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Outline

Introduction: the standard-model Higgs and why it is not enough

Lattice Field Theory and strong dynamics beyond the SM

A new approach inspired by BSM physics and condensed matter theory

The Higgs-Yukawa model
Higgs as a bound state: Composite Higgs

Tensor networks
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The standard model (SM) Higgs



6

For the standard model: complex doublet (4 real scalars)ϕ →

The standard model Higgs

JCMB 4417
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V(ϕ) V(ϕ)

Re( )ϕ Re( )ϕ

Im( )ϕ Im( )ϕ

μ2 ≥ 0
μ2 < 0

Spontaneous symmetry breaking

V(ϕ) V(ϕ)

Re( )ϕ Re( )ϕ

Im( )ϕ Im( )ϕ |⟨0 |ϕ |0⟩ | = v

 for illustrationV(ϕ) = μ2ϕ*ϕ + λ(ϕ*ϕ)2

ϕ(x) = [h(x) + v] eiθ(x)

h(x)

 Goldstone bosonθ(x)

Choose ⟨0 |ϕ |0⟩ = v =
−μ2

2λ
mh = 4vλVEV

The standard model Higgs
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The standard model Higgs

The 44 corridor @ JCMB

The weak gauge boson masses MW,Z ∝ gv

The fermion masses mψ ∝ yv

Coupled to weak gauge bosons via  (coupling )∂μϕ → Dμϕ g

Coupled to fermions via the Yukawa coupling  + h.c.yψ̄LϕψR

for the origin of masses
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The good, the bad and the ugly
of the standard model
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What the LHC revealed to us hitherto

11

Totally
 compatib

le with the SM
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Higgs boson ~125 GeV 

Searched up here ~2 TeV 

The Higgs boson is light

What the LHC revealed to us hitherto
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Running coupling in QFT

Figure From Roberto Soldati

Charge screening in Quantum Electrodynamics

Interaction/coupling strength changes with distance (energy scale)
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Possible new physics appears at this scale 
with the Higgs quartic self coupling  

M̄
λ̄

The scalar (Higgs) sector is trivial!

125 GeV

with the Higgs quartic self coupling    

MHiggs ∼
λ
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125 GeV
with the Higgs quartic self coupling    

MHiggs ∼
λ

Possible new physics appears at this scale 
with the Higgs quartic self coupling  

M̄
λ̄

The scalar (Higgs) sector is trivial!
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125 GeV

with the Higgs quartic self coupling   

MHiggs ∼
λ

Possible new physics appears at this scale 
with the Higgs quartic self coupling  

M̄
λ̄

The scalar (Higgs) sector is trivial!
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125 GeV

with the Higgs quartic self coupling   

MHiggs ∼
λ

Possible new physics appears at this scale 

with the Higgs quartic self coupling  

M̄

λ̄

The scalar (Higgs) sector is trivial!

Non
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rtu
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MHiggs ∼ − μ2 − M̄2 ∼ (125 GeV)2

Possible new physics appears at this scale ,
which could be as high as  GeV

M̄
1019

The Higgs is “unnaturally” light!
 for illustrationV(ϕ) = μ2ϕ*ϕ + λ(ϕ*ϕ)2

Huge cancellation!

Non
-pe

rtu
rba

tiv
e
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Lattice field theory
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Basic ingredients

Monte-Carlo simulations with importance sampling
c.f. Partition function in statistical physics

Matter fields (fermions and scalars)

Gauge fields
a

1

� =

 
1p
2
(�3 + i�4)

1p
2
(�1 + i�2)�

!
(1)

Z =

Z
DUD�D ̄D e�SU e�S�e�a4 P

x  ̄xM[U,�] x

=

Z
DUD�D ̄D det(M[U,�]) e�SU e�S� (2)
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The continuum limit

Matter fields (fermions and scalars)

Gauge fields
a

 means  or a → 0 am → 0 ξ/a → ∞
 : typical low-energy mass scalem
 : typical long-distance length scale (correlation length)ξ

The continuum limits are at 2nd-order phase transition points
Critical phenomena are crucial for lattice field theory



