

Search for Dark Matter in pp Collisions with CMS

Shin-Shan Eiko Yu Department of Physics National Central University, Taiwan

15 December 2020 Colloquium, Department of Physics National Taiwan University

Outline

- Dark matter searches at colliders
 - Overview
 - Introduction to LHC and CMS
 - Experimental techniques
 - Interpretation of results
- Conclusion and outlook

How Do You "See" an Object?

Reflection

Thermal Radiation

Visible for T=3800~7600 K

In our galaxy, besides visible stars, is there something else?

If I had been present at creation, I would have suggested a simpler scheme. - Alfonse the Wise

Rocky Kolb

What Is Dark Matter?

6

• "Dark Matter" is a temporary name

"Dark Matter" in Chemistry: Argon

Sir William Ramsay

Nitrogen extracted from air is heavier than that extracted from the chemical reaction by 0.5%

New Unknown Gas: Argon

What Is Dark Matter?

"Dark Matter" is a temporary name

 Influenced by gravitational interaction and no other standard model (SM) interactions

 Interact weakly with normal matter → may need a new type of interaction

8

Why Dark Matter?

Shin-Shan Eiko Yu

9

Reminder of Gravitation Law (Outside the Earth)

Reminder of Gravitation Law: Inside the Earth

 $F(r < R) \propto \frac{M(r)}{r^2}$ $= \frac{\rho\left(\frac{4\pi}{3}r^3\right)}{r^2} = r$ $m \frac{v_{\text{particle}}^2}{m} \propto r$ $\Rightarrow v_{\text{particle}} \propto r$

Reminder of Gravitation Law: Inside the Earth

 $F(r < R) \propto \frac{M(r)}{r^2}$ $= \frac{\rho\left(\frac{4\pi}{3}r^3\right)}{r^2} = r$ $m \frac{v_{\text{particle}}^2}{m} \propto r$ $\Rightarrow v_{\text{particle}} \propto r$

Extended to the Stars in a Galaxy

 $v \propto \sqrt{\frac{M(r)}{r}}$ $v(r < R) \propto r$ $v(r > R) \propto \frac{1}{\sqrt{r}}$

Rotational Curves

Measured ~200km/s

Expectation

Distance

13

Vera Rubin 1928-2016

Rotational Curves

13

Vera Rubin 1928-2016

Extended to the Stars in a Galaxy

Gravitation Lensing

The size of the Einstein ring is related to the mass of the lensing

 $\theta \propto \sqrt{M_1}$ lense

Abell 2218 Cluster

Gravitation Lensing

The size of the Einstein ring is related to the mass of the lensing

 $\theta \propto \sqrt{M}$ lense

Abell 2218 Cluster

Gravitation Lensing

The size of the Einstein ring is related to the mass of the lensing

 $\theta \propto \sqrt{M_{\text{lense}}}$

Abell 2218 Cluster

1E0657-558 2006 observed

Normal Matter (X-ray image) Dark Matter

> 1E0657-558 2006 observed

Introduction to LHC and CMS

• CERN

- Conseil Européen pour la Recherche Nucléaire
- European Council for Nuclear Research
- Location of LHC and the experiments

CERN

- Established by 12 European countries on 1954/09/29
- Origin of WWW

Tim Berners-Lee in 1989

- Director
 - Fabiola Gianotti

- 23 member states
- Yearly budget $\sim 10^9$ CHF (= 3.2 × 10^{10} TWD)
 - Germany、UK、France、Italy
 - LHC cost ~ 4.3 × 10⁹ CHF

Users Around the World

Distribution of All CERN Users by Nationality on 24 January 2018

MEMBER STATES 7889 Austria 117	
Belgium120Bulgaria96Czech Republic244Denmark67Finland111France868Germany1342Greece237Hungary76Israel65Italy2045	
Netherlands168Norway67Poland350Portugal127Romania134Slovakia124Spain447Sweden85Switzerland228United Kingdom771	OBSERVERS 2718 Japan 314 Russia 1187 USA 1217
India357 745 Lithuania35Pakistan65Turkey173Ukraine115 ASSOCIATEMEMBERS INTHE PRE-STAGETO MEMBERSHIP Cyprus26Serbia57Slovenia35	OTHERS1872Bolivia4Egypt31Kazakhstan5Mongolia2Philippines3Thailand22Afghanistan1Brazil135Estonia15Korea Rep.185Morocco20and Nevis1Turisia5Albania3Burundi1Georgia46Kyrgyzstan1Myanmar1Saudi Arabia2Uruguay1Algeria14Cameroon1Ghana1Latvia2Nepal10Senegal1Uzbekistan4Argentina27Canada161Hong Kong1Lebanon23New Zealand5Singapore4Venezuela10Armenia19Chile20Iceland3Luxembourg2Nigeria3South Africa56Viet Nam13Australia31China510Indonesia11Madagascar4North Korea1Sri Lanka6Zambia1Azerbaijan10Colombia45Iran51Malaysia15Oman3Sudan1Zimbabwe2Bangladesh11Croatia41Iraq1Malta9Palestine (O.T.).7Swaziland1Belarus48Cuba12Ireland16Mauritius1Paraguay2Syria1Benin1Ecuador6Jordan1Mexico

22

Overall view of the LHC experiments.

