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The exchange energy of a uniform electron gas which experiences a two-parameter separation of the
Coulomb interaction is derived as a local functional of the electron density. The two parameter range sep-
arator allows separate control of where and how rapidly the Coulomb interaction is switched off. The use-
fulness of the functional is briefly assessed by combination with a recently published pair of exchange
and correlation functionals. The self-interaction error of noble-gas dimer cation dissociation is found
to be reduced while thermochemistry is relatively unperturbed. These results suggest that changes in
attenuator shape can improve range-separated functionals.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Despite rough beginnings [1], the local density approximation
(LDA) has been developed through decades of work on the Kohn–
Sham (KS) [2] construction into one of the most successful approx-
imations in quantum chemistry and solid state physics. Within this
framework, the LDA exchange correlation functional is combined
by an adiabatic connection with a non-interacting wavefunction
so that an approximate kinetic energy may be extracted and there
is no need to develop accurate functionals for the kinetic energy [3]
which have proven elusive. Along these lines, Becke [4] realized
that the accuracy of Kohn–Sham energy functionals could be im-
proved by the admixture of ‘exact’ exchange coming from the ex-
plicit exchange energy of the fictitious Kohn–Sham wavefunction.
The resulting hybrid density functionals have been the most com-
monly applied model chemistry for many years [5] because they
have been found to be remarkably accurate with computational
costs virtually equivalent to those of the Hartree–Fock (HF)
method.

One of the few remaining substantial defects of the Kohn–Sham
construction which has attracted theoretical effort is the so-called
self-interaction problem [6–12], and it is directly related to the
treatment of the exchange energy [13]. In the HF energy expression
the Coulomb repulsion of a one-electron function with itself is can-
celled exactly by the corresponding exchange integral. In the KS
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construction with a pure, local functional the Coulomb energy is
non-local, but the exchange energy is not. Considering the one-par-
ticle functions provided by the KS wavefunction we might say that
the electron repels itself if the particle is spread over space because
the antisymmetric complement of the Coulomb interaction, non-
local exchange, is missing. At equilibrium geometries the effect
on predicted ground state energies is not severe, but this defect
means that dissociation problems may lead to fragments which
only possess a fractional number of electrons [14,15], or response
properties which reflect serious artifacts if charge is significantly
redistributed [16]. If globally a fraction of the exchange energy of
the KS determinant is mixed with the DFT exchange energy these
artifacts are partially remediated. To a stranger unfamiliar with
the history of hybrid DFT’s development the situation must seem
confusing, because it is not obvious why any mixture of ‘exact’ ex-
change with (semi-)local exchange is advantageous. The answer is
that the accuracy of most DFT functionals lies in a cancellation of
errors between exchange and correlation functionals. Both are
compensating for the single-reference nature of the fictitious KS
determinant [17,18]. From another angle, one might say that these
two non-local objects [19] are best considered together because
what results is more local.

A way to preserve the local cancellation of errors yet recover
correct exchange at long range has emerged in the form of
range-separated hybrid functionals. The idea which goes back to
the pioneering work of Gill and Savin [20–22], is to divide 1=r by
multiplying it with a function which varies between 0 and 1, such
that both this function and its complement are integrable. The
greatest fraction of work in this very active area [23–28] has em-
ployed the standard error function to achieve this separation:
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Fig. 1. Various attenuators that control the fraction of exact exchange as a function
of inter-electronic distance, r, plotted for comparison. The first two are equivalent to
erf ðx ¼ 0:3;0:4Þ.
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1=r ¼ erfðxrÞ=r þ erfcðxrÞ=r: ð1Þ

The LDA exchange functional corresponding to erfcðxrÞ=r, and inte-
gral kernel for the exact exchange over erfðxrÞ=r can then be de-
rived so that locally exchange is provided by the LDA and at a
distance exchange is provided by the KS wavefunction. The position
where the transition is smoothly made between the two treatments
is determined by the adjustable parameter 1=x. The choice of the
error function as a Coulomb attenuator is both practical (for most
implementations one must be able to perform the integral of Gaus-
sians over the function analytically [29]) and arbitrary because the
error function is just one of many which possess this property. In
some recent studies promising results have been attributed to more
flexible range separation [30].

