
Chemical Physics Letters 473 (2009) 263–267
Contents lists available at ScienceDirect

Chemical Physics Letters

journal homepage: www.elsevier .com/ locate /cplet t
Orbital-free density functional theory: Linear scaling methods for kinetic
potentials, and applications to solid Al and Si

Jeng-Da Chai a,1, Vincent L. Lignères b, Gregory Ho b, Emily A. Carter c, John D. Weeks a,d,*

a Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, United States
b Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
c Department of Mechanical and Aerospace Engineering and Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544, United States
d Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States

a r t i c l e i n f o a b s t r a c t
Article history:
Received 11 October 2008
In final form 23 March 2009
Available online 27 March 2009
0009-2614/$ - see front matter � 2009 Elsevier B.V. A
doi:10.1016/j.cplett.2009.03.064

* Corresponding author. Address: Institute for Phys
University of Maryland, College Park, MD 20742, Unit

E-mail addresses: jdchai@berkeley.edu (J.-D. Ch
Weeks).

1 Present address: Department of Chemistry, Univer
and Chemical Sciences Division, Lawrence Berkeley Nat
94720, United States.
In orbital-free density functional theory the kinetic potential (KP), the functional derivative of the kinetic
energy density functional, appears in the Euler equation for the electron density and may be more ame-
nable to simple approximations. We study properties of two solid-state systems, Al and Si, using two
nonlocal KPs that gave good results for atoms. Very accurate results are found for Al, but results for Si
are much less satisfactory, illustrating the general need for a better treatment of extended covalent sys-
tems. A different integration pathway in the KP formalism may prove useful in attacking this fundamen-
tal problem.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Density-functional theory (DFT) is one of the most useful meth-
ods for studying ground state properties of many-electron systems.
In principle, as shown by Hohenberg and Kohn [1], the exact
ground state energy of a system of N electrons can be formally
written as a functional E½q� of only the electron density qðrÞ, a func-
tion of three variables, and the external field VextðrÞ [2,3]. Kohn and
Sham (KS) [4] partitioned E½q� into the sum of three terms, the clas-
sical Hartree energy EH½q� (readily expressed in terms of the den-
sity), the kinetic energy density functional (KEDF) Ts½q� of a
model system of noninteracting electrons at the same density,
and the much smaller remainder, the so-called exchange–correla-
tion energy functional Exc½q�. KS showed that the numerical value
of Ts½q� could be determined exactly, not directly from the density
itself, but by using a set of N one-electron wave functions (orbitals)
to solve the N coupled KS equations that describe the noninteract-
ing system. By using these results along with relatively simple
approximations for the small Exc½q� term, the resulting KS-DFT
has proven successful in many applications.

However, because of the use of the KS orbitals, KS-DFT typically
scales as OðN3Þ, which limits the applicability of KS-DFT. By using
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localized orbitals some orbital-based linear-scaling methods have
been developed that are especially successful for insulating sys-
tems with large band gaps [5,6]. However, the prefactors of these
types of approaches are usually so large that their computational
costs become cheaper than the traditional KS-DFT (with OðN3Þ scal-
ing) only for very large systems.

This problem could be circumvented if we could develop an
accurate ‘orbital-free’ density functional theory (OF-DFT), where
the kinetic energy is expressed in terms of the electron density
alone [2,3,7,8]. Of course, given its large magnitude, this is a very
difficult task, and indeed simple local approximations like that
used in the Thomas–Fermi (TF) model [9,10] have proved very
inaccurate.

Through the recent efforts of many workers [11–23], we now
have significantly better approximations for the KEDF. There have
been two main advances. The first is the use of nonlocal KEDFs that
reproduce known exact results both for very slowly varying or very
rapidly varying fields, and that give the exact linear response (LR)
of the density of uniform model systems to small perturbations.
The second is to focus on the more slowly-varying valence electron
density as described by weak local pseudopotentials [24–34]. For
OF-DFT with LR-based KEDFs, the use of such pseudopotentials
not only can reduce the computational cost relative to all-electron
calculations, but also can improve its accuracy, since the valence
system will be closer to the LR regime where Ts½q� is designed to
be accurate [24,33]. Very promising results using such OF-DFT
methods have been obtained for a variety of nearly free-electron-
like metals.

However, a more accurate treatment of the KEDF is still needed
in other applications with significant variations in the density. The
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main problem is that the exact Ts½q� is highly nonlocal, and we
have little idea of the functional form of the nonlocality for densi-
ties far from the linear response regime.

