Are the standard-model parameters free?

Hsiang-nan Li

Academia Sinica

Presented at NTU on Sep. 26, 2023

2304.05921

Standard Model

physicists are curious about flavor structure: mass hierarchy, mixing patterns,... puzzles for decades Textbooks: Chapter 15 in Quarks & Leptons by Halzen and Martin: the (fermion) masses depend on the arbitrary (Yukawa) couplings and cannot be predicted.

ChatGPT:

The Standard Model parameters are free in the sense that their values cannot be determined by the theory alone, and experimental measurements play a crucial role in determining their values. To explain them, need new physics, but...

Today's talk:

At least some of the SM parameters are not free, but constrained dynamically via analyticity for internal consistency

Your discretion is advised

Higgs mechanism Before and after symmetry breaking VEV v physical world $V(\varphi)$ $arphi = rac{1}{\sqrt{2}}$, 3X3 Yukawa matrix lefthanded $(\overline{Q_L}Y_u u_R \varphi + \overline{Q_L}Y_d d_R \tilde{\varphi})$ doublet (u,c,t) (d,s,b)d(c)

- Massless particles → massive particles
- Flavor changing via Yukawa couplings 🔿 diagonal Yukawa matrices
- Quarks in weak eigenstates → quark mixing

$$\begin{array}{l} \begin{array}{l} \mathsf{CKM\ matrix}\\ \mathsf{for\ weak\ int.} & \begin{bmatrix} d'\\s'\\b' \end{bmatrix} = \begin{bmatrix} V_{\mathrm{ud}} & V_{\mathrm{us}} & V_{\mathrm{ub}}\\ V_{\mathrm{cd}} & V_{\mathrm{cs}} & V_{\mathrm{cb}}\\ V_{\mathrm{td}} & V_{\mathrm{ts}} & V_{\mathrm{tb}} \end{bmatrix} \begin{bmatrix} d\\s\\b \end{bmatrix}, \quad \sum_{k} |V_{ik}|^2 = \sum_{k} |V_{ki}|^2 = 1\\ \sum_{k} |V_{ki}|^2 = 0. \end{array}$$
$$\begin{array}{l} \begin{array}{l} \mathbf{unitarity}\\ \mathbf{unitarity}\\ \end{bmatrix} \\ \begin{bmatrix} 1 & 0 & 0\\0 & c_{23} & s_{23}\\0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{13}}\\0 & 1 & 0\\-s_{13}e^{i\delta_{13}} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0\\-s_{12} & c_{12} & 0\\0 & 0 & 1 \end{bmatrix} \\ \begin{array}{l} \begin{array}{l} \mathbf{c}_{12} & s_{12} & 0\\0 & 0 & 1 \end{bmatrix} \\ \mathbf{c}_{12} & c_{23} - c_{12} s_{23} s_{13} e^{i\delta_{13}} & c_{12} c_{23} - s_{12} s_{23} s_{13} e^{i\delta_{13}} & s_{23} c_{13}\\s_{12} s_{23} - c_{12} c_{23} s_{13} e^{i\delta_{13}} & -c_{12} s_{23} - s_{12} c_{23} s_{13} e^{i\delta_{13}} & c_{23} c_{13}\\s_{12} s_{23} - c_{12} c_{23} s_{13} e^{i\delta_{13}} & -c_{12} s_{23} - s_{12} c_{23} s_{13} e^{i\delta_{13}} & c_{23} c_{13}\\s_{13} (1 - \rho - i\eta) & -\lambda\lambda^2 & 1 \end{bmatrix} + O(\lambda^4) \,. \end{array}$$

Gauge interaction

• Gauge interaction like QED

4-vector potential generators

$$D_{\mu}\psi(x) = \left(\partial_{\mu} - ig A^{a}_{\mu}(x) t^{a}\right)\psi(x)$$

- Vector interaction, photon has spin 1
- Gauge group fixes t^a : 1 for QED, U(1) group; Pauli matrices for weak interaction, SU(2) group; Gell-Mann matrices for QCD, SU(3) group
- Generators describe basic transformation, e.g.