LHC Tunnel

Magnetic dipole field: 8.3 Tesla Beam-pipe pressure: 10⁻¹³ atm

1232 superconducting dipoles Operating temperature: 1.9 K

LHC Tunnel

LHC Tunnel

Magnetic dipole field: 8.3 Tesla Beam-pipe pressure: 10⁻¹³ atm

1232 superconducting dipoles Operating temperature: 1.9 K
CMS Detector Sketch

CMS Experiment at the LHC, CERN Tue 2010-Mar-30 13:23:00 CET Run 132440 Event 428568 C O M Energy 7 00TeV

CMS Experiment at the LHC, CERN Tue 2010-Mar-30 13:23:00 CET Run 132440 Event 428568 C O M Energy 7 00TeV

Muon Chamber

CMS Detector

Hadron Calorimeter

Electromagnetic Calorimeter

Silicon Tracker

Superconducting Magnet B=3.8 Tesla

Muon Chamber

CMS Detector

Hadron Calorimeter

Electromagnetic Calorimeter

Silicon Tracker

Superconducting Magnet B=3.8 Tesla

Path of Various Particles

Silicon Tracker Electroma Calorim	ignetic eter Hadre Calorin	on heter Sup	erconductin				
			Solenoid	Iron retu	ırn yoke inte	rspersed	
			-	with	Muon cham	bers	0000
0 m	1 m	2 m	3 m	4 m	5 m	6 m	7 m
Key:	luon	Ele	ectron	Cha	arged Hadror	n (e.g. Pion)	
N	eutral Hadro	on (e.g. Neu	tron)	Phot	ton		

Path of Various Particles

Silicon Tracker Electroma Calorim	ignetic eter Hadre Calorin	on heter Sup	erconductin				
			Solenoid	Iron retu	ırn yoke inte	rspersed	
			-	with	Muon cham	bers	0000
0 m	1 m	2 m	3 m	4 m	5 m	6 m	7 m
Key:	luon	Ele	ectron	Cha	arged Hadror	n (e.g. Pion)	
N	eutral Hadro	on (e.g. Neu	tron)	Phot	ton		

What Is Dark Matter at Colliders?

- Neutral, weakly-interactive, massive, and stable on the distancescales of tens of meters
 - Dark matter appears as missing transverse momentum in collider detectors

Missing Transverse Momentum

• The negative of the total transverse momentum of all observed particles in the detector

- Mediator has minimal decay width
- Minimal set of parameters
 - coupling structure, М_{мер}, т_{рм}, g_{sм} (g_q), g_{DM}

Features of Mediators

	spin 0	spin 1	
Charge Q	Q _{med} = 0 for s-channel		
Mass m	unknown		
Dark sector bosons similar to	H γ, Ζ, Ζ' [1609.09079]		
Lorentz structure	scalar 1 pseudosc. γ ₅	vector γ ^μ axial v. γ ^μ γ₅	
Coupling "g"	∝ mass	∝ charge	
Consequences	m _b ≫ m _d	$\mathbf{Q}_b = \mathbf{Q}_d$	

Tae Min Hong, LHCP 2017

- Mediator has minimal decay width
- Minimal set of parameters
 - coupling structure, М_{МЕD}, m_{DM}, g_{SM} (gq), g_{DM}

Features of Mediators

	spin 0	spin 1	
Charge Q	Q _{med} = 0 for s-channel		
Mass m	unknown		
Dark sector bosons similar to	H γ, Ζ, Ζ' [1609.09079]		
Lorentz structure	scalar 1 pseudosc. γ ₅	vector γ ^μ axial v. γ ^μ γ₅	
Coupling "g"	∝ mass	∝ charge	
Consequences	m _b ≫ m _d	$\mathbf{Q}_b = \mathbf{Q}_d$	

Tae Min Hong, LHCP 2017

- Mediator has minimal decay width
- Minimal set of parameters
 - coupling structure, M_{MED}, m_{DM}, g_{SM} (g_q), g_{DM}