In earlier work, Chai and Weeks (CW) [34,35] proposed a differ-
ent way to attack this basic problem. In the usual approach,
approximate forms for Ts½q� and Exc½q� are assumed, and the den-
sity qðrÞ is obtained from the variational principle (Euler equation)
associated with minimizing E½q�:

l ¼ VTs ðr; ½q�Þ þ Veff ðr; ½q�Þ: ð1Þ

The total energy of the inhomogeneous system is then deter-
mined from the energy functional E½q�. All other physical quantities
related to the ground-state density could also be computed. Here l
is the chemical potential (the Lagrange multiplier associated with
the normalization condition

R
qðrÞdr ¼ N), and Veff ðr; ½q�Þ is an

effective one-body potential defined by

Veff ðr; ½q�Þ � VHðr; ½q�Þ þ Vxcðr; ½q�Þ þ VextðrÞ; ð2Þ

where

VHðr; ½q�Þ �
Z

qðr0Þ
jr� r0jdr0 ð3Þ

is the Hartree potential, and Vxcðr; ½q�Þ � dExc½q�=dqðrÞ is the ex-
change–correlation potential. Similarly we interpret

VTs ðr; ½q�Þ � dTs½q�=dqðrÞ ð4Þ

as the kinetic potential (KP) arising from the KEDF [36,37].
In principle this process could be reversed, and the exact Ts½q�

could be determined from the KP VTs ðr; ½q�Þ by functional integra-
tion over density changes in all regions of space [22,34,36,37]. Be-
cause of this integration, Ts½q� is a functional that depends on the
density everywhere even in the simplest case, exemplified by TF
theory, where VTs ðr; ½q�Þ is a simple function of the local density
at r only.

Of course, the true VTs ðr; ½q�Þ itself is much more complicated
and must be a nonlocal functional of the density as well. However
it seems reasonable to assume that it depends most strongly on the
density in some local region around r. Recent detailed arguments
[38,39] suggest that the KP in this sense is more local than is the
KEDF. Since most problems in devising accurate approximations
for Ts½q� have arisen from the nonlocality, this suggests that it
could be worthwhile to try to develop approximations for the more
local KP VTs ðr; ½q�Þ.

To that end, following ideas first introduced for the OF-KEDF’s,
CW proposed two different nonlocal KPs for atomic systems that
reduce to known exact forms for both slowly varying and rapidly
varying perturbations and also reproduce exact results for the lin-
ear response of the density of the homogeneous system to small
perturbations [34]. The latter requirement introduces nonlocality
into the resulting KPs. CW also proposed two efficient pathways
to determine the numerical value of the kinetic energy by integra-
tion of the KPs, as discussed below in Section 3.

Using the CW KPs and the most accurate (Herring) pathway
along with weak ab initio local pseudopotentials for the valence
component of the electron density, CW obtained results for the
total energies and ionization energies of atoms, and for the shell
structure in the atomic radial density profiles that are in better
agreement with calculations using the full Kohn–Sham theory
than earlier KEDFs were able to produce. For example, the ioni-
zation energies of the first and second row atoms predicted by
the CW KPs have average errors of 1.8 eV and 2.1 eV for the
two different KPs, compared with the full KS-DFT, while the
CAT KEDF [17], a nonlocal KEDF, has an average error of
3.9 eV. Similarly, errors in the valence energies predicted by
CAT KEDF are almost twice as large than those predicted by
the CW KPs [34].
In this Letter, we use the CW KPs to study two very different so-
lid-state systems, a nearly-free-electron-like metal (solid Al) and a
covalent material (solid Si). As discussed below, the original forms
of these KPs use the local Fermi wave vector. This permits their use
in atomic and molecular systems where the electron density van-
ishes far from the nuclei. However, this also leads to a quadratic
scaling with system size [34], which limits their usefulness for very
large extended systems. Following earlier work on the KEDF
[12,14], we introduce in Section 2 an expansion method to reduce
the computational cost of evaluating these nonlocal KPs, and the
truncated expansions essentially scale linearly with system size.
The density pathway by which the kinetic energy is obtained from
the KP is described in Section 3. Section 4 compares the results of
this method with the full KS-DFT and with other approaches using
KEDFs and gives our conclusions.
2. Linear scaling methods

