A dream of room-temperature superconductors

- 台大物理系 王立民
- L. M. Wang, Department of Physics/Graduate Institute of Applied Physics, National Taiwan University, Taipei 10617, Taiwan

Outline

- 1. Room-temperature ambient-pressure superconductor ~ the "Holy Grail" of science!
- ~Room temperature superconductor LK-99?

2. Introduction to Superconductivity:

- a. Characteristics of superconductors
- b. Development history
- ~The low- T_c and high- T_c superconductors
- ~Searching for new superconductors?
- c. Applications of superconductors

3. Verify LK-99

~Magnetic and electrical measurements

4. Summary

Room-temperature ambient-pressure superconductors:

~ LK-99: A room-temperature superconductor?

On July 27, 2023, a Korean research team announced the discovery of a room-temperature ambient-pressure superconductor: LK-99 (chemical formula $Pb_9Cu(PO_4)_6O$, a lead-copper apatite), which exhibited superconducting properties at $127^{\circ}C$!

Magnetic and electrical measurements on LK-99:

■Diamagnetic-like & zeroresistance-like superconductor!!

- ➤ On August 1, another article showed that LK-99 can be a superconductor via proper copper doping the first paper to prove the feasibility of the "LK-99" by theory.
- ➤ Driving superconductor concept stocks to sharp rise (American Superconductor AMSC, lead & copper futures, conductive wire materials, medical, etc.)!
- ➤ Room-temperature ambient-pressure superconductor ~ the "Holy Grail" of science~LK-99 ?

Introduction to superconductivity:

•Characteristics of superconductor:

Meissner effect: B = 0 in superconductors ~Perfect diamagnetism !

Persistent Current (>10⁵ years)!

A Nobel-Prize Experiment you can do:

Magnet

釔鋇銅氧(YBa₂Cu₃O_y,YBCO)superconductor

Liquid N₂

Discovery of Superconductivity

- Discovered by Kamerlingh Onnes in 1911 during first low temperature measurements to liquefy helium.
- Whilst measuring the resistivity of "pure" mercury (Hg) he noticed that the electrical resistance dropped to zero at 4.2 K.
- In 1912 he found that the resistive state is restored in a magnetic field or at high transport currents.

H. Kamerlingh Onnes (歐尼斯) 1913 Nobel Prize in Physics

Superconductivity

Li	Be 0.026		١	٧b								В	С		S (Sulfur)		Ne
Na	Mg		T	biun =9K			Fe					AI 1.14 10	Si	Ť	T _c =17K (93 GPa)		
K	Ca	Sc	U.39 10	5.38 142			iron)	Ni	Cu	Zn 0.875 5.3	Ga 1.091 5.1	Ge	10		51	Kr
Rb	Sr	Y	Zr 0.546 4.7	9.5 198	Mo 0.92 9.5		c=1 20G		Pd	Ag	Cd 0.56 3	In 3.4 29.3	Sn 3.72 30	Sb	Те	I	Xe
Cs	Ва	La 6.0 110	Hf 0.12	Ta 4.483 83	W 0.012 0.1	Re 1.4 20	Os 0.655 16.5	1r 0.14 1.9	Pt	Au	Hg 4.153 41	TI 2.39 17	Pb 7.19 80	Bi	Ро	At	Rn

- Transition temperatures (K) and critical fields are generally low
- Metals with the highest conductivities are not superconductors
- The magnetic 3d elements are not superconducting

Superconductivity – Phenomena and facts

Hard and soft superconductors

Soft (type I) superconductor

Hard (type II) superconductor shows incomplete Meissner effect (higher current possible

Inside a superconductor a magnetization –M (opposed to the outside magnetization +M) is built up Above a critical field (electrical current) current this magnetization collapses and superconductivity ceases

Magnetic flux trapped by defects or impurities

Normal and superconducting
regions in a type II superconductor

A theory of superconductivity - the BCS model

An electron travelling through the 1972 Nobel Prize lattice polarizes its surrounding in Physics

