies. Spin-restricted TAO-
LDA (with a θ larger than 5 mHartree) is shown to be able
to remove the unphysical cusp, though spin-restricted TAO-
LDA (with a θ larger than 20 mHartree) is shown to yield a
torsion barrier which is far too low.

Figure 14 shows the occupation numbers of the π (1b2)
orbital for the ground state of twisted ethylene as a function of
the HCCH torsion angle, calculated by spin-restricted TAO-
LDA, where the reference data are the half-projected NOONs
of complete active space self-consistent field (CASSCF)
method.79 As can be seen, the π (1b2) orbital occupation num-
bers of spin-restricted TAO-LDA (with a θ between 10 and 20
mHartree), match reasonably well with the accurate NOONs,
which is related to the accurate torsion potential energy curve,
calculated by spin-restricted TAO-LDA (with the same θ ).
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To examine the entropy contributions (in total energy) as
a function of the HCCH torsion angle, calculated by spin-
restricted TAO-LDA (θ = 15 mHartree), Fig. 15 shows the
torsion potential energy curves (in relative energy) for the
ground state of twisted ethylene as a function of the HCCH
torsion angle, calculated by the spin-restricted (with and with-
out the entropy contributions) and spin-unrestricted TAO-
LDA (θ = 15 mHartree), where the zeros of energy are set
at the respective minimum energies. As shown, the entropy
contributions are responsible for simulating the strong static
correlation effects to make the spin-restricted torsion poten-
tial energy curve the same as the spin-unrestricted one (as it
should be).
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FIG. 15. Torsion potential energy curves (in relative energy) for the ground
state of twisted ethylene as a function of the HCCH torsion angle, calculated
by the spin-restricted (with and without the entropy contributions) and spin-
unrestricted TAO-LDA (θ = 15 mHartree), where the zeros of energy are
set at the respective minimum energies. The entropy contributions (in total
energy) as a function of the HCCH torsion angle, calculated by spin-restricted
TAO-LDA (θ = 15 mHartree), are also shown.
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FIG. 16. Pentacene, consisting of 5 linearly fuzed benzene rings, is desig-
nated as 5-acene.

3. Singlet-triplet energy gaps of linear acenes

Linear n-acenes (C4n + 2H2n + 4), consisting of n linearly
fused benzene rings (see Fig. (16)), have attracted great inter-
est from many experimental and theoretical researchers due
to their fascinating electronic properties and technological
potential.80–95 The experimental ST gaps of n-acenes are only
available up to pentacene,80–83 due to the increasing reactiv-
ity of the larger acenes. Recently, the calculated ST gaps have
been in serious debate.84–94 Typically, delocalized π -orbital
systems, such as n-acenes, require high-level ab initio meth-
ods, such as the DMRG algorithm,88 to capture the essential
strong static correlation effects. Based on the recent work of
Chan and co-workers,88 the DMRG ST gaps as a function
of the acene length have been shown to decrease monoton-
ically with increasing chain length. Based on a good fit to
the DMRG ST gaps of the smaller n-acenes (up to 12-acene),
an exponential fitting function of the form a + b e−c n was
adopted for extrapolation of the ST gaps to the infinite chain
limit,88 yielding a finite ST gap (3.33 kcal/mol for the cc-
pVDZ basis set, and 8.69 kcal/mol for the STO-3G basis set)
for polyacene (triplet above singlet). However, the extrapo-
lated results have been shown subject to details of the fit.92

More importantly, it is unclear whether the ST gaps of the
larger n-acenes (e.g., n ≥ 20) still decrease exponentially (as
those of the smaller n-acenes) with increasing chain length,
which may significantly affect the extrapolated ST gap. Cal-
culations on the larger acenes are necessary to address this,
which are, however, prohibitively expensive for the DMRG
algorithm88 and other high-level ab initio methods.92, 94

On the other hand, KS-DFT is computationally efficient
but unable to handle such strong static correlation effects
properly. To show this, spin-unrestricted KS-DFT calcula-
tions (with LDA,65, 66 BLYP,96, 97 and B3LYP (Refs. 13 and
14) functionals) are performed, using the 6-31G* basis set (up
to 16-acene), for the lowest singlet and triplet energies on the
respective geometries that were fully optimized at the same
level. The ST gap of n-acene is calculated as (ET − ES), the
energy difference between the lowest triplet (T) and singlet
(S) states of n-acene. As shown in Fig. (17), in contrast to the
DMRG results,88 the ST gaps calculated by spin-unrestricted
KS-DFT, are shown to unexpectedly increase beyond 10-
acene, due to unphysical symmetry-breaking effects.73

To assess the performance of the present method, spin-
unrestricted TAO-LDA calculations are performed, using both
the 6-31G* (up to 46-acene) and 6-31G (up to 74-acene) ba-
sis sets, for the lowest singlet and triplet energies on the re-
spective geometries that were fully optimized at the same
level.73 In Fig. 18, the calculated ST gaps as a function
of the acene length (using the 6-31G* basis set) are plot-
ted. In contrast to the spin-unrestricted KS-LDA results, the
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Refs. 80 to 83, and the DMRG data are taken from Ref. 88.