24

New physics in the Higgs-Yukawa theory?
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The Higgs-Yukawa sector of the SM…

 at fixed V(ϕ) = μ2ϕ†ϕ + λ(ϕ†ϕ)2 with y (ψ̄LϕψR + h . c.) λ

“Let me describe a typical computer simulation: 
          … the first thing to do is to look for phase transition.” 
                                       G. Parisi in Field Theory, Disorder and Simulations

y

1 − 2λ
8 + μ2



1

v ≠ 0

v = 1
V4 ∑

X
⟨0 |ϕ(x) |0⟩

vs ≠ 0 vs ≠ 0
vs ≠ 0
v ≠ 0

v = vs = 0 v = vs = 0
SYM SYM

FM

AFM AFM

vs = 1
V4 ∑

X
η(x) ⟨0 |ϕ(x) |0⟩

FM
v ≠ 0

y

1 − 2λ
8 + μ2
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 at fixed V(ϕ) = μ2ϕ†ϕ + λ(ϕ†ϕ)2 with y (ψ̄LϕψR + h . c.) λ

is a small corner on the phase diagram
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It is a challenging yet important task

 at fixed V(ϕ) = μ2ϕ†ϕ + λ(ϕ†ϕ)2 with y (ψ̄LϕψR + h . c.) λ

Possible new fixed point?

Possible new four-fermion condensate?

Possible first-order phase transition?

S.Catterall and D.Schaich, PRD96 (2017)

D.Y.-J.Chu, K.Jansen, B.Knippschild, CJDL, JHEP01 (2019) 110
J.Bulava et al., AHEP 2013 (2013) 875612

A.Hasenfratz, K.Jansen, Y.Shen, NPB394 (1993)

Other directions (e.g. 2HDM)?
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New physics as new interactions? 

V(ϕ) = μ2ϕ†ϕ + λ(ϕ†ϕ)2 + λ6(ϕ†ϕ)3 with y (ψ̄LϕψR + h . c.)
v
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(c) λ = −0.009

Figure 5: Here the volume dependence of the location of the minimum of the CEP U1, i.e. the
vev (upper plots) and its inverse curvature in the minimum as a measurement for the magnetic
susceptibility (lower plots) are shown as a function of κ for λ6 = 0.001 and a set of λ-values.

are summarized in fig. 6 for both λ6 values. For λ6 = 0.001 we clearly observe a
second order phase transition at small absolute values of λ. At intermediate absolute
values of λ an additional crossover transition sets in within the broken phase. This
crossover turns into a first order phase transition around λ ≈ −0.0089. The second
order transition still exists at this point separating the broken and symmetric phases.
Around λ ≈ −0.0098 and κ ≈ 0.12267 the line of second order transition runs into
the line of first order transition. From that point on only the first order transition
remains separating the symmetric and broken phases.

κ

λ

(a) λ6 = 0.001

κ

λ

(b) λ6 = 0.1

Figure 6: Phase structure obtained from the CEP U1 (8). There are two phases - a broken and a
symmetric one - separated by lines of first and second order phase transitions. Furthermore there
is a small region in parameter space, where a first order transition between two broken phases
exists for λ6 = 0.001 and λ6 = 0.1. The lines between the data points are just to guide the eye.

For λ6 = 0.1 the general behaviour is very similar. However, the region in
parameter space where the additional transitions between two broken phases occur

10

1 − 2λ
8 + μ2

λ6 = 0.001

D.Y.-J.Chu, K.Jansen, B.Knippschild, CJDL, A.Nagy, PLB 744 (2015) 146
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The Higgs boson as a bound state
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Re( )ϕ Re( )ϕ

Im( )ϕ Im( )ϕ
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V(ϕ) V(ϕ)

Re( )ϕ Re( )ϕ

Im( )ϕ Im( )ϕ

μ2 ≥ 0
μ2 < 0

SSB

V(ϕ) V(ϕ)

Re( )ϕ Re( )ϕ

Im( )ϕ Im( )ϕ |ϕ0 | = v

 for illustrationV(ϕ) = μ2ϕ*ϕ + λ(ϕ*ϕ)2

ϕ(x) = [h(x) + v] eiθ(x)

h(x)

 Goldstone bosonθ(x)

Choose ⟨0 |ϕ |0⟩ = v =
−μ2

2λ
mh = 4vλ

The standard model Higgs

VEV
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Different paths to electroweak symmetry breaking
Self-interacting scalars replaced by strongly-interacting fermions and gauge bosons   

r0 = 1/Λb

Coupling 

Bound state formed at low energy

as energy

Typical bound-sate size r0 = 1/Λb

Typical bound-sate mass Λb

 GeV  GeV2 × 103 ≲ Λb < 104

Not yet seen experimentally

Opposite to  in  !λ V(ϕ)
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Two issues: I. The light Higgs 