CW introduced two different nonlocal KPs [34], one denoted
LQ because it satisfies known exact results to second order at
low wavevectors (‘Low q’), and the other HQ with similar behav-
ior at high wavevectors (‘High q’). The nonlocality is generated
by the requirement that these KPs also reproduce the exact lin-
ear response function of a uniform electron gas at the local Fer-
mi wave vector (LFWV) kFðrÞ, defined in terms of the electron
density by

kFðrÞ � ð3p2qðrÞÞ1=3
: ð5Þ

Both potentials can be compactly described using the following
generalized form with different values for a parameter a:

Vaðr; ½q�; kFðrÞÞ ¼ VTFðr; ½q�Þ þ VWðr; ½q�Þ þ 10
9a

CFqbðrÞ

�
Z

f ðjr� r0j; kFðrÞÞqaðr0Þdr0 ð6Þ

Here b � ð2=3� aÞ. The HQ model uses a ¼ 2=3 and the LQ model
has a ¼ 1=2. VTFðr; ½q�Þ and VWðr; ½q�Þ are the TF KP and the von
Weizsäcker (W) KP [40] respectively, and CF is a numerical coeffi-
cient associated with the TF KEDF. See Ref. [34] for a detailed
discussion.

The weight function f ðjr� r0j; kFðrÞÞ is defined by the following
inverse Fourier-transform-like integral:

f ðjr� r0j; kFðrÞÞ �
1

ð2pÞ3
Z

f̂ ðk=2kFðrÞÞe�ik�ðr�r0 Þdk: ð7Þ

Here

f̂ ðqÞ ¼ FLðqÞ � 3q2 � 1: ð8Þ

is directly related to the inverse linear response function FLðqÞ of the
uniform electron gas with density q0 at reduced wave vector
q � k=2kF0, with kF0 � ð3p2q0Þ

1=3 [41]:

FLðqÞ �
1
2
þ 1� q2

4q
ln

1þ q
1� q

����
����

� ��1

: ð9Þ

Clearly kF0 is replaced by the LFWV in the the definition of the
weight function f ðjr� r0j; kFðrÞÞ in Eq. (7). Given this definition it
is straightforward to rewrite the last term in Eq. (6) in Fourier
space as

10

9að2pÞ3
CFqbðrÞ

Z
f̂ ðk=2kFðrÞÞqaðkÞe�ik�rdk: ð10Þ

Because of the kFðrÞ term in Eq. (10), the integration must be
done on a grid over a range of r, and all these models scale
quadratically.
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In order to achieve the desirable linear scaling for fast computa-
tion in large solid-state systems, we follow the work of Wang et al.
[12] and apply a Taylor series expansion to the weight functional
f ðjr� r0j; kFðrÞÞ with respect to a reference density q�. For extended
systems, where qðrÞ is not significantly different from the average
density q0, the natural choice of q� is q0. Throughout this Letter, we
choose q� ¼ q0 in all of our calculations.

The weight function f ðjr� r0j; kFðrÞÞ can be expanded with re-
spect to q� as:

f ðjr� r0j; kFðrÞÞ ¼ f ðjr� r0j; k�FÞ þ f ð1Þðjr� r0j; k�FÞðqðrÞ � q�Þ

þ 1
2

f ð2Þðjr� r0j; k�FÞðqðrÞ � q�Þ
2 þ � � � ð11Þ

where k�F � ð3p2q�Þ
1=3, and f ðnÞðjr�r0j;k�FÞ¼@

nf ðjr�r0j;kFðrÞÞ=@qnðrÞjq�
is the nth order derivative of f ðjr� r0j; kFðrÞÞ with respect to qðrÞ,
and is evaluated at q�. Their functional forms, up to second order,
in reciprocal space are

f̂ ð1Þðq�Þ ¼ �
q�

3q�
f̂ 0ðq�Þ ð12Þ

and

f̂ ð2Þðq�Þ ¼
q2
� f̂
00ðq�Þ þ 4q� f̂

0ðq�Þ
ð3q�Þ

2 ð13Þ

where q� ¼ k=ð2k�FÞ, and f̂ 0ðq�Þ and f̂ 00ðq�Þ are the first and the second
derivative of f̂ ðqÞwith respect to q�. Since the analytical form of f̂ ðqÞ
is available in Eq. (8), all the terms needed in the Taylor series
expansion f̂ ðnÞðqÞ can be obtained analytically. This simplicity is
one of the main advantages of the KP method over related methods
that use the KEDF, where these terms have usually been be obtained
numerically, with one recent exception [42].