Electron fast – lattice vibrations slow

- ⇒ a second electron is drawn into the positive trough produced by the first electron
- ⇒ electron movements are coupled electron are highly correlated

⇒ Cooper pairs

(古柏對~電子對)

maximum deformation at a time $\tau \sim \frac{2\pi}{\omega_D} \sim 10^{-13} \mathrm{s}$

$$\sim v_F \tau \sim 10^8 \frac{\text{cm}}{\text{s}} \cdot 10^{-13} \text{s} \sim 1000 \text{ Å}.$$

~ Phonon-mediated Cooper pairs! & T_c < 40 K!

obey the Pauli principle

Consequences of BCS and experiments:

The conduction band of superconductor exhibits superconducting gap

Figure 19: The evolution of the gap (as measured by reflectivity) as a function of temperature. The BCS approximation is in reasonably good agreement with experiment.

2. Isotope effect:

(同位素效應)
$$\omega_D \sim \sqrt{\frac{k}{M}} \sim M^{-\frac{1}{2}}.$$
 $T_c \propto \sqrt{\frac{k}{M}}$

$$T_c \propto \sqrt{\frac{1}{M}}$$

- All these observation are accounted for by the BCS theory
- ~ Sound-like perfect both in theory and experiment!

~The generation of high- T_c superconductors (1986):

1987 **Nobel Prize in Physics**

Bednorz & Muller discovered the La-Ba-Cu-O superconductor with $T_c \sim 30 \text{ K}$

High- T_c superconducting (HTS) cuprates:

1. An unusual isotope effect in a high-transition-temperature superconductor ~ see: *Nature*, Vol. 430, No. 6996. (08 July 2004), pp. 187-190. **■** *not* BCS superconductor!

2. Quantum critical point:

Spin (quantum) fluctuation mediated :

~see: Philippe Bourges et al., Physical Review Letters (2006, May)

*The parent material

through doping some elements

suppress antiferromagnetic (AF) characteristics

superconductivity appear!

*Electron pairs are paired by "quantum fluctuations" as a medium, not by the vibration of lattice atoms (traditional low-temperature superconductors)!™ Strongly coupled pairs!

Iron-based superconductors:

QCP phase diagram of iron-based superconducting $FeTe_{1-x}Se_x[1]$

QCP phase diagram of iron-based superconducting NaFe_{1-x}Co_xAs [2]

[1] J. Hu et al., Phys. Rev. B 88, 094505 (2013).

[2] A. F. Wang et al., Phys. Rev. B 85, 224521 (2012)

Finding new high- T_c SCs?

~ Search antiferromagnetic materials ~ the parent compound of a new SC!

*The parent material

through doping some elements

suppress antiferromagnetic (AF) characteristics

superconductivity appear!

Applications of superconductors: superconductors: superconducting magnetic productions of superconductors: superconducting magnetic productions of superconducting representations of superconductors.

一 中央新幹線

山梨實驗線上試運行的改良型 L0 系 950 番台 (攝於山梨縣笛吹市)

Maglev high-speed railway in Japan:

日本中央新幹線<u>磁浮高速鐵路</u>工程: 2015年4月21日每小時603公里的最高 速度;

<u>2020年東京奧運</u>,開放山梨縣車站, 讓訪日外賓搭乘、體驗!

https://zh.wikipedia.org/zhtw/%E4%B8%AD%E5%A4%AE%E6%96%B0% E5%B9%B9%E7%B7%9A

Three limiting factors of superconductors for applications: T_c , H_c , J_c :

Copper Wire vs. 2G HTS Wire

Copper Wire

12.7 mm diameter Area = 104 mm² Ic = 100 A/cm²

Price: ~ 20 USD/kA▼m

2G HTS Wire

 $0.1 \text{mm} \times 4 \text{ mm}$ Area = 0.4mm^2 $1c = 26,000 \text{ A/cm}^2$

Price: ~ 200 USD/kA▼m

2G HTS wire provides 260 times more current in a smaller area, and significantly reduces energy loss as compared to traditional copper wire.