ST gaps calculated by spin-unrestricted TAO-LDA (with a
θ larger than 5 mHartree), are shown to decrease monoton-
ically with the increase of chain length. The ST gaps cal-
culated by spin-unrestricted TAO-LDA (with a θ between 5
and 10 mHartree), are in good agreement with the existing
experimental and high-level ab initio data.88, 92, 94 Due to the
symmetry constraint, the spin-restricted and spin-unrestricted
energies for the lowest singlet state of n-acene, calculated by
the exact theory, should be the same. To examine this prop-
erty, spin-restricted TAO-LDA calculations (using the 6-31G*
basis set) are also performed for the lowest singlet energies
on the respective geometries that were fully optimized at the
same level. The spin-unrestricted and spin-restricted TAO-
LDA (with a θ larger than 5 mHartree) calculations are found
to essentially yield the same energy value for the lowest sin-
glet state of n-acene (i.e., no unphysical symmetry-breaking
effects occur).
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culated by spin-unrestricted TAO-LDA (θ = 7 mHartree), using both the 6-
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Figure (19) shows the ST gaps of n-acenes (n ≥ 8) as a
function of the acene length, calculated by spin-unrestricted
TAO-LDA (θ = 7 mHartree), using both the 6-31G* and
6-31G basis sets.73 The effects of basis sets on the calculated
ST gaps are shown to be insignificant for the larger acenes.
The ground state of n-acene is found to remain a singlet as
chain length is increased. At the level of spin-unrestricted
TAO-LDA (θ = 7 mHartree)/6-31G, the ST gap of the largest
acene studied here (74-acene) is 0.66 kcal/mol. In view of the
slow convergence of the ST gaps with the increase of chain
length, the ST gaps of the larger n-acenes (n ≥ 20) are found
to fit extremely well to a power-law function of the form
a + b n−c, rather than the popular exponential function.88, 92, 94

As shown in Table III, nonlinear least-squares fitting of 3 dif-
ferent data sets (20- to 74-acene, 30- to 74-acene, and 40-
to 74-acene) of the ST gaps calculated by spin-unrestricted
TAO-LDA (θ = 7 mHartree)/6-31G, by means of the above
power-law fitting function, gives estimates of 0.08, 0.04, and
0.03 (kcal/mol), respectively, for the ST gaps of n-acenes in
the polymer limit (n → ∞). As the extrapolated ST gaps are
rather insensitive to the choices of the fitting data sets, the ST
gaps selected in the fitting data sets should have approached
the asymptotic (large-n) behavior, decreasing as slowly as
about n−1 with increasing chain length. In view of the mi-
nor dependence of the extrapolated results with the choices of
the fitting data sets, we can only conclude that in the polymer
limit, the lowest singlet and triplet states should be degenerate
within 0.1 kcal/mol (triplet above singlet), which supports the
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absence of Peierls distortions98 in this limit, and the closure
of the fundamental gap.85, 92

The orbital occupation numbers of TAO-LDA provide in-
formation useful in assessing the possible polyradical char-
acter of n-acenes. Figure (20) shows the HOMO occupation
numbers for the lowest singlet states of n-acenes as a func-
tion of the acene length, calculated by spin-restricted TAO-
LDA/6-31G*, where the reference data are the NOONs of the
active-space variational two-electron reduced density matrix
(2-RDM) method.95 Here, HOMO is the (N/2)-th orbital, and
LUMO is the (N/2 + 1)-th orbital, where N is the number
of electrons in n-acene. As can be seen, the HOMO occupa-
tion numbers of spin-restricted TAO-LDA (with a θ between
5 and 15 mHartree), match reasonably well with the NOONs,
which may suggest that the ST gaps calculated by TAO-LDA
(with a θ between 5 and 15 mHartree) should be reliably ac-
curate (due to the appropriate treatment of strong static cor-
relation effects via the entropy contribution), providing that
these agreements are extendible for the larger acenes.

Figure (21) shows the active orbital occupation num-
bers for the lowest singlet states of n-acenes as a function
of the acene length, calculated by spin-restricted TAO-LDA
(θ = 7 mHartree)/6-31G*.73 Here, for simplicity, HOMO,
HOMO−1, . . . , and HOMO−6, are denoted as H, H − 1,
. . . , and H − 6, respectively, while LUMO, LUMO+1, . . . ,
and LUMO+6, are denoted as L, L + 1, . . . , and L + 6,

TABLE III. Singlet-triplet energy gaps (ST gaps) of n-acenes in the polymer limit (n → ∞), obtained by
nonlinear least-squares fittings of 3 different data sets (20- to 74-acene, 30- to 74-acene, and 40- to 74-acene)
of the ST gaps calculated by spin-unrestricted TAO-LDA (θ = 7 mHartree)/6-31G, using a power-law fitting
function of the form a + b n−c. Here, the coefficient of determination R2 is a statistical measure of the goodness-
of-fit (R2 = 1, for a perfect fit).