By carrying out the Taylor series expansion to nth order in Eq.
(11), and inserting it in Eq. (6), one can then take out the
ðqðrÞ � q�Þ

m factor of the mth term from its integral (where m is
a nonnegative integer, and m 6 n), and the remaining integral
becomes:Z

f ðmÞðjr� r0j; k�FÞqaðr0Þdr0 ð14Þ

The integral in Eq. (14) can be easily evaluated by a simple fast
Fourier transform (FFT). Therefore, to compute the nonlocal term
in Eq. (6) using this scheme, one needs to evaluate a total of
nþ 2 FFT’s, including the FFT of qa. Since all of the terms can be
computed by FFT’s, this scheme essentially scales linearly
OðM ln MÞ with system size, where M is the number of grid points.

The corresponding linear-scaling HQ ða ¼ 2=3Þ and LQ ða ¼ 1=2Þ
KPs with q� ¼ q0 can be written as:

Vlin
a ðr; ½q�; kF0Þ ¼ VTFðr; ½q�Þ þ VWðr; ½q�Þ

þ 10
9a

CFqbðrÞ
Z

f ðjr� r0j; kF0Þqaðr0Þdr0 þ ðqðrÞ � q0Þ
�

�
Z

f ð1Þðjr� r0j; kF0Þqaðr0Þdr0 þ 1
2
ðqðrÞ � q0Þ

2

�
Z

f ð2Þðjr� r0j; kF0Þqaðr0Þdr0 þ � � �
�

ð15Þ

where kF0 � ð3p2q0Þ
1=3 is the uniform Fermi wave vector. For simple

nearly-free-electron metals like Al, the expansion method works
very well, and indeed often only the zeroth order term is needed.
For extended systems with large density variations over space, this
expansion method could experience convergence problems similar
to those that have been seen by other workers [12–14,24,25].

However, in those cases, both the use of the LFWV in Eq. (5) and
the basic linear response treatment of the nonlocality are probably
inadequate as well. A two-body Fermi wavevector kFðr; r0Þ like the
one used in the WGC KEDF [12] could be introduced, but this func-
tional form represents an additional approximation that does not
systematically improve the underlying linear response treatment
of the nonlocality. As we will see, the treatment of extended sys-
tems with large density variations remains a major challenge for
all OF-DFT methods.

3. Density pathway

As discussed in Ref. [34], an integration pathway is needed to
determine the value of Ts½q� from a given VTs ðr; ½q�Þ [43–46]. If
the exact VTs ðr; ½q�Þ is used and the integration is carried out ex-
actly, then all pathways would give the same exact result for
Ts½q�. An approximate KP can give the same (approximate) value
for the kinetic energy independent of pathway only if it arises from
functionally differentiating a KEDF (the usual OFDFT approach) or
equivalently if it exactly satisfies the nonlocal consistency condi-
tions given by Herring [22] in his Eq. (24). As he points out, it is
not easy to satisfy these formal conditions for general functionals,
and we do not try to do so here.

Instead, we generate nonlocality by imposing a more easily
implemented and physically suggestive condition, requiring that
linear response theory is exactly satisfied for small perturbations
about a uniform system. Thus our results will be independent of
pathway in the linear regime but the kinetic energy obtained from
integration of our approximate KPs for systems with large density
variations will in general depend on the particular integration
pathway used, as discussed in detail in Ref. [34]. Experience with
the classical analogue of the KP method applied to nonuniform
hard sphere fluids [46] has shown that errors from this path
dependence can be small (e.g., less than one percent for the surface
tension at a hard wall) when used with particular pathways that do
not excessively weight regions poorly described by an approximate
theory for the nonuniform density.

Two efficient pathways to obtain the kinetic energy from an
approximate KP for atomic and molecular systems were discussed
in Ref. [34]. The simplest and most accurate pathway, due to Her-
ring [22], automatically satisfies the virial theorem. However it
does not apply to extended systems in its original form and we
have not yet found the appropriate generalization. Here we use
the alternate linear density pathway, where there is a linear scaling
of the electron density
qkðrÞ � q0 þ k½qðrÞ � q0�: ð16Þ

If the exact KP were used, both pathways would give the exact
kinetic energy.

By inserting the HQ and LQ KPs of Eq. (15) into the linear den-
sity pathway (see Eqs. (9)–(11) in Ref. [34]), the kinetic energy can
be computed as

Ta ¼ Tk¼0 þ
Z 1

0
dk
Z

dr½qðrÞ � q0�V
lin
a ðr; ½qk�; kF0Þ: ð17Þ

Here Tk¼0 is the kinetic energy for uniform system, i.e., the Thomas–
Fermi kinetic energy TTF ½q0�. Since the VTFðr; ½qk�Þ and VWðr; ½qk�Þ in
Eq. (17) arise from the functional derivatives of the known TTF ½q�
and TW ½q� functionals respectively, these terms can be integrated
exactly and lead to the TF and W KEDFs.