Red = (1,0,0)
Blue= (0,1,0)
$$\lambda_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 Red \rightarrow Blue

• Only overall coefficient is free, single coupling g

Scalar interaction

• No such symmetry constraint on scalar coupling

- Yukawa couplings are arbitrary, so are quark masses, mixing matrix!
- But this observation made at Lagrangian level without considering dynamical interplay among various particles

Dispersion relation

• Example: mixing of D meson with mass squared s

 D^0

 D^0

Observations

- Fundamental parameters in theory (like Standard Model) usually constrained by symmetries at Lagrangian level
- Analyticity is crucial property of physical observables
- Γ_{12} involves CKM matrix elements and fermion masses
- Additional dynamical constraints imposed by dispersion relations, if M_{12} is known ?
- Turn out that dispersive constraints are so strong that Yukawa couplings in SM are in fact not free parameters

Idea

 Neutral state mixing disappears at high energy, where electroweak symmetry is restored

Proof of $M_{12}(s) \approx 0$

- Consider mixing of $Q_L ar{q}_L$, $ar{Q}_L q_L$ neutral states
- Before breaking, all particles are massless, quarks in flavor eigenstates
- Mixing occurs via exchanges of charged or neutral scalars, whose strengths described by Yukawa matrices

- After breaking, particles get masses, quarks turned to mass eigenstates
- Mixing occurs via W boson exchanges, whose strengths described by CKM matrix

Mixing in symmetric phase

- Yukawa interaction $\overline{Q_L}Y_u u_R \varphi + \overline{Q_L}Y_d d_R \tilde{\varphi} \qquad \varphi = \frac{1}{\sqrt{2}} \begin{pmatrix} \varphi^+ \\ \varphi^0 \end{pmatrix}$, left-handed doublet
- In symmetric phase, implement quark field transformation adopted in broken phase $u_L \rightarrow U_u u_L$ $u_R \rightarrow V_u u_R$ $d_L \rightarrow U_d d_L$ $d_R \rightarrow V_d d_R$
- Yukawa matrices diagonalized, but charged scalar currents exist
- down-type quarks, coupling to up-type quarks in mass eigenstates through charged scalar currents, are not in mass eigenstates

High-energy input

- Heavy quark Q provides large s in box diagrams. Symmetry restores and intermediate particles become massless, $M_{12}(s) \approx 0$
- s' can be low, so $\Gamma_{12}(s')$ depends on CKM matrix elements associated with massive intermediate quarks in broken phase.

Cheng 1982 Buras et al 1984

• Box-diagram contribution

$$\Gamma_{12}(s) \propto \sum_{i,j} \lambda_i \lambda_j \Gamma_{ij}(s),$$

$$\Gamma_{ij}(s) = \frac{1}{s^2} \frac{\sqrt{s^2 - 2s(m_i^2 + m_j^2) + (m_i^2 - m_j^2)^2}}{(m_W^2 - m_i^2)(m_W^2 - m_j^2)}$$

$$\times \left\{ \left(m_W^4 + \frac{m_i^2 m_j^2}{4} \right) [2s^2 - 4s(m_i^2 + m_j^2) + 2(m_i^2 - m_j^2)^2] + 3m_W^2 s(m_i^2 + m_j^2)(m_i^2 + m_j^2 - s) \right\}$$

for D mixing i, j = d, s, b $\lambda_i \equiv V_{ci}^* V_{ui}$

Constraints

• How to diminish dispersive integral

$$\int ds' \frac{\Gamma_{12}(s')}{s-s'} ?$$

 $\lambda_i \lambda_j g_{ij} \approx 0$

• Asymptotic expansion

$$\Gamma_{ij}(s') \approx \Gamma_{ij}^{(1)}s' + \Gamma_{ij}^{(0)} + \frac{\Gamma_{ij}^{(-1)}}{s'} + \cdots \qquad \text{EW symmetry} \\ \text{restoration scale} \\ \Gamma_{ij}^{(1)} = \frac{4m_W^4 - 6m_W^2(m_i^2 + m_j^2) + 4m_i^2m_j^2}{2(m_W^2 - m_i^2)(m_W^2 - m_j^2)}, \implies \Lambda^2/s \\ \Gamma_{ij}^{(0)} = -\frac{3(m_i^2 + m_j^2) \left[4m_W^4 - 4m_W^2(m_i^2 + m_j^2) + m_i^2m_j^2\right]}{2(m_W^2 - m_i^2)(m_W^2 - m_j^2)} \implies (m_i^2 + m_j^2)\Lambda/s \\ \Gamma_{ij}^{(-1)} = \frac{3(m_i^4 + m_j^4) \left[4m_W^4 - 2m_W^2(m_i^2 + m_j^2) + m_i^2m_j^2\right]}{2(m_W^2 - m_i^2)(m_W^2 - m_j^2)}. \implies (m_i^4 + m_j^4) \ln \Lambda/s \\ \Gamma_{ij}^{(-1)} = \frac{3(m_i^4 + m_j^4) \left[4m_W^4 - 2m_W^2(m_i^2 + m_j^2) + m_i^2m_j^2\right]}{2(m_W^2 - m_i^2)(m_W^2 - m_j^2)}. \implies (m_i^4 + m_j^4) \ln \Lambda/s \\ \text{to diminish integral}$$