Applications of superconducting magnets:

~ 2050 zero-carbon goal?

High-temperature superconductors in a tokamak fusion reactor

The development of nuclear fusion power generation, such as with compact toka mak fusion reactors, is driving the growth and commercialization of high-temperature superconductor (HTS)-coated conductors.

22 JUNE 2023

~ HTS tapes applied to tokamak fusion reactor. (@MIT, USA)

See: SCIENCE Vol 380, Issue 6651 pp. 1220-1222 (2023)

Small-scale application~ *SQUID Applications*:

(超導量子干涉元件, Superconducting QUantum Interference

Device ~the most sensitive magnetic field sensor!)

~1 nm
Superconductor S Superconductor

SIS tunneling junction

- Biomagnetic Applications (生物磁場應用)
- Non-Destructive Evaluation (NDE,非破壞性檢 測)
- Geophysical Applications (地球物理應用)
- Scanning SQUID Microscope (掃描式SQUID顯 微鏡)
- SQUID NMR and MRI (核磁共振及核磁共振影像)

Biomagnetic applications with SQUID

- MagnetoEncephaloGraphy (MEG, 腦磁圖)
- Liver Susceptometry (LS, 肝磁導儀)
- MagnetoCardioGraphy (MCG, 心磁 儀)
- Magnetic measurement (磁性測量)

MagnetoEncephaloGraphy (MEG)

Structure of magnetoencephalographic sensing system (CTF Systems Inc., Canada)

Helium Dewar

MEG System in NTU:

Elekta Neuromag MEG System

Commercialized SQUID magnetometer: (@ R110, Department of Physics, NTU)

u**儀器名稱:** 超導量子干涉磁量儀 (SQUID) Magnetometer

u規格:美國Quantum Design公司,MPMSR2型

磁場強度:± 7.0 Tesla (± 70000 Gauss)

溫度範圍:2~400 K(提供2~360 K服務)

磁矩範圍:5×10⁻⁷~300 emu

u服務項目:

~ 磁化強度與溫度相依性測量 (M-T Curve)。

~ 定溫下磁化強度對磁場之相依性/磁滯曲線測量(M)

Loop)_o

~ 定磁場及定溫度下之磁化強度測量

u設置時間: 1989年 (國科會貴儀中心)。

**Cu₂S exhibits a reduction in resistivity at around 385 K!

How to verify superconductors?

~Taking YBCO film as an example:

Type II SCs:

- \triangleright magnetic susceptibility $\chi = \blacksquare 1$
- (perfect diamagnetism) @ zero-field cooling (ZFC)
- ➤ @ field-cooling (FC), (due to magnetic flux pinning)

ZFC

Results: XRD & magnetization *M***□***T* measurements:

removal of Cu₂S using ammonia solution

diamagnetism(M < 0)

Results~ electrical measurement (resistivityextstyle temperature, extstyle T):

Sharp transition near 380 K disappears in $S_2^* \cong$ resistive transition is due to $Cu_2S!$

Semiconductor properties: *T*

NEWS | 16 August 2023

LK-99 isn't a superconductor — how science sleuths solved the mystery

Efforts to replicate the material have pieced together the puzzle of why it displayed superconducting-like behaviours.

2023/08/16

Summary:

- ➤ A room-temperature ambient-pressure superconductor, LK-99, was announced by a Korean research team.
- ➤ We synthesized LK-99 and found that the Cu₂S phase can be effectively removed by ammonia solution.
- ➤ The superconducting-like behavior in LK-99 should originate from Cu₂S. ♣ LK-99 is considered as a diamagnetic semiconductor.
- > Search for a room-temperature superconductor remains a challenge.

Thanks for your attention!