Eq. (17) then becomes

Ta½q� ¼ TTF ½q� þ TW ½q� þ
Z 1

0
dk
Z

dr½qðrÞ � q0�

� 10
9a

CFqb
kðrÞ

Z
dr0f ðjr� r0j; kF0Þqa

k ðr0Þ þ ðqkðrÞ � q0Þ
�

�
Z

dr0f ð1Þðjr� r0j; kF0Þqa
k ðr0Þ þ

1
2
ðqkðrÞ � q0Þ

2

�
Z

dr0f ð2Þðjr� r0j; kF0Þqa
k ðr0Þ þ � � �

�
ð18Þ



Table 2
Energy per atom (eV) for bulk Al. The first row is the energy for the fcc structure,
while other rows are energy difference from the fcc structure. The results for the KS,
WT, and WGC models are taken from Ref. [12].

Al KS LQ HQ WT WGC

fcc �58.336 �58.303 �58.314 �58.331 �58.331
bcc 0.068 0.053 0.057 0.060 0.066
sc 0.250 0.253 0.253 0.227 0.217
dia 0.599 0.712 0.751 0.673 0.584

Table 3
Lattice parameters (Å) for bulk Si. The results for the KS and WGC models are taken
from Ref. [24], and those for the WGC2 model are taken from Ref. [14].

Si KS LQ HQ WGC WGC2

dia 5.38 5.27 5.29 5.77 5.57
bcc 3.29 3.06 3.06 3.29 3.32
sc 4.99 4.98 4.98 5.01 5.06
fcc 3.83 3.83 3.82 3.80 3.80

Table 4
Energy per atom (eV) for bulk Si. The first row is the energy for the dia structure,
while other rows are energy difference from the dia structure. The results for the KS
and WGC models are taken from Ref. [24], and those for the WGC2 model are taken
from Ref. [14].

Si KS LQ HQ WGC WGC2

dia �110.234 �109.167 �109.282 �110.345 �110.220
bcc 0.165 �0.553 �0.437 0.537 0.267
sc 0.303 �0.586 �0.531 0.506 0.308
fcc 0.457 �0.584 �0.478 0.571 0.444

Table 5
The kinetic energy Ts½q� (eV) of the three atoms (Al, Si, and Ar) in ab initio local
pseudopotential calculations [34], using the KS method and the full LQ model
(evaluated by both the Herring’s and the density pathways). MAE, the mean absolute
errors (relative to the KS method) of the full LQ model computed by the two pathways
are given at the bottom of their respective columns.

KS LQ H LQ den

Al 21.164 21.823 17.563
Si 40.985 41.264 33.874
Ar 225.609 221.035 196.495
MAE 1.838 13.276
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where Tk¼0 ¼ TTF ½q0� term is absorbed in the TTF ½q� term. We use Eq.
(18) to evaluate the kinetic energy of our linear-scaling HQ
ða ¼ 2=3Þ and LQ ða ¼ 1=2Þ KPs in all the calculations here.

4. Results

In solids, the external potential VextðrÞ can be regarded as a lin-
ear combination of the special array of local atomic pseudopoten-
tials centered at each ion position RI . Different arrays of RI lead to
different phases, such as face-centered cubic (fcc), diamond (dia),
body-centered cubic (bcc), simple cubic (sc), and so on. We calcu-
late the binding energies of Al and Si at these four different phases,
and compare our results with other KEDFs and KS-DFT. We use
periodic boundary conditions with a cubic supercell containing 4
atoms for fcc, 8 atoms for dia, 2 atoms for bcc, and 8 atoms for
sc. All calculations are spin-restricted and use the local density
approximation (LDA) [47–50] for the exchange–correlation
functional.

For bulk Al, the empirical Goodwin–Needs–Heine (GNH) local
pseudopotential [29] is used, and a plane wave kinetic energy cut-
off of 600 eV is used to converge the electron density. Here it is suf-
ficient to use only the zeroth-order linear-scaling HQ and LQ KPs
(see Eq. (15)) in the calculations, as verified by comparison with re-
sults of a first order calculation. Our results are compared with the
WT [23] and WGC [12] KEDFs, and KS-DFT, which were previously
computed [12], using the same local pseudopotential. (The atomic-
based local pseudopotentials in Ref. [34] could also be used and
gives very similar results.) As can be seen in Tables 1 and 2, all
the LR-based models perform similarly, and agree well with KS-
DFT. The phase ordering is correct, and aside from the high energy
diamond phase, the lattice parameters are close to the KS results.