$$\int ds' \frac{\Gamma_{12}(s')}{s-s'} \approx \frac{1}{s} \sum_{i,j} \lambda_i \lambda_j g_{ij} \qquad g_{ij} \equiv \int_{t_{ij}}^{\infty} ds' \left[\Gamma_{ij}(s') - \Gamma_{ij}^{(1)}s' - \Gamma_{ij}^{(0)} - \frac{\Gamma_{ij}^{(-1)}}{s'} \right]$$

Minimization

• Rewrite constrains $r^2 R_{dd}^{(m)} + 2r R_{ds}^{(m)} + 1 \approx 0,, \quad m = 1, 0, -1, i$

$$R_{dd}^{(m)} = \frac{\Gamma_{dd}^{(m)} - 2\Gamma_{db}^{(m)} + \Gamma_{bb}^{(m)}}{\Gamma_{ss}^{(m)} - 2\Gamma_{sb}^{(m)} + \Gamma_{bb}^{(m)}}, \quad R_{ds}^{(m)} = \frac{\Gamma_{ds}^{(m)} - \Gamma_{db}^{(m)} - \Gamma_{sb}^{(m)} + \Gamma_{bb}^{(m)}}{\Gamma_{ss}^{(m)} - 2\Gamma_{sb}^{(m)} + \Gamma_{bb}^{(m)}} \qquad m = 1, 0, -1$$

- Expression for m = i similar, but with g_{ij}
- Ratio of CKM elements $r = \frac{\lambda_d}{\lambda_s} = \frac{V_{cd}^* V_{ud}}{V_{cs}^* V_{us}} \equiv u + iv,$
- Tune u and v to minimize the sum (real parts of constraints)

$$\sum_{m=1,-1,i} \left[(u^2 - v^2) R_{dd}^{(m)} + 2u R_{ds}^{(m)} + 1 \right]^2$$

$$r = \frac{V_{cd}^* V_{ud}}{V_{cs}^* V_{us}} = -1.0 + (6.2^{+1.2}_{-1.0}) \times 10^{-4} i \qquad u = -1.00029 \pm 0.00002, \qquad v = 0.00064 \pm 0.00002$$

variation of ms by 0.01 GeV they agree well

Analytical solution

• Insert u=-1 into m=1 constraint to get analytical expression of v

$$v \approx \frac{(m_W^2 - m_b^2)(m_s^2 - m_d^2)}{(m_W^2 - m_s^2)(m_b^2 - m_d^2)} \approx \frac{m_s^2}{m_b^2}$$

- In terms of Wolfenstein parameters $v = A^2 \lambda^4 \eta$ Ahn et al, 2011
- Produce well-known numerical relation

$$\lambda = V_{us} \approx (A^2 \eta)^{-1/4} \sqrt{\frac{m_s}{m_b}} \approx \sqrt{\frac{m_s}{m_b}}$$

 $A \approx 0.826$ $\eta \approx 0.348$ $(A^2 \eta)^{-1/4} \approx 1.43 \sim O(1)$

Belfatto et al, 2023

Cheng, Sher 1987

Lepton mixing

- Pontecorvo–Maki–Nakagawa–Sakata
- Apply the same formalism to lepton $\mu^-e^+-\mu^+e^-$ mixing through similar box diagrams with intermediate neutrino channels
- Correspondence $m_{d,s,b} \leftrightarrow m_{1,2,3}$ $V_{cd}^*V_{ud}/(V_{cs}^*V_{us}) \leftrightarrow r = U_{\mu 1}^*U_{e1}/(U_{\mu 2}^*U_{e2})$
- Normal hierarchy (NH) $m_1^2 = 10^{-6} \text{ eV}^2$ de Salas et al, 2018
 - $\Delta m_{21}^2 \equiv m_2^2 m_1^2 = (7.55^{+0.20}_{-0.16}) \times 10^{-5} \text{ eV}^2 \qquad \Delta m_{32}^2 \equiv m_3^2 m_2^2 = (2.424 \pm 0.03) \times 10^{-3} \text{ eV}^2$
- Predict $r = \frac{U_{\mu 1}^* U_{e1}}{U_{\mu 2}^* U_{e2}} \approx -1.0 - 0.02i$ $r = -(0.738_{-0.048}^{+0.050}) - (0.179_{-0.125}^{+0.136})i$
- Inverted hierarchy (IH) $r \approx -1.0 O(10^{-5})i$ $r = -(1.03^{+0.05}_{-0.16}) (0.356^{+0.015}_{-0.048})i$
- Quasi-degenerate $r \approx -0.97 O(10^{-5})i$
- NH and observed PMNS matrix satisfy constraint at order of magnitude