One can extend the idea of mixing ab initio and DFT strengths
further by imagining range separation of the correlation part of
the functional as well. In this scheme (which we will not pursue
in this work beyond mention) the ab initio method is made respon-
sible for static and long range dispersion effects while the LDA cor-
relation functional is adjusted for the modified Coulomb
interaction to avoid double counting. Savin and coworkers have
experimented with the choice of another attenuated Coulomb
interaction for these purposes [31], a linear combination of an error
function and a Gaussian which offers a sharper separation:

vee;erfgau ¼ erfðxrÞ=r � ð2lÞ=
ffiffiffiffi
p
p
� e�ð1=3Þl2�r2

: ð2Þ

More recently this erf–gau LDA functional was combined with a
standard GGA in an attempt to surpass the accuracy of exchange-
hybrid functionals based on erf [32] with a GGA correlation treat-
ment. Another one-parameter attenuated Coulomb interaction,
the Yukawa potential, has also been the subject of recent investiga-
tions [33,34]

vee;yukawa ¼ expð�crÞ=r: ð3Þ

Improved performance of the resulting functional was attributed to
an increased fraction of short-range exchange [35].

Our group has recently published an analytical integral over a
more general sort of Coulomb attenuator which allows for separate
control of where and how rapidly the shift is made between parts
of the Coulomb interaction [36]. It allows continuous variation of
sharpness between the limits of erf and the Heavyside function.
The function is a linear combination of two error functions
(although note that the erf integral formulas are not sufficient to
describe it) and so we have adopted the name ‘terf’:

terf r0 ;xðrÞ ¼ ð1=2Þðerfðxr �xr0Þ þ erfðxr þxr0ÞÞ: ð4Þ

Investigations into the performance of range-separated hybrids [37]
have found that existing separations cannot simultaneously de-
scribe ground state and excited state properties with a single choice
of x. Along these lines a common area of intersection has been lo-
cated amongst many optimized attenuators at roughly 0.8 Bohr [38]
in the ðr;VoptimalðrÞÞ plane. The physical implication is that cancella-
tion of GGA-exchange and GGA-correlation errors in this region is
balanced with the error induced by semi-local exchange, and our
attenuator should be shaped similarly in this region for thermo-
chemical accuracy. Yet to repair self-interaction error the attenua-
tor should reach its asymptote as rapidly as possible once we
leave this region. The terf functional form can pass through this
point while still reaching its asymptote more rapidly than erf, and
so there is reason to hope that terf may be useful in this respect. An-
other nice feature of this choice of separation is that it reduces to
the erf attenuator if the r0 parameter is chosen to be zero. The atten-
uator controlling the fraction of exact exchange to include as a func-
tion of electronic separation is plotted for various choices of
parameters in Fig. 1: it consists of terf itself as defined above, plus
a fraction of short-range exact exchange (i.e. terfc) controlled by a
third parameter, cx:

LðrÞ ¼ cxterfcr0 ;xðrÞ þ terf r0 ;xðrÞ: ð5Þ

The specific sets of parameters plotted in Fig. 1 are choices whose
performance for chemical problems will be explored later in this
paper. They all include roughly similar fractions of exact exchange
in the mid-range region, as is believed to be important [38].

2. The terf-attenuated LDA

The exchange energy of a many-fermion system, charge bal-
anced by a structureless positive background is our starting point.
This matrix element is [39] (where h denotes the Heaviside
function)

Ex ¼
�k3

f

12p4

Z 1

0
q2veeðqÞ 1� 3

2
xþ 1

2
x3

� �
hð1� xÞdq;

where kf ¼ ð3p2nÞ1=3
; x ¼ q=ð2kf Þ: ð6Þ

So we must obtain the Fourier transform of terfcr0 ;xðrÞ=r.

Ffterfcr0 ;xðrÞ=rg ¼ veeðqÞ ¼
4p 1� e�

q2

4x2 cos qxr0
x

� �� �

q2 : ð7Þ

The integration of this function is algebraically quite tedious, but
can be done. Unfortunately the complex error function enters. Note
that for z 2 C; erfðz�Þ ¼ erfðzÞ� and for z 2 R; erfiðzÞ 2 R. We report
the exchange energy per particle of the Fermion gas experiencing
this interaction, �xc which may be readily implemented in any KS-
DFT code.