Q: Why is the Higgs so light,  ?MHiggs ≪ Λb

A: Resort to spontaneous symmetry breaking
Global symmetry breaking like QCD (Composite Higgs)

Scale-invariance breaking unlike QCD (Dilaton Higgs)
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Two issues: II. The SM fermion mass 

1
Λ2

f
ψ̄SMψSM f̄ f

1
Λ2

f
ψ̄SMψSMψ̄SMψSM

mass FCNC

The need to suppress flavour-changing neutral-current processes… 

 GeVΛf ∼ 107

~ 10 - 100 GeV

High to suppress FCNC
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Two issues: II. The SM fermion mass 
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Λ2
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The need to suppress flavour-changing neutral-current processes… 
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Two issues: II. The SM fermion mass 

1
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Two issues: II. The SM fermion mass 

1
Λf

ψ̄SMψSM f̄ f
1

Λ2
f

ψ̄SMψSMψ̄SMψSM

mass FCNC

The need to suppress flavour-changing neutral-current processes… 

 GeVΛf ∼ 107

~ 10 - 100 GeV

(1/Λ2
f ) → 1/Λf
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Two issues: II. The SM fermion mass 

1
Λf

ψ̄SMψSM f̄ f 1
Λ2

f
ψ̄SMψSMψ̄SMψSM

mass FCNC

The need to suppress flavour-changing neutral-current processes… 

 GeVΛf ∼ 107

~ 10 - 100 GeV
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Two issues: II. The SM fermion mass 

1
Λ2

f
ψ̄SMψSM f̄ f 1

Λ2
f

ψ̄SMψSMψ̄SMψSM

mass FCNC

The need to suppress flavour-changing neutral-current processes… 

 GeVΛf ∼ 107

~ 10 - 100 GeV

1/Λf → (1/Λf )2
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Two issues: II. The SM fermion mass 

1
Λ2

f
ψ̄SMψSMψ̄SMψSM

mass FCNC

The need to suppress flavour-changing neutral-current processes… 

1
Λ2

f
ψ̄SMψSM f̄ f

 GeVΛf ∼ 107

~ 10 - 100 GeV
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Two issues: II. The SM fermion masses 

Need power-law scaling behaviour in f̄ f

Dramatically alter the suppression of  from  to ψ̄SMψSM f̄ f 1/Λ2
f 1/Λf

The system is at criticality for a large range of interaction strength 

c.f. Berezinskii-Kosterlitz-Thouless phase transition
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The Higgs boson as a bound state:
Composite Higgs models
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Lesson from Quantum Chromodynamics

 GeVMπ = 0

Mρ ,  MN , . . . ∼ Λ(QCD)
b ∼ 1 GeV

SSB via ⟨0 | q̄q |0⟩
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Lesson from Quantum Chromodynamics

 GeVMπ = 0.132

Mρ ,  MN , . . . ∼ Λ(QCD)
b ∼ 1 GeV

C
ou

pl
e

Electroweak ~ 1000 GeV

SSB via ⟨0 | q̄q |0⟩
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Lesson from Quantum Chromodynamics

 GeVMπ = 0.132

Mρ ,  MN , . . . ∼ Λ(QCD)
b ∼ 1 GeV

C
ou

pl
e

Electroweak ~ 1000 GeVPlanck scale  GeV1019

Higgs mass 125 GeV

SSB via ⟨0 | q̄q |0⟩
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Composite Higgs models

Composite Higgs scale Λ(CH)
b ∼ 103 GeVC

ou
pl

e

Flavour scale  ~  GeVΛf 107

Planck scale  GeV1019

Higgs mass and VEV ~  GeV102

Lattice studies
Latt

ice
 stu

die
s

(Many bound states here)

Latti
ce 

stu
dies

System at criticality
(for SM fermion mass)

SSB via ⟨0 | f̄ f |0⟩



46

Composite Higgs models

Higgs is light because of the SSB for the global symmetry

SM fermion masses: via mixing with the hybrid baryons ffF

The theory is at/close to criticality to enhance effects of (ψSM ffF)

Fermions in different representations of the gauge group, different from QCD

Recent new direction in the community: spectrum studies hitherto
Different from QCD

Similar to QCD
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Sp(4) gauge theory spectrum

Hsinchu-Pusan-Swansea collaboration, 
                                     PRD101 (2020)
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Technique for the future:
Tensor networks and Hamiltonian formalism

(Matrix Product States)



Logic flow

Hamiltonian formalism for LFT

Quantum spin model

MPS & variational method for obtaining the ground state

Compute correlators and other quantities

No more path integrals as we go back to the canonical formalism
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Why?

