

Recent Results and Prospects of Ultra-high-energy Cosmic Rays

Hiroyuki Sagawa (Institute for Cosmic Ray Research, the University of Tokyo) for Telescope Array Collaboration Joint Colloquium@NTU

Outline

- Introduction
 - ICRR
 - Ultra-High-Energy Cosmic Rays
 - TA (Telescope Array) and TALE (TA Low-energy Extension)
- Results
 - Energy Spectrum
 - Composition
 - Anisotropy
- TA 4-times expansion: TAx4
- Joint research and prospects

Cosmic Rays

- High-energy particles traveling through the Universe
- Main components: protons; others: nuclei and electrons
- Almost isotropically arriving to the Earth (~0.1%)

Cosmic rays in a broad sense

Institute for Cosmic Ray Research (ICRR)

- Place
 - Kashiwa campus of the University of Tokyo
- Research subjects
 - Research of cosmic rays
 - Research using cosmic rays
 - Astroparticle physics, elementary particle physics

- Staffs and graduate students (as of May 1, 2022)
 - Staffs: 164
 - Graduate students: 57

Institute for Cosmic Ray Research (ICRR)

- Prof. Masayuki Nakahata
- Current director (Apr. 2022) Former director (Apr. 2008 Mar. 2022)
 - Prof. Takaaki Kajita
 - Nobel laureate in Physics 2015
 - Former president of Science Council of Japan

Facilities inside Japan: 4 observatories

2023/10/03

Joint colloquium@NTU

Observational cores outside JAPAN: 4 sites

2023/10/03

Discovery of cosmic rays

- V.F. Hess discovered cosmic rays in 1912
- Nobel Prize in 1936

Balloon

electroscope

After discovery of cosmic rays

- 1930s ~ 1940s: Discovery of elementary particles using cosmic rays
 - Positrons, muons, pions, ...
- 1938: Discovery of extensive air showers
 - Pierre Auger recorded showers of secondary particles by the interactions between primary high-energy cosmic rays and nuclei in the atmosphere

After discovery of cosmic rays

- 1930s ~ 1940s: Discovery of elementary particles using cosmic rays
 - Positrons, muons, pions, ...
- 1938: Discovery of extensive air showers
 - Pierre Auger recorded showers of secondary particles by the interactions between primary high-energy cosmic rays and nuclei in the atmosphere

Discovery of positrons with a cloud chamber

After discovery of cosmic rays

- 1930 ~ 1940's: Discovery of elementary particles using cosmic rays
 - Positrons, muons, pions, ...
- 1938: Discovery of extensive air showers
 - Pierre Auger recorded showers of secondary particles by the interactions between primary high-energy cosmic rays and nuclei in the atmosphere

Cosmic rays are constantly falling to the earth

2nd summer challenge at KEK (detection of secondary cosmic rays with a spark chamber)

Joint colloquium@NTU

Observation of cosmic rays

• Primary cosmic rays Meteor <10¹⁴ eV – Satellite nic ray **Cosmic rays** cosn - Balloon (30~40km) primary Airplane (10~20km) gravitational wave • Secondary cosmic rays Radiation produced by and the second second air shower primary cosmic rays when they enter the atmosphere air shower - High mountain $(3 \sim 5 \text{ km})$ $(\sim 0 \text{km})$ – Ground Underground neutrino sea ice – deep sea, ice underground

Joint colloquium@NT

Energy spectrum of cosmic rays

What is the maximum?

What are the most powerful accelerators (2) generating cosmic rays of 10²⁰ eV?

(3) What types of particles?

Energy spectrum of cosmic rays

Cosmic-ray flux

Rate@10²⁰ eV <1 particle/100km²/yea

<1 particle/100km²/year

Astrophysical cosmic-ray accelerators as source candidates

Hillas condition $E < e B r J\beta$ int colloquium@NTU

Distance between the sun and the earth

(3×10⁵km/s)

Astronomical Unit (AU)

- <u>1 light year</u> = the distance that light travels in one year = (3.0x10¹⁰cm/sec)x(3.16x10⁷sec) = 9.46x10¹²km
- 1 AU (Astronomical Unit) = average distance between the sun and the earth = 1.50x10⁸ km
- 1 pc (parsec) : the distance for which annual parallax is 1" = 1 AU/1" = 3.09x10¹³ km
 - 1 pc = 3.26 light years

annual parallax

the Milky way (the Galaxy)