Ex ¼
Z

nðRÞ�xcðnðRÞÞdR: ð8Þ

The spinless kf can be easily replaced to obtain the spin-density
functional

�x;r0
x ðnÞ ¼ x4

192A4p3
8Ae�x2r2

0
ffiffiffiffi
p
p

Axr0

�
3þ A2

�
4x2r2

0 � 6
���

erfi½xr0�
���

þIm erf
1

2A
� ixr0

� �� ��
þ Re erf

1
2A
� ixr0

� �� ���

þ
�
�ð3þ 24A2 þ 32A4ðx2r2

0 � 1Þ
�

þe�
1

4A2 16A2 ð1þ 2A2ðx2r2
0 � 1ÞÞ cos

xr0

A

� 	
þ Axr0 sin

xr0

A

� 	� 		o
;

where A ¼ x
2kf

: ð9Þ

One may easily verify that this expression matches the known erf
expressions for �x as r0 ! 0 [20,40]. For large values of A (>1), a



-5.02 

-5 

-4.98 

-4.96 

-4.94 

-4.92 

-4.9 

-4.88 
0 1 2 3 4 5 6 7 

En
er

gy
 (E

h)
 

R(He-He) Angstrom 

Terf (1.016) 
wB97X 
Correct Asyptote 

Fig. 2. Dissociation of Heþ2 .
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Fig. 3. Dissociation of Arþ2 .
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series expansion in powers of 1=A is employed up to 10th order in
our implementation for purposes of numerical stability.
3. Application to range-separated hybrids

Without semi-local gradient information the thermochemistry
of this functional would be undoubtedly poor and it would be dif-
ficult to determine if terf could improve functionals in use today.
There are several recipes for combining this LDA exchange func-
tional with a GGA enhancement factor ranging in degrees of tech-
nical difficulty and empiricism. Ideally the GGA factor will depend
on the attenuating parameters [41], but recent results have shown
Table 1
Mean absolute error (kcal/mol) of G2 set atomization energies and errors of dimer cation

x (a.u.) r0 (a.u.) cx MAE H

BLYPc – – – �
0:3a 0 0.1577 2.09 �
0:4b 0 0 2.53 �
1 1.48 0.2395 5.71 �
1.016 1.2 0.1577 4.02 �
1.4 1.345 0.248 5.77 �
2 1.329 0.316 9.16 �
2 0.98 0.138 7.38 �

a xB97X.
b xB97.
c Pure Becke 88 exchange [42] and LYP [43] correlation, errors in this row are upper
that superior accuracy [13] can be obtained even if this is only
done implicitly through optimized parameters of the GGA. At the
end of the day the choice of x parameter is quite empirical, as will
be r0, even if we introduce them for physical reasons. The final
measure of a range-separated hybrid is optimization over a large
training set, and evaluation over an independent test set, roughly
a year of computer effort. We seek some justification for such an
effort and so we combine the terfc-LDA exchange energy with
the GGA exchange enhancement factor and correlation functionals
of xB97X [13] and run some basic tests to establish whether the
resulting functional shows promise. To be precise, the resulting
functional is obtained directly from xB97X by replacing the
FðarÞ of Eq. (7) in that paper with the corresponding terfc-LDA
FðarÞ obtained from Eq. (8). To begin from a functional as close
as possible to the parent (see the previous paper to clarify the nota-
tion), we also incorporate a variable fraction of short-range HF ex-
change in such a way that the UEG limit is respected (Eqs. (9) and
(10))

ESR—DFA
x ¼

X
r

Z
eterfc—LSDA

xr ðqrÞgxB97X
xr ðs2

rÞdr; ð10Þ

Exc ¼ ELR—HF
x þ cxESR—HF

x þ ð1� cxÞESR—DFA
x þ ExB97X

c : ð11Þ

Aside from the many parameters associated with the GGA we
must choose reasonable guesses of fr0;x; cxg. The physically moti-
vated guess is to reach the asymptote as rapidly as possible while
still overlapping significantly with the established attenuators in
the previously mentioned critical region [38]. An initial choice of
parameters fr0;x; cxg ¼ f1:2;1:016; cxB97X