PDG

	Ref. [188] w/o SK-ATM		Ref. [188] w SK-ATM		Ref. [189] w SK-ATM		Ref. [190] w SK-ATM	
NO	Best Fit Ordering		Best Fit Ordering		Best Fit Ordering		Best Fit Ordering	
Param	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
$\frac{\sin^2 \theta_{12}}{10^{-1}}$	$3.10^{+0.13}_{-0.12}$	$2.75 \rightarrow 3.50$	$3.10^{+0.13}_{-0.12}$	$2.75 \rightarrow 3.50$	$3.04_{-0.13}^{+0.14}$	$2.65 \rightarrow 3.46$	$3.20^{+0.20}_{-0.16}$	$2.73 \rightarrow 3.79$
$\theta_{12}/^{\circ}$	$33.82^{+0.78}_{-0.76}$	$31.61 \rightarrow 36.27$	$33.82^{+0.78}_{-0.76}$	$31.61 \rightarrow 36.27$	$33.46^{+0.87}_{-0.88}$	$30.98 \rightarrow 36.03$	$34.5^{+1.2}_{-1.0}$	$31.5 \rightarrow 38.0$
$\frac{\sin^2 \theta_{23}}{10^{-1}}$	$5.58^{+0.20}_{-0.33}$	$4.27 \rightarrow 6.09$	$5.63^{+0.18}_{-0.24}$	$4.33 \rightarrow 6.09$	$5.51^{+0.19}_{-0.80}$	$4.30 \rightarrow 6.02$	$5.47^{+0.20}_{-0.30}$	$4.45 \rightarrow 5.99$
$\theta_{23}/^{\circ}$	$48.3^{+1.2}_{-1.9}$	$40.8 \rightarrow 51.3$	$48.6^{+1.0}_{-1.4}$	$41.1 \rightarrow 51.3$	$47.9^{+1.1}_{-4.0}$	$41.0 \rightarrow 50.9$	$47.7^{+1.2}_{-1.7}$	$41.8 \rightarrow 50.7$
$\frac{\sin^2 \theta_{13}}{10^{-2}}$	$2.241^{+0.066}_{-0.065}$	$2.046 \rightarrow 2.440$	$2.237^{+0.066}_{-0.065}$	$2.044 \rightarrow 2.435$	$2.14^{+0.09}_{-0.07}$	$1.90 \rightarrow 2.39$	$2.160^{+0.083}_{-0.069}$	$1.96 \rightarrow 2.41$
$\theta_{13}/^{\circ}$	$8.61^{+0.13}_{-0.13}$	$8.22 \rightarrow 8.99$	$8.60^{+0.13}_{-0.13}$	$8.22 \rightarrow 8.98$	$8.41^{+0.18}_{-0.14}$	$7.9 \rightarrow 8.9$	$8.45_{-0.14}^{+0.16}$	$8.0 \rightarrow 8.9$
$\delta_{\rm CP}/^{\circ}$	222_{-28}^{+38}	$141 \rightarrow 370$	221_{-28}^{+39}	$144 \rightarrow 357$	238_{-33}^{+41}	$149 \rightarrow 358$	218^{+38}_{-27}	$157 \rightarrow 349$
$\frac{\Delta m_{21}^2}{10^{-5} {\rm gV}^2}$	$7.39^{+0.21}_{-0.20}$	$6.79 \rightarrow 8.01$	$7.39^{+0.21}_{-0.20}$	$6.79 \rightarrow 8.01$	$7.34_{-0.14}^{+0.17}$	$6.92 \rightarrow 7.91$	$7.55_{-0.16}^{+0.20}$	$7.05 \rightarrow 8.24$
$\frac{\Delta m_{32}^2}{10^{-3} \text{ eV}^2}$	$2.449^{+0.032}_{-0.030}$	$2.358 \rightarrow 2.544$	$2.454_{-0.031}^{+0.029}$	$2.362 \rightarrow 2.544$	$2.419^{+0.035}_{-0.032}$	$2.319 \rightarrow 2.521$	2.424 ± 0.03	$2.334 \rightarrow 2.524$
IO	$\Delta \chi^2 = 6.2$		$\Delta \chi^2 = 10.4$		$\Delta \chi^2 = 9.5$		$\Delta \chi^2 = 11.7$	