Galaxy that includes our solar system

Astronomical distance

- galaxy (G)
- Galaxy Group (GG)
 - 3~some ten galaxies
- Cluster of Galaxies (CG)
 - some~some ten GGs
- Super Cluster of Galaxies (SCG)
 - multiple CGs
- Large scale structure of the universe (LSS)
 - SCGs+Voids

2023/10/03

Ultra-High Energy Cosmic Ray Observatories

★ Yakutsk Array (SD, 1973 -)

Haverah Park (SD, 1960 - 1987)

> AGASA (SD, 1990 - 2004)

> > SUGAR

Google

(SD, 1968 - 1979)

Fly's Eye (FD, 1981-1993)

Telescope Array (FD+SD, 2008 -)

Pierre Auger Observatory (FD+SD, 2004 -)

AGASA and HiRes (1990s – 2000s)

- AGASA (Akeno Giant Air Shower Array)
 - Akeno in Japan
 - 100 scintillator detectors (SD)
 - 100 km²

- HiRes (High Resolution Fly's Eyes)
 - Utah, USA
 - Stereoscopic fluorescence telescopes (FD)

HiRes-1

Energy spectra of extremely high energy cosmic rays in early 2000s

GZK cutoff

- 1964 Discovery of CMB radiation
- Greizen, Zatsepin and Kuzmin proposed in 1966
 - According to special theory of relativity,
 - (proton) cosmic rays with ~10²⁰ eV coming beyond ~50 Mpc (160 Million light years) cannot arrive at the earth by the energy loss due to the interaction with CMB photon (GZK horizon)

Energy spectra of extremely high energy cosmic rays in early 2000s

Is the difference due to statistics? Or detector difference (SD or FD)? Next generation observatory => Verify whether the GZK cutoff exists or not with SD and FD

Joint colloquium@NTU

Telescope Array

the largest Ultra-High-Energy Cosmic-Ray (UHECR) observatory in the northern hemisphere

Google

Millard County, Utah, USA, 39-degree north latitude ~1400 m a.s.l.

ata SIO NOAA U.S. Nawy NGA GEBCO IBCAO INEGU andsat / Congregious U.S. Geological Sugger 🗄 🛪 🗁 11 506 km 18*23*14*N 81*42*06*W 100%

Telescope Array (TA) detector

Hal

TALE (TA Low-energy Extension)

- Main aim: study on the transition from galactic to extra-galactic cosmic rays
- Low energy CRs-induced shower
 - Not so bright, higher X_{max} (shower maximum depth)
 - \rightarrow high elevation telescope
 - compact shower size
 - \rightarrow dense SD array
- Low energy target: E > 10¹⁶ eV
- Constructed in north part of TA site
- Same concept as TA detector
 - 10 Fluorescence Telescopes
 - 80 Surface Detectors, 20 km²
- Operation: FD since Sep. 2013 SD since Nov. 2017

TALE (TA Low-energy Extension)

٠

٠

TALE (TA Low-energy Extension)

- Main aim: study on the transition from galactic to extra-galactic cosmic rays
- Low energy CRs-induced shower
 - Not so bright, higher X_{max} (shower maximum depth)
 - \rightarrow high elevation telescope
 - compact shower size
 - \rightarrow dense SD array
- Low energy target: E > 10¹⁶ eV
- Constructed in north part of TA site
- Same concept as TA detector
 - 10 Fluorescence Telescopes
 - 80 Surface Detectors, 20 km²
- Operation: FD since Sep. 2013 SD since Nov. 2017

Telescope Array Collaboration

150 collaborators

R.U. Abbasi¹, Y. Abe², T. Abu-Zayyad^{1,3}, M. Allen³, Y. Arai⁴, R. Arimura⁴, E. Barcikowski³, J.W. Belz³, D.R. Bergman³, S.A. Blake³, I. Buckland³,
B.G. Cheon⁵, M. Chikawa⁶, A. Fedynitch^{6,7}, T. Fujii^{4,8}, K. Fujisue⁶, K. Fujita⁶, R. Fujiwara⁴, M. Fukushima⁶, G. Furlich³, Z. Gerber³, N. Globus⁹, W. Hanlon³, N. Hayashida¹⁰, H. He⁹, R. Hibi², K. Hibino¹⁰, R. Higuchi⁹, K. Honda¹¹, D. Ikeda¹⁰, N. Inoue¹², T. Ishii¹¹, H. Ito⁹, D. Ivanov³, A. Iwasaki⁴, H.M. Jeongl³,
S. Jeongl³, C.C.H. Jui³, K. Kadota¹⁴, F. Kakimoto¹⁰, O. Kalashev¹⁵, K. Kasahara¹⁶, S. Kasami¹⁷, Y. Kawachi⁴, S. Kawakami⁴, K. Kawata⁶, I. Kharuk¹⁵,
E. Kido⁹, H.B. Kim⁵, J.H. Kim³, J.H. Kim³, S.W. Kim¹³, Y. Kimura⁴, I. Komae⁴, K. Komori¹⁷, Y. Kusumori¹⁷, M. Kuznetsov^{15,18}, Y.J. Kwon¹⁹, K.H. Lee⁵,
M.J. Lee¹³, B. Lubsandorzhiev¹⁵, J.P. Lundquist^{3,20}, T. Matsuyama⁴, J.A. Matthews³, J.N. Matthews³, R. Mayta⁴, K. Miyashita², K. Mizuno², M. Mori¹⁷,
M. Murakami¹⁷, I. Myers³, S. Nagataki⁹, M. Nakahara⁴, K. Nakai⁴, T. Nakamura²¹, E. Nishio¹⁷, T. Nonaka⁶, S. Ogio⁶, H. Ohoka⁶, N. Okazaki⁶, Y. Oku¹⁷,
T. Okuda²², Y. Omura⁴, M. Onishi⁶, M. Ono⁹, A. Oshima³³, H. Oshima⁶, S. Ozawa²⁴, I.H. Park¹³, K.Y. Park⁵, M. Potts³, M. Przybylak²⁵, M.S. Pshirkov^{15,26},
J. Remington³, D.C. Rodriguez³, C. Rott^{3,13}, G.I. Rubtsov¹⁵, D. Ryu²⁷, H.Sagawa⁶, R. Saito², N. Sakuki⁶, T. Sako⁶, N. Sakurai⁴, D. Sato², K. Sato⁴, S. Sato¹⁷,
K. Sekino⁶, P.D. Shah³, N. Shibata¹⁷, T. Shibata⁶, J. Shikita⁴, H. Shimodaira⁶, B.K. Shin²⁷, H.S. Shin^{4,8}, K. Shinozaki²⁵, D. Shinto¹⁷, J.D. Smith³,
P. Sokolsky³, B.T. Stokes³, T.A. Stroman³, Y. Takagi¹⁷, K. Takahashi⁶, M. Takamura²⁸, M. Takeda⁶, R. Takeishi⁶, A. Taketa²⁹, M. Takita⁶, Y. Tameda¹⁷,
K. Tanaka³⁰, M. Tanaka

33 univ./institutes

¹Department of Physics, Loyola University Chicago, ²Academic Assembly School of Science and Technology Institute of Engineering, Shinshu University, ³High Energy Astrophysics Institute and Department of Physics and Astronomy, University of Utah, ⁴Graduate School of Science, Osaka Metropolitan University ⁵Department of Physics and The Research Institute of Natural Science, Hanyang University, ⁶Institute for Cosmic Ray Research, University of Tokyo ⁷Institute of Physics, Academia Sinica, ⁸Nambu Yoichiro Institute of Theoretical and Experimental Physics, Osaka Metropolitan University, ⁹Astrophysical Big Bang Laboratory, RIKEN, ¹⁰Facutty of Engineering, Kanagawa University, ¹¹Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, ¹²The Graduate School of Science and Engineering, Saitama University, ¹³Department of Physics, SungKyunKwan University, ¹⁴Department of Physics, Tokyo City University, ¹⁵Institute for Nuclear Research of the Russian Academy of Sciences, ¹⁶Faculty of Systems Engineering and Science, Shibaura Institute of Physics, Yonsei University, ²⁰Center for Astrophysics and Cosmology, University, of Nova Gorica, ²¹Faculty of Science, Kochi University, ²²Department of Physical Sciences, Ritsumeikan University, ²³College of Science and Engineering, Chubu University, ²⁴Quantum ICT Advanced Development Center, National Institute for Information and Communications Technology, ²⁵Astrophysics Division, National Centre for Nuclear Research, ²⁸Department of Physics, Tokyo University of Science, Physica Cence, ²⁰Earthquake Research Institute of Physics, School of Natural Sciences, Ulsan National Institute of Science and Technology, ²⁸Department of Physics, Tokyo University of Science, ²⁹Earthquake Research Institute, University, ³⁰Graduate School of, Institute of Physics, Czech Academy of Sciences ²⁸Astrophysics, Tokyo University of Science, Science and Engineering, Tokyo Institute of Technology, ³³CEICO, Instit

US light polution map

http://i.imgur.com/aOPFB.jpg Joint colloquium@NTU

US light polution map

http://i.imgur.com/aOPFB.jpg Joint colloquium@NTU
Telescopes

Refurbished HiRes telescope installed at TA MD FD

- Segmented mirrors
- 256 hexagonal PMTs/camera
- 1 pixel views ~1° of sky
- UV band-pass filter

Clear, moonless nights ==> ~10% duty cycle

FD Event Reconstruction

- For FD, we see the shower sweep across the mirror
- Reconstruct Shower-Detector Plane
- Fit time-vs-angle to get
 - geometry (add in SD times for hybrid, giving much more lever arm for fit)

Shower Detector Plane

 Reconstruct shower size vs depth

Scintillator detector (SD)

Shower axis θ TA shower analysis with SD Surface Detector Showe An SD hit map of a typical event Air Shower Ground Array Time [4µS] 38 Time fit 22 36 21 Shower axis Array Edge ime [μS Projected 20 on the ground Geometry 8.5 Zenith angle: θ 26 Azimuth angle -2000 Distance along the \hat{u} - axis [m] 15 -7.5 14 Lateral distribution 13ł **S800** profile fit 10 11 12 3 6 7 8 9 2 5 Δ Ν VEM / m East [1200m] \rightarrow Use S800 as an energy estimator 800 mLateral distance [m] Joint collogu

SD Event Reconstruction

Staking at the site in Utah

ATV* riders : ran, lost the way and stacked

- *: not allowed to drive vehicles off-road under BLM** direction
- **: Bureau of Land Management

ATVs were permitted by BLM for this work

Staking work

Figuring out how to get over there in front of the dry river

A wooden pile with a pink ribbon

Assembly of scintillation detectors

• Started mass production in May, 2005

Completion of assembly (518 SDs) in Oct 2006

SD assembly and deployment in Utah

Cosmic Ray Center

Energy spectrum

410

TA SD energy spectrum (14 years)

Combined Energy Spectrum

TA SD spectrum (11 yrs.) with TALE FD monocular (22 mos.)

CR spectrum covering 5 orders-of-magnitude

Declination Dependence in the TA SD Spectrum

J.H.Kim ICRC2023

- Differences in the cutoff energies
 - log(E/eV)=19.84 ±0.02

for higher declination $(24.8^{\circ}-90^{\circ})$

- log(E/eV)=19.65 ±0.03

for lower declination $(-16^{\circ}-24.8^{\circ})$

- The local significance is 4.8σ .
- The global significance of the difference is estimated to be
 4.4σ.
- No instrumental causes were found. This difference implies it is astrophysical in nature.

"Shoulder" feature of the energy spectrum

A. Aab *et al.* (The Pierre Auger Collaboration) Phys. Rev. Lett. **125**, 121106 (2020)

Pierre Auger found a spectrum hardening in $10^{19} - 10^{19.5}$ eV range

2023/10/03

Joint colloquium@NIU

51

PIERRE

AUGER

TA SD: Spectral Feature in 10¹⁹–10^{19.5} eV

Fit parameter	HiRes—TA	Auger (PRD 2020)	
p ₁	-3.21 ± 0.01 (stat)	-3.29 ± 0.02 (stat)	
p ₂	-2.59 ± 0.01 (stat)	-2.51 ± 0.03 (stat)	
p ₃	-2.87 ± 0.03 (stat)	-3.05 ± 0.05 (stat)	
p ₄	-5.0 ± 0.3 (stat)	-5.1 ± 0.3 (stat)	
log ₁₀ [E _{ANKLE} /eV]	18.74 ± 0.01 (stat)	18.70 ± 0.01 (stat)	
log ₁₀ [E _{SHOULDER} /eV]	19.20 ± 0.03 (stat)	19.11 ± 0.03 (stat)	
log ₁₀ [E _{GZK} /eV]	19.82 ± 0.02 (stat)	19.66 ± 0.03 (stat)	

- Auger found a new spectral feature in 10¹⁹–10^{19.5} eV.

(instep/shoulder feature)

- We observed the same softening feature in the northern hemisphere at $10^{19.20\pm0.03}$ eV with a 6.5 σ significance.
- TA and Auger agree within 1.2σ .

Highest Energy Event by a Surface Detector Array

- Observed with TA SD at 10:35:56 on 27 May 2021 (UTC)
 - No FD observation
- $E = 244 \pm 29(\text{stat.}) \pm 51(\text{syst.}) \text{ EeV}$, zenith angle $\vartheta = 38.6^{\circ}$

Ref. Oh-my-God particle 3.2x10²⁰ eV by Fly's Eye in 1991

ADC SD_L051 SD620 S=8.2013 MIP R=2601.03385 (

SD event->Date:20210527 Time:103556.474337

Joint colloquium@NTU

Composition

f de

Be dlat

AL 19,700

90

Interaction in the air

The UHECR shower profile depends on the type of particle.

- A: mass number of incident nucleus
- Nuclear radius: r
 - r ∝A^{1/3}
- Cross section: σ
 - σ∝A^{2/3}
- Mean free path: λ
 - λ ∝ A^{-2/3}
- Interaction depth vs. heavy nuclei
 - Shallower for heavier composition

TA hybrid composition

R.U. Abbasi et al., Ap. J., 858, 76 (2018)

consistent with light composition

Better reconstruction with the SD timing information

2023/10/03

Composition Analysis with TA Hybrid Xmax

- Systematic uncertainty of <Xmax>: ± 17 g/cm²
- QGSjetII-04 interaction model was compared with the data agreement with light composition
- More events are needed to study highest energies

TALE monocular FD Xmax

• Eight-year TALE FD monocular data set (Jun. 2014–Aug. 2022)

T. Abu-Zayyard, ICRC2023

- A break in the elongation rate at energy 10^{17.22±0.04} eV (2nd knee).
- Light-heavy-light pattern in 10¹⁵–10¹⁸ eV.

TALE Hybrid Composition

TALE-infill SD

- Further low energy extension with Hybrid mode
 - 50 SDs with 100m spacing
- Target energy: $E > 10^{15} eV$ (10^{16.5} eV for TALE hybrid)
- SD counter assembly in Oct. 2021
 - same design as TALE/TAx4 SD

• SDs deployed on Nov. 15, 2022

2023/10/03

UHE photon search for 14-year TA SD data

Anisotropy

Joint colloquium@NTU

Why highest energy cosmic rays?

Cosmic rays are charged particles Highest cosmic rays Cosmic ray Origin 54.F. cosmic rays Low energy cosmic rays \rightarrow bend by the magnetic field ightarrow Isotropy at the Earth Highest energy cosmic rays → Almost go straight against magnetic field \rightarrow Possible to find cosmic-ray hotspot 2023/10/03 Joint colloguium@NTU

TA Hot Spot (5years)

 72 events (E > 5.7x10¹⁹ eV [57 EeV])

Oversampling using 20° radius circles

• Maximum pretrial significance of 5.1σ at (R.A.=146.7°, decl.=43.2°)

• Chance prob. = 3.7×10^{-4} (3.4 σ)

Hot spot update (15 years)

- Max local sig.: **4.8**σ at (144.0°, 40.5°)
 - 44 events observed (18.0 events expected as background)
- Post-trial prob.: $P(S_{MC} > 4.8\sigma) = 2.7 \times 10^{-3} \xrightarrow{}$ 2023/10/03 **2.8** σ

linear increase within $\sim 2\sigma$.

Anisotropy at slightly lower energy thresholds

- 1125 events (15-year TA SD data)
- Max local significance: 4.0σ at (17.9°, 35.2°)

A new excess in slightly lower energy events in the direction of **the Perseus-Pisces supercluster** has been identified. The chance probability of having an excess as close to the PPSC as the data is estimate:

$$(S_{mc} \ge 4.0\sigma) \& (\theta_{mc} \le 7.7^{\circ}) \rightarrow 3.3\sigma.$$

Excesses and Nearby Galaxy Clusters

67

2023/10/

地図データ ©2023 Google 台湾 利用規約 プライバシー サービスに関するフィードバックを送信 20 km L

69

TAx4 SD using 3-year data

K. Fujisue, ICRC2023

Consistent with TA SD spectrum

Prospects: Summary of TA anisotropy study

• TA found some evidences for anisotropy

Topics	E _{th} (EeV) [10 ¹⁸ eV]	years	Post-trial significance (σ)
TA hotspot	57 EeV	15	2.8
A new excess to Perseus-Pisces Supercluster	10 ^{19.4} eV	15	3.3
Declination dependence of energy spectrum	10 ^{18.8} eV	14	4.4

• We will see conclusive results with more data

Joint and Interdisciplinary Research
Observation of Terrestrial Gamma-Ray Flashes with TA SD

• The Telescope Array is a unique instrument that allows us to study gamma-ray emission from the atmosphere.

TA site as the test bed for the next-generation observatories

- Cost-effective fluorescence detectors for all-sky UHECR observatory
- Cosmic Ray Air Fluorescence
 Fresnel lens Telescope
 (CRAFFT)

Yuichiro Tameda, PCRI2-19 Jul. 29

 Fluorescence detector Array of Single-pixel Telescopes (FAST)

Shunsuke Sakurai, CRI11-04 Jul. 29 Fraser Bradfield, PCRI2-46 Jul. 29

IceCube surface detectors

- IceCube is a neutrino observatory located in Antarctica.
- Now IceCube SDs are tested at the TALE infill SD array site for the IceCube upgrade (IceCube Gen2).

TALE infill SD array and IceCube SD array (8 SDs)

2 IceCube detectors and 1 TALE infill SD (main counter under rusted roof)

Auger SD micro-array in the TA SD array

Hexagonal array of 8 Auger SDs in the TA SD square-grid array

(from F. Sarazin)

UHECRs in the next Decades Snowmass Whitepaper (arXiv:2205.05845)

• UHECR research connecting with Astrophysics & Particle Physics

- Connection with Astrophysics
 - Sources of UHECRs
 - Charged particle astronomy
 - Exotic phenomena?
- UHECR: measurements at energy frontier
 - Arrival directions
 - Energy
 - Mass composition
 - Muon
- Connection with Particle Physics
 - Hadronic interaction models
 - UHECR extensive air showers
 - Mass composition
 - Muon deficits in simulations
 - LHC experiments
 - BSM

Prospects: Experiments

	Experiment	Feature	Cosmic Ray Science [*]	Timeline			
1	Pierre Auger Observatory	Hybrid array: fluorescence, surface e/μ + radio, 3000 km ²	Hadronic interactions, search for BSM, UHECR source populations, σ_{p-Air}	AugerPrime upgrade	е		
2)	Telescope Array (TA)	Hybrid array: fluorescence, surface scintillators, up to 3000 km^2	UHECR source populations proton-air cross section (σ_{p-Air})	TAx4 upgrade			
3	IceCube / IceCube-Gen2	Hybrid array: surface + deep, up to 6 km^2	Hadronic interactions, prompt decays, Galactic to extragalactic transition	Upgrade + surface enhancement	IceCube deploy	-Gen2 Ice0 ment o	Cube-Gen2 peration
4	GRAND	Radio array for inclined events, up to $200,000 \text{ km}^2$	UHECR sources via huge exposure, search for ZeV particles, σ_{p-Air}	GRANDProto GRAD 300 10k	ND c m	GRAND 200k nultiple sites, step by step	
5	POEMMA	Space fluorescence and Cherenkov detector	UHECR sources via huge exposure, search for ZeV particles, σ_{p-Air}	JEM-EUSO program POEM		MA	
6	GCOS	Hybrid array with $X_{\text{max}} + e/\mu$ over 40,000 km ²	UHECR sources via event-by-event rigidity, forward particle physics, search for BSM, $\sigma_{\rm p-Air}$	GCO R&D + fit	S rst site	GCO further s	S sites
*All experiments contribute to multi-messenger astrophysics also by searches for UHE neutrinos and photons: 2025 2030 2035							2040

*All experiments contribute to multi-messenger astrophysics also by searches for UHE neutrinos and photons; several experiments (IceCube, GRAND, POEMMA) have astrophysical neutrinos as primary science case.

Summary

- Energy Spectrum: 10^{15.5} to 10^{20.5} eV (5 decades)
 - Several features (breaks): New feature "shoulder" at ~ $10^{19.2}$ eV
- New highest energy event: 2.44x10²⁰ eV
- Mass Composition
 - TA hybrid Xmax: compatible with predominantly light elements (10^{18.2} 10^{19.1} eV)
 - TALE FD / TALE hybrid Xmax: break at $\sim 10^{17} \text{ eV}$
- Anisotropy: some evidences
 - Hot spot for E>57 EeV (post-trial): 3.4σ (5 years) -> 2.8σ (15 years)
 - A new excess $E > 10^{19.4}$ eV in the direction of Perseus Pisces Supercluster
- Need more data at highest energy region ->TAx4 (now TAx2.5 for SD) in operation!
- Prospects: on-going & planned projects worldwide