Data set ST gap (kcal/mol) a (kcal/mol) b (kcal/mol) c R2

20- to 74-acene 0.08 0.077247 ± 0.004245 72.249 ± 0.737 1.1199 ± 0.0038 1.0000
30- to 74-acene 0.04 0.041992 ± 0.002988 64.485 ± 0.593 1.0806 ± 0.0032 1.0000
40- to 74-acene 0.03 0.028669 ± 0.001251 61.405 ± 0.284 1.0645 ± 0.0015 1.0000
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respectively. As can be seen, the active orbital occupation
numbers exhibit oscillatory behavior in the approach to unity
(singly occupied) with increasing chain length. The number
of fractionally occupied orbitals is shown to increase with the
increase of chain length, which supports previous finding that
large acenes should exhibit polyradical character.88, 89

To sum up, it seems plausible to believe the results ob-
tained by TAO-LDA (θ = 7 mHartree) here, as the calculated
ST gaps are in good agreement with the existing experimen-
tal and high-level ab initio data,88, 92, 94 the calculated HOMO
occupation numbers match reasonably well with the accurate
NOONs, and no unphysical symmetry-breaking effects occur
for the lowest singlet states of n-acenes.

V. DEFINITION OF AN OPTIMAL θ VALUE

In our study, TAO-LDA (with some fictitious tempera-
ture θ ) has been found to perform reasonably well for multi-
reference systems, when the orbital occupation numbers {fi}
are close to the exact NOONs {ni}. In such a situation, the
strong static correlation effects can be properly simulated by
the entropy contribution of TAO-LDA. However, for multi-
reference systems, the optimal θ for TAO-LDA has been
found to be highly system-dependent, ranging from 5 to 50
mHartree, due to the different strengths of static correlation
and the diversities of the {ni}. On the other hand, for single-
reference systems (in the absence of strong static correlation
effects), TAO-LDA (with a θ smaller than 10 mHartree) has
been shown to perform similar to KS-LDA.

For TAO-LDA, although it is impossible to choose a θ

that is optimal for all the systems studied, it is still useful to
define one to provide an explicit description of orbital occu-
pations. Here, the optimal θ value is defined as the largest θ

value for which the performance of the TAO-LDA (with this
θ ) and KS-LDA is similar for single-reference systems. Based
on our numerical investigations, an optimal value of θ = 7
mHartree, is finally chosen. TAO-LDA (θ = 7 mHartree) has
been shown to consistently improve upon KS-LDA for multi-

reference systems, while performing similar to KS-LDA for
single-reference systems.

VI. CONCLUSIONS

We have proposed TAO-DFT, a DFT with fractional or-
bital occupations produced by the Fermi-Dirac distribution (in
order to simulate the distribution of orbital occupation num-
bers for interacting electrons). TAO-DFT offers an explicit
description of strong static correlation via the entropy con-
tribution, a function of the fictitious temperature θ and orbital
occupation numbers {fi} (implicit density functionals). Even
at the simplest LDA level, the resulting TAO-LDA has been
shown to perform reasonably well for multi-reference systems
(due to the appropriate treatment of static correlation), when
the {fi} (related to the θ ) are close to the exact NOONs {ni}.
As this feature is independent of the number of unpaired elec-
trons in a system, TAO-LDA seems to be very useful for the
study of large polyradical systems. In our study, an optimal
value of θ = 7 mHartree, has been defined based on
physical arguments and numerical investigations. TAO-LDA
(θ = 7 mHartree), though not optimal for all the systems stud-
ied, has been shown to consistently improve upon KS-LDA
for multi-reference systems, while performing similarly to
KS-LDA for single-reference systems. Due to its computa-
tional efficiency and reasonable accuracy, TAO-LDA has been
applied to the study of the ST gaps of acenes, which are chal-
lenging problems for conventional electronic structure meth-
ods. At the level of TAO-LDA (θ = 7 mHartree)/6-31G, the
ST gap of polyacene has been shown to be vanishingly small
(within 0.1 kcal/mol), and large acenes should exhibit singlet
polyradical character in their ground states.

As TAO-LDA is conceptually simple, computationally
efficient, and easy to implement, it seems to be a promising
method for the study of ground states of large single- and
multi-reference systems. However, as with all approximate
electronic structure methods, some limitations remain. The
optimal θ = 7 mHartree for TAO-LDA is system-independent
(not fully optimized for each system), a system-dependent θ

(related to the distributions of NOONs) is expected to enhance
the performance of TAO-LDA for a wide range of systems.
For single-reference systems, the performance of TAO-LDA
is similar to that of KS-LDA. A possible TAO-DFA is ex-
pected to perform better than TAO-LDA for single-reference
systems. Although the SCEs of TAO-DFAs are expected to
be less than those of KS-DFAs, the SIEs and NCIEs of TAO-
DFAs may remain enormous in situations where these fail-
ures occur. A fully nonlocal TAO-DFT (i.e., nonlocal Exc[ρ]
and Eθ [ρ]) may be needed to resolve all the three qualitative
errors (SIE, NCIE, and SCE). We are currently investigating
along these lines, and results may be reported elsewhere.
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