Mapping field theories onto quantum spin models offers new insights

Possible formulation for quantum computers



Matrix product states in a nutshell
We now turn to the graphical representation of what we are mainly interested in, namely state
vectors of quantum many-body spin systems with n degrees of freedom. An arbitrary state
vector | i 2 ( d)⌦n

| i =
dX

j1,...,jn=1

cj1,...,jn |j1, . . . , jni =
dX

j1,...,jn=1

cj1,...,jn |j1i ⌦ · · ·⌦ |jni (17)

with coefficients cj1,...,jn 2 for all indices can be represented by so by a box with n edges,

sometimes also called ‘physical edges’ for obvious reasons.

2.2 Definitions and preparations of matrix product states
2.2.1 Definition for periodic boundary conditions

The definition of matrix product states takes the above tensor and ‘breaks it down’ to smaller
components that are being contracted. A matrix product state [40, 85] of ‘bond dimension’ D
(with periodic boundary conditions) is a pure state with a state vector of the form

cj1,...,jn =
DX

↵,�,...,!=1

A(1)
↵,�;j1

A(2)
�,�;i2

. . . A(n)
!,↵;jn

= tr(A(1)
j1

A(2)
j2

. . . A(n)
jn

), (18)

where the trace and the matrix product are taken over the contracted indices, leaving the phys-
ical indices j1, . . . , jn open. For a fixed collection of physical indices, the coefficients are
hence obtained by considering matrix products of matrices, hence ‘matrix product state’. In a
graphical notation, this can be represented as

.

That is to say, each individual tensor is represented as

and via contraction, one arrives at the above expression. The line connecting the end tensors
reflects the trace in the above expression. This graphical notation will remain very handy in
what follows.
So what is D, the bond dimension? As such, it does not have a direct physical correspondence;
this parameter can be viewed as a ‘refinement parameter’. It will also soon become clear why

13

We now turn to the graphical representation of what we are mainly interested in, namely state
vectors of quantum many-body spin systems with n degrees of freedom. An arbitrary state
vector | i 2 ( d)⌦n

| i =
dX

j1,...,jn=1

cj1,...,jn |j1, . . . , jni =
dX

j1,...,jn=1

cj1,...,jn |j1i ⌦ · · ·⌦ |jni (17)

with coefficients cj1,...,jn 2 for all indices can be represented by so by a box with n edges,

sometimes also called ‘physical edges’ for obvious reasons.

2.2 Definitions and preparations of matrix product states
2.2.1 Definition for periodic boundary conditions

The definition of matrix product states takes the above tensor and ‘breaks it down’ to smaller
components that are being contracted. A matrix product state [40, 85] of ‘bond dimension’ D
(with periodic boundary conditions) is a pure state with a state vector of the form

cj1,...,jn =
DX

↵,�,...,!=1

A(1)
↵,�;j1

A(2)
�,�;i2

. . . A(n)
!,↵;jn

= tr(A(1)
j1

A(2)
j2

. . . A(n)
jn

), (18)

where the trace and the matrix product are taken over the contracted indices, leaving the phys-
ical indices j1, . . . , jn open. For a fixed collection of physical indices, the coefficients are
hence obtained by considering matrix products of matrices, hence ‘matrix product state’. In a
graphical notation, this can be represented as

.

That is to say, each individual tensor is represented as

and via contraction, one arrives at the above expression. The line connecting the end tensors
reflects the trace in the above expression. This graphical notation will remain very handy in
what follows.
So what is D, the bond dimension? As such, it does not have a direct physical correspondence;
this parameter can be viewed as a ‘refinement parameter’. It will also soon become clear why

13

We now turn to the graphical representation of what we are mainly interested in, namely state
vectors of quantum many-body spin systems with n degrees of freedom. An arbitrary state
vector | i 2 ( d)⌦n

| i =
dX

j1,...,jn=1

cj1,...,jn |j1, . . . , jni =
dX

j1,...,jn=1

cj1,...,jn |j1i ⌦ · · ·⌦ |jni (17)

with coefficients cj1,...,jn 2 for all indices can be represented by so by a box with n edges,

sometimes also called ‘physical edges’ for obvious reasons.