$\frac{\sin^2 \theta_{12}}{10^{-1}}$	$3.10^{+0.13}_{-0.12}$	$2.75 \rightarrow 3.50$	$3.10^{+0.13}_{-0.12}$	$2.75 \rightarrow 3.50$	$3.03^{+0.14}_{-0.13}$	$2.64 \rightarrow 3.45$	$3.20^{+0.20}_{-0.16}$	$2.73 \rightarrow 3.79$
$\theta_{12}/^{\circ}$	$33.82^{+0.78}_{-0.76}$	$31.61 \rightarrow 36.27$	$33.82^{+0.78}_{-0.75}$	$31.62 \rightarrow 36.27$	$33.40^{+0.87}_{-0.81}$	$30.92 \rightarrow 35.97$	$34.5^{+1.2}_{-1.0}$	$31.5 \rightarrow 38.0$
$\frac{\sin^2 \theta_{23}}{10^{-1}}$	$5.63^{+0.19}_{-0.26}$	$4.30 \rightarrow 6.12$	$5.65^{+0.17}_{-0.22}$	$4.36 \rightarrow 6.10$	$5.57^{+0.17}_{-0.24}$	$4.44 \rightarrow 6.03$	$5.51^{+0.18}_{-0.30}$	$4.53 \rightarrow 5.98$
$\theta_{23}/^{\circ}$	$48.6^{+1.1}_{-1.5}$	$41.0 \rightarrow 51.5$	$48.8^{+1.0}_{-1.2}$	$41.4 \rightarrow 51.3$	$48.2^{+1.0}_{-1.4}$	$41.8 \rightarrow 50.9$	$47.9^{+1.0}_{-1.7}$	$42.3 \rightarrow 50.7$
$\frac{\sin^2 \theta_{13}}{10^{-2}}$	$2.261^{+0.067}_{-0.064}$	$2.066 \rightarrow 2.461$	$2.259^{+0.065}_{-0.065}$	$2.064 \rightarrow 2.457$	$2.18^{+0.08}_{-0.07}$	$1.95 \rightarrow 2.43$	$2.220^{+0.074}_{-0.076}$	$1.99 \rightarrow 2.44$
$\theta_{13}/^{\circ}$	$8.65^{+0.13}_{-0.12}$	$8.26 \rightarrow 9.02$	$8.64^{+0.12}_{-0.13}$	$8.26 \rightarrow 9.02$	$8.49^{+0.15}_{-0.14}$	$8.0 \rightarrow 9.0$	$8.53^{+0.14}_{-0.15}$	$8.1 \rightarrow 9.0$
$\delta_{\rm CP}/^{\circ}$	285^{+24}_{-26}	$205 \rightarrow 354$	282^{+23}_{-25}	$205 \rightarrow 348$	247^{+26}_{-27}	$193 \rightarrow 346$	281^{+23}_{-27}	$202 \rightarrow 349$
$\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$	$7.39^{+0.21}_{-0.20}$	$6.79 \rightarrow 8.01$	$7.39^{+0.21}_{-0.20}$	$6.79 \rightarrow 8.01$	$7.34_{-0.14}^{+0.17}$	$6.92 \rightarrow 7.91$	$7.55_{-0.16}^{+0.20}$	$7.05 \rightarrow 8.24$
$\frac{\Delta m_{32}^2}{10^{-3} \text{ eV}^2}$	$-2.509^{+0.032}_{-0.032}$	$-2.603 \rightarrow -2.416$	$-2.510^{+0.030}_{-0.031}$	$-2.601 \rightarrow -2.419$	$-2.478^{+0.035}_{-0.033}$	$-2.577 \rightarrow -2.375$	$-2.50\pm^{+0.04}_{-0.03}$	$-2.59 \rightarrow -2.39$

Other observations

- Chau-Keung parametrization $\operatorname{Im}(r) \propto \frac{s_{13}s_{23}}{s_{12}}$
- Larger mixing angles in lepton sector due to

$$\frac{m_2^2}{m_3^2} \approx 3.1 \times 10^{-2} \gg \frac{m_s^2}{m_b^2} \approx 9.0 \times 10^{-4}$$