x g was made by this
physically motivated criterion, and the usefulness of the resulting
functional was assessed on noble-gas dimer cation dissociation
(Figs. 2 and 3). Even with only very conservative changes made
to the functional form of the attenuator, terf was able to signifi-
cantly increase the accuracy (relative to its predecessor xB97X)
of the dissociation asymptote associated with the self-interaction
problem (SIE) (Fig. 3). In the case of Heþ2 the valence density lies
so close to the neighboring atom that it seems challenging to reach
a compromise between thermochemistry and exact exchange
within a transferable range-separated exchange functional but
the results for Arþ2 are encouraging. The solid thermochemical per-
formance of the parent functional seemed more-or-less conserved,
and so we investigated a little further. We make the approximation
that the GGA parameters are unchanged between erf (xB97X) and
terf attenuated Coulomb interactions. Undoubtedly this should be
improved upon in future work and the literature already describes
many ways this may be done.

A few more sets of attenuator parameters were obtained by
maximizing the least-squared overlap of a terf attenuator with
those of xB97 and xB97X varying r0; cx for a given x. Noble-gas
dissociation curves and atomization energies were calculated
for the standard G2 [44] thermochemical test set in the
asymptotes for various functionals.

eþ2 error Neþ2 error Arþ2 error Krþ2 error

87.55 �80.37 �48.51 �49.0
38.9 �34.4 �14.0 �11.2
35.1 �33.3 �9.7 �7.7
31.7 �29.3 �6.7 �4.2
24.9 �24.7 �3.0 �1.5
26.6 �26.2 �2.9 �1.2
23.2 �21.9 �0.4 0.0
13.0 �16.2 �.03 0.0

bounds.
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6-311++G(3df,3pd) basis with a saturated quadrature grid. The
purpose was not to search for parameters which would surpass
xB97X, because gradient corrections are vital to thermochemical
accuracy, but rather to document the balance between thermo-
chemistry and correction of the self-interaction error (Table 1).
As expected the results were quite sensitive to the steepness of
the attenuator and the amount of middle-range exchange, but note
that the further this attenuator departs from erf the more severe
becomes the GGA approximation. An accurate asymptote cannot
be obtained by simply increasing the amount of exact exchange
in the attenuator (because eventually the correlation part of the
problem is disturbed), but by maximizing overlap with the estab-
lished ones in the critical region we do obtain reduction of SIE with
increasing ‘exact’ exchange. At the moment where the singly-occu-
pied MO’s bond is breaking if this MO’s density around atom 2 is
far enough from the bulk of this MO’s density around atom 1 so
that it experiences Hartree exchange the density will localize on
an atom (as it should physically). Smaller atoms cause greater dif-
ficulty in general depending specifically on shell structure. The re-
sults suggest that if the GGA enhancement factor of the functional
were re-optimized for the modified attenuator it would possess
thermochemistry much like xB97X with a significantly larger
amount of exact exchange, and thus reduced self-interaction. Even
in its current incarnation, the modified functional is accurate en-
ough to be used in lieu of others for problems where ‘exact’ ex-
change might be important.
4. Discussion and conclusions

Owing largely to the popularity of hybrid functionals, range sep-
aration of exchange has become an intense area of research, and
more flexible range separation may prove desirable [18]. Indeed
this has already been done with the erf–gau type attenuator [32],
although in this case this was done at the expense of abandoning
a physically motivated choice of a parameter. An analytical formula
[36] is available for the exact exchange energy with the terf atten-
uation, and this expression has already been efficiently imple-
mented in the publicly available release of the Q-CHEM package
[45]. This paper provides the other building block, the short-range
LDA exchange energy and a proof-of-concept GGA functional. Preli-
minary results with unoptimized parameters indicate that the new
functional may be a useful improvement and development should
continue in the area of more general exchange attenuators. Further
improvement over the functional developed here might realized
through complete reoptimization [13]. Alternatively one could de-
rive the corresponding PBE type GGA-functional [46,47,41]. In
either case, the path is clear and only limited by one’s curiosity. It
will be especially interesting to see if the flexibility of the new
attenuator can simultaneously describe ground state electronic
structure and excited states. Special attention should be paid to
the size of the chromophore relative to the scale of the attenuator,
and the distance over which electron density is redistributed. This
direction is currently being pursued in our group.
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