2.2 Definitions and preparations of matrix product states
2.2.1 Definition for periodic boundary conditions

The definition of matrix product states takes the above tensor and ‘breaks it down’ to smaller
components that are being contracted. A matrix product state [40, 85] of ‘bond dimension’ D
(with periodic boundary conditions) is a pure state with a state vector of the form

cj1,...,jn =
DX

↵,�,...,!=1

A(1)
↵,�;j1

A(2)
�,�;i2

. . . A(n)
!,↵;jn

= tr(A(1)
j1

A(2)
j2

. . . A(n)
jn

), (18)

where the trace and the matrix product are taken over the contracted indices, leaving the phys-
ical indices j1, . . . , jn open. For a fixed collection of physical indices, the coefficients are
hence obtained by considering matrix products of matrices, hence ‘matrix product state’. In a
graphical notation, this can be represented as

.

That is to say, each individual tensor is represented as

and via contraction, one arrives at the above expression. The line connecting the end tensors
reflects the trace in the above expression. This graphical notation will remain very handy in
what follows.
So what is D, the bond dimension? As such, it does not have a direct physical correspondence;
this parameter can be viewed as a ‘refinement parameter’. It will also soon become clear why

13

it is called a bond dimension and we will turn to its significance in a minute. Matrix product
states constitute the in many ways most important instance of a tensor network state. They are
of key importance both in analytical approaches as well as in numerical ones, most prominently
in the density-matrix renormalisation group approach. Since we will frequently refer to such
states, we will from now on commonly abbreviate them as MPS.

2.2.2 Variational parameters of a matrix product state

We note a first important property of a matrix product state: It is described by very few num-
bers. While a general state vector of a system composed of n spin-d systems is defined by
O(dn) many real parameters, an MPS of bond dimension D can be represented by O(ndD2)
many real parameters. For constant D, this is linear in n, as opposed to exponential in n: so
this ansatz gives rise to a drastic reduction of the number of variational parameters, to say the
least. At the same time it is true that D can be taken large enough that every state vector of
a finite system can be represented as an MPS, if one allows D to grow exponentially in n as
well. Yet, this is actually not the main point of the definition of a matrix product state.
The key insight – one that should become increasingly clear – is that already for small bond
dimension D, an MPS is an extraordinarily good approximation of natural states emerging in
physical systems. The larger the bond dimension, so the ‘refinement parameter’ D, the larger is
the set of states that can be represented, and hence usually the quality of the approximation of
natural states. If one takes D = 1, then the above matrices merely become complex numbers
and one obtains a product state, in a variational set that is sometimes referred to as a Gutzwiller

variational state, a variant of a mean-field approach.

2.2.3 Matrix product states with open boundary conditions

The above expression corresponds to matrix product states for periodic boundary conditions.
For open boundary conditions, the matrix A(1) is taken to be no longer a matrix from D⇥D,
but A(1)

2
1⇥D so as a row vector. Similarly A(n)

2
D⇥1 so it is a column vector. Then

the expression becomes

cj1,...,jn =
DX

↵,...,!=1

A(1)
↵;j1

A(2)
�,�;i2

. . . A(n)
!;jn

= A(1)
j1

A(2)
j2

. . . A(n)
jn

, (19)

and the graphical expression

.

2.2.4 Area laws and approximation with matrix product states

What is the significance of area laws in the context of matrix product states? It is easy to
see that for any subset A of consecutive sites of the lattice S(⇢A) = O(log(D)) for a matrix
product state, so the entanglement entropy is bounded from above by a constant in n. That is to
say, MPS satisfy an area law. The behaviour of the entanglement scaling is therefore the same
for matrix product states as for ground states of gapped models. But indeed, an even stronger
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2.2.3 Matrix product states with open boundary conditions

The above expression corresponds to matrix product states for periodic boundary conditions.
For open boundary conditions, the matrix A(1) is taken to be no longer a matrix from D⇥D,
but A(1)

2
1⇥D so as a row vector. Similarly A(n)

2
D⇥1 so it is a column vector. Then

the expression becomes

cj1,...,jn =
DX

↵,...,!=1

A(1)
↵;j1

A(2)
�,�;i2

. . . A(n)
!;jn

= A(1)
j1

A(2)
j2

. . . A(n)
jn

, (19)

and the graphical expression

.