Features of Mediators

	spin 0	spin 1	
Charge Q	Q _{med} = 0 for s-channel		
Mass m	unknown		
Dark sector bosons similar to	H γ, Ζ, Ζ' [1609.09079]		
Lorentz structure	scalar 1 pseudosc. γ ₅	vector γ ^μ axial v. γ ^μ γ₅	
Coupling "g"	∝ mass	∝ charge	
Consequences	m _b ≫ m _d	$\mathbf{Q}_b = \mathbf{Q}_d$	

Tae Min Hong, LHCP 2017

- Mediator has minimal decay width
- Minimal set of parameters
 - coupling structure, M_{MED}, m_{DM}, g_{SM} (g_q), g_{DM}

Features of Mediators

	spin 0	spin 1	
Charge Q	Q _{med} = 0 for s-channel		
Mass m	unknown		
Dark sector bosons similar to	H γ, Ζ, Ζ' [1609.09079]		
Lorentz structure	scalar 1 pseudosc. γ ₅	vector γ ^μ axial v. γ ^μ γ ₅	
Coupling "g"	∝ mass	∝ charge	
Consequences	m _b ≫ m _d	$\mathbf{Q}_b = \mathbf{Q}_d$	

- Mediator has minimal decay width
- Minimal set of parameters
 - coupling structure, М_{МЕD}, m_{DM}, g_{SM} (g_q), g_{DM}

Tae Min Hong, LHCP 2017

Amount of Data We Use

CMS Integrated Luminosity, pp

Amount of Data We Use

CMS Integrated Luminosity, pp

DM Searches with Missing Transverse Momentum Signatures

Mono-X Diagrams of Direct DM Production

Mono-jet

Mono-photon

Mono-Z(leptonic)

Mono-h (bb, $\gamma\gamma$)

 \overline{q} Z' χ q q W/Z \overline{q}

Mono-W/Z(hadronic)

Mono-tt/bb

Shin-Shan Eiko Yu

35

Challenges of Missing Transverse Momentum

- Particles striking sensors in the ECAL photodetectors
- Beam halo
- Dead cells in ECAL or HCAL
- Noise in ECAL or HCAL

Ching-Wei Chen

Mono-X Searches in Hadronic Final State

- Rely on MET triggers (offline MET cut ≥200 GeV)
- Major background from $Z(\rightarrow \nu\nu)$ +jets, $W(\rightarrow |\nu)$ +jets

Estimation of Z+Jets Background

Searches for Visible Mediator Decays

Visible Mediator Searches

Result Interpretation

Mono-X With Vector/Axial Mediators

Mono-Z(leptonic)

Mono-photon

Mono-W/Z(hadronic)

Collider Results Only (Vector Mediator)-Mono-X

Collider Results Only (Vector Mediator)

If We Use Different Parameter Values

For the model parameters considered here, collider experiments can probe SD cross sections 2-3 orders of magnitude smaller than the non-collider experiments.
CMS Phase-2 Upgrade

CMS Phase-2 Upgrade

The Detector Lab @ NCU

Grid computing room for AMS, CMS, KAGRA

Shin-Shan Eiko Yu

Cleanroom

- cleanroom: ~26m²
- service + buffer room: ~17m²
- class 1000 with temperature and humidity controlled at 22°C and relative humidity (RH) 55% all year round
 - fully operation with pressured dry-air service

Shin-Shan Eiko Yu

Probe Stations

- left: self-designed 8-inch probe station used for the large pad silicon sensors
- right: 4-inch probe station used for PHOBOS and CMS Preshower (being upgraded for sPHENIX)
- A new 8-inch MPI probe station was installed in mid-November for CMS HGCal and sPHENIX

Shin-Shan Eiko Yu

Cleanroom Equipments at NTU

- Aerotech 1.25x1.25 m² robotic gantry with Labview control.
- OGP optical 3d measurement
- Hesse BJ820 automatic Bondjet and DAGE 4000 Bondtester(puller)
- Manual probe station and picoprobes (not visible in this pic)
- glue dispensers, mini-gantry, microscope, degassing chamber, Keithley 2410 and tools ...

A set of jigs and tooling for 6-inch HGCal module assembly

1. Deposit epoxy on Cu baseplate

4. Place sensor on top of Kapton

2. Place gold-plated Kapton film

5. Deposit epoxy on sensor, avoiding opening bond pads

3. Deposit epoxy and silver epoxy on Kapton

6.Place PCB on top of sensor

Conclusion and Outlook

- CMS has an extensive dark matter program, including both searches for mediators and searches in mono-X channels
- 137 fb⁻¹ of full Run II data are yet to be analyzed

CMS Integrated Luminosity, pp

- Moving towards more advanced/sophisticated models
 - t-channel production
 - spin-2 mediators, long-lived mediators or intermediate "dark" particles
- Detector upgrade going on and Taiwan (NCU/NTU) is playing a major role in the endcap calorimeter