To assess the performance of the HQ and LQ KPs in covalent sys-
tems like solid Si, we use the bulk local pseudopotential (BLPS)
developed by Zhou et al. [24] together with a plane wave kinetic
energy cutoff of 2000 eV for converging the electron density. We
used the first-order linear-scaling HQ and LQ KPs in the Si calcula-
tions. Our results are compared first with the original WGC KEDF
[12], and with the KS-DFT, which were previously computed
[24], using the same local pseudopotential. As can be seen in Tables
3 and 4, all these LR-based models perform worse than for Al, when
compared with KS-DFT. The phase ordering is incorrect, and the
lattice parameters of the four phases only qualitatively match with
the KS results, although the WGC KEDF at least obtains the correct
diamond ground state.

Because we use approximate KPs, our estimate for Ts½q� will de-
pend on the integration pathway, and it is important to try to find a
particular pathway that is relatively insensitive to the errors that
exist in our KPs. For atomic systems, we were able to use the Her-
ring pathway, which automatically satisfies the virial theorem, and
good results were found [34]. As noted above, a generalization of
the Herring pathway for solids is not yet available, and in this Let-
ter we used the linear density pathway. While this pathway is
numerically efficient, and gives exact results when the exact KP
is used, we expect less accurate results when used with our
approximate KPs since the virial theorem is not satisfied.
Table 1
Lattice parameters (Å) for bulk Al. The results for the KS, WT, and WGC models are
taken from Ref. [12].

Al KS LQ HQ WT WGC

fcc 4.03 4.04 4.04 4.04 4.03
bcc 3.23 3.23 3.23 3.23 3.22
sc 5.33 5.31 5.36 5.33 5.38
dia 5.84 5.91 5.90 5.94 5.92
Indeed this is the case for atomic systems, where results from
both pathways can be compared. In Table 5, we show the pathway
dependence of the full LQ KP (with ab initio local pseudopotentials
[34]) in atomic systems. The kinetic energies of the three atoms (Al,
Si and Ar), using the full LQ KP, are evaluated by the Herring and
the density pathways, and are compared with the KS results.
Clearly, the density pathway gives significantly worse kinetic en-
ergy than the Herring’s pathway, and its errors increase when
the densities of the systems are more rapidly varying. This suggests
that the large deviations of the LQ and HQ results for solid Si (dia)
in Table 4 may be partially due to the use of this pathway. This
pathway dependence also seems likely to influence the phase
orderings. Thus the generalization of the accurate Herring pathway
to solids seems a promising focus for future research.

Since Si is a covalent material, the density inside the covalent
bond regions is quite different from that outside. Even with a local
pseudopotential this system may be outside the linear response re-
gime, or the results at least may depend sensitively of the choice of
the one- or two-body FWV. In particular, recent work [14] has
shown that much improved results for the phase energies can be
obtained for bulk Si using the WGC KEDF with a FWV mixing
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parameter and reference density optimized for the covalent phases
of Si, rather than the original FWV mixing parameter optimized for
Al [12]. Results with this new parameter set, denoted here WGC2,
are also given in Tables 3 and 4, where we see that the phase order-
ings and energy differences for Si phases using WGC2 are in very
good agreement with KS-DFT. However, ultimately it is desirable
to find a general KEDF or KP that does not depend on special prop-
erties of the system, particularly when considering more compli-
cated systems with defects or surfaces. In our opinion,
developing a truly universal and yet accurate KEDF or KP for cova-
lent materials remains an outstanding problem.
5. Conclusion

In summary, CW have previously demonstrated that the non-
local HQ and LQ KPs work well for isolated atoms and ions [34],
and now we show they can be used with no additional parame-
terization in solid-state systems. Very good results are found for
Al. However, problems of inaccurate phase ordering and bond
lengths in Si are found, and a better treatment of nonlocality be-
yond the linear response regime may be needed for covalent sys-
tems with significant density variations. The simpler and more
local form of the OF KP could be useful in future developments.
If it is possible to develop a new pathway to obtain the kinetic
energy in extended systems that satisfies the virial theorem, anal-
ogous to the accurate Herring pathway for atomic systems [34],
we believe even the present LR-based KP’s would likely give more
accurate phase energies. Further work along these lines is called
for.
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