2.2.4 Area laws and approximation with matrix product states

What is the significance of area laws in the context of matrix product states? It is easy to
see that for any subset A of consecutive sites of the lattice S(⇢A) = O(log(D)) for a matrix
product state, so the entanglement entropy is bounded from above by a constant in n. That is to
say, MPS satisfy an area law. The behaviour of the entanglement scaling is therefore the same
for matrix product states as for ground states of gapped models. But indeed, an even stronger

14

Entanglement-based  
       argument for choosing D 

Bond dim

1

� =

 
1p
2
(�3 + i�4)

1p
2
(�1 + i�2)�

!
(1)

Z =

Z
DUD�D ̄D e�SU e�S�e�a4 P

x  ̄xM[U,�] x

=

Z
DUD�D ̄D det(M[U,�]) e�SU e�S� (2)

cj1,...,jn =
DX

↵,...,!

A(1)
↵;j1

A(2)
↵,�;j2

. . . A(n)
!;jn

= A(1)
j1

A(2)
j2

. . . A(n)
jn

(3)
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The Hamiltonian and matrix elements

are going to build can all be shown to have good quantum numbers on the bonds, because they orig-
inate either from SVDs (e.g. for time evolutions) or from rules that involve operators with well-defined
changes of quantum numbers (e.g. for MPOs for Hamiltonians).

In fact, any operator can be brought into the form of Eq. (175), because it can be written as
bO ¼

X

r1 ;...;rL ;r01 ;...;r
0
L

cðr1 ;...;rLÞðr01 ;...;r
0
LÞ
jr1; . . . ;rLihr01; . . . ;r0Lj

¼
X

r1 ;...;rL ;r01 ;...;r
0
L

cðr1r01Þ;...;ðrLr0LÞjr1; . . . ;rLihr01; . . . ;r0Lj ð176Þ

and we can decompose it like we did for an MPS, with the double index rir0i taking the role of the in-
dex ri in an MPS.

As for MPS, we have to ask how we operate with them and how they can be constructed in practice,
because the naive decomposition might be exponentially complex. As it turns out, most operations
run in perfect analogy to the MPS case.

5.1. Applying an MPO to an MPS

The application of a matrix product operator to a matrix product state runs as

bOjwi ¼
X

r;r0
Wr1 ;r01 Wr2 ;r02 $ $ $
! "

Mr01 Mr02 $ $ $
! "

jri ¼
X

r;r0

X

a;b

W
r1 ;r01
1;b1

W
r2 ;r02
b1 ;b2
$ $ $

! "
M

r01
1;a1

M
r02
a1 ;a2
$ $ $

! "
jri

¼
X

r;r0

X

a;b

W
r1 ;r01
1;b1

M
r01
1;a1

! "
W

r2 ;r02
b1 ;b2

M
r02
a1 ;a2

! "
$ $ $ jri ¼

X

r

X

a;b

Nr1
ð1;1Þ;ðb1 ;a1Þ

Nr2
ðb1 ;a1Þ;ðb2 ;a2Þ

$ $ $ jri

¼
X

r

Nr1 Nr2 $ $ $ jri:

The beauty of an MPO is that it leaves the form of the MPS invariant, at the prize of an increase in
matrix size: the new MPS dimension is the product of that of the original MPS and that of the MPO
(Fig. 37).

The result can be summarized as j/i ¼ bOjwi with j/i an MPS built from matrices Nri with

Nri
ðbi%1 ;ai%1Þ;ðbi ;aiÞ

¼
X

r0
i

W
rir0i
bi%1bi

M
r0i
ai%1ai

: ð177Þ

b -1 b

σ

σ´

b1

σ1

bL-1

σL

σ´1 σ´L

(i) (ii) (iii)

Fig. 35. Elements of a matrix product operator: (i) a corner matrix operator W
½1'r1r01
1;b1

at the left end of the chain; (ii) a bulk
matrix operator W ½‘'r‘r0‘

b‘%1 ;b‘
; (iii) a corner operator W

½L'rLr0L
bL%1 ;1

at the right end: the physical indices points up and down, the matrix
indices are represented by horizontal lines.

σ

σ´

σ1 σL

σ´1 σ´L

Fig. 36. A matrix product operator acting on an entire chain: the horizontal