- How about τ^-e^+ - τ^+e^- or $t\bar{u}$ - $\bar{t}u$ mixing? Same intermediate channels, so same constraints. Additional solutions?
- Two possibilities: first, small $\lambda_i \lambda_j$, so that constraints $|V_{cs}^* V_{us}|^2 = \lambda^2 \approx 5 \times 10^{-2}$ met automatically, happening to quark sector $|V_{ts}^* V_{us}|^2 = A^2 \lambda^6 \approx 9 \times 10^{-5}$.
- Second, two solutions of v with opposite signs: one for $\mu^-e^+-\mu^+e^-$ another for $\tau^-e^+-\tau^+e^-$
- Check data $U_{\tau 1}^* U_{e1} / (U_{\tau 2}^* U_{e2})$ $r = U_{\mu 1}^* U_{e1} / (U_{\mu 2}^* U_{e2})$ $-(1.231_{-0.186}^{+0.078}) + (0.204_{-0.138}^{+0.085})i$ $r = -(0.738_{-0.048}^{+0.050}) - (0.179_{-0.125}^{+0.136})i$ de Salas et al, 2018 $-(1.139_{-0.207}^{+0.139}) + (0.266_{-0.124}^{+0.050})i$ $r = -(0.801_{-0.097}^{+0.219}) - (0.265_{-0.145}^{+0.090})i$ Capozzi et al, 2018

Constraint on θ_{23}

• Ratios in CK parametrization

$$\begin{aligned} & \text{roughly equal} \\ \text{atios in CK parametrization} \\ & \frac{U_{\mu 1}^{*}U_{e1}}{U_{\mu 2}^{*}U_{e2}} = -\frac{c_{12}}{s_{12}} \frac{c_{12}s_{12}(c_{23}^{2} - s_{13}^{2}s_{23}^{2}) + c_{23}s_{13}s_{23}c_{\delta}(c_{12}^{2} - s_{12}^{2}) - c_{23}s_{13}s_{23}s_{\delta}i}{(c_{12}c_{23} - s_{12}s_{13}s_{23})^{2} + 2c_{12}c_{23}s_{12}s_{13}s_{23}(1 - c_{\delta})} \\ & \frac{U_{\tau 1}^{*}U_{e1}}{U_{\tau 2}^{*}U_{e2}} = -\frac{c_{12}}{s_{12}} \frac{c_{12}s_{12}(s_{23}^{2} - c_{23}^{2}s_{13}^{2}) - c_{23}s_{13}s_{23}c_{\delta}(c_{12}^{2} - s_{12}^{2}) + c_{23}s_{13}s_{23}s_{\delta}i}{(c_{12}s_{23} - c_{23}s_{13}s_{23}c_{\delta}(c_{12}^{2} - s_{12}^{2}) + c_{23}s_{13}s_{23}s_{\delta}i} \\ & \text{equal} \end{aligned}$$

- The two ratios differ only by sign of Im
- Relation among mixing angles $(c_{12}^2 - s_{12}^2 s_{13}^2)(c_{23}^2 - s_{23}^2) - 4c_{12}c_{23}s_{12}s_{13}s_{23}c_\delta \approx 0,$ $(c_{12}^2 + s_{12}^2 s_{13}^2)(c_{23}^2 - s_{23}^2) \approx 0 \quad \longleftarrow \quad c_{12}s_{12}(1 + s_{13}^2)(c_{23}^2 - s_{23}^2) + 2(c_{12}^2 - s_{12}^2)c_{23}s_{13}s_{23}c_\delta \approx 0$
- Indicate $c_{23} \approx s_{23}$, i.e., $\theta_{23} \approx 45^{\circ}$ maximal lepton mixing!

Summary and conjecture

- Dispersion relations for observables impose stringent constraint
- Fermion masses and mixing angles in both quark and lepton sectors constrained by SM dynamics itself
- Different mixing patterns due to different fermion mass ratios

$$\frac{m_2^2}{m_3^2} \approx 3.1 \times 10^{-2} \gg \frac{m_s^2}{m_b^2} \approx 9.0 \times 10^{-4}$$

- Normal hierarchy favored by dispersive constraint
- Maximal lepton mixing demanded by solutions for mixing between generations 1, 2 and generations 1, 3
- It is likely that SM has only three fundamental (gauge) parameters
- Scalar sector, coupling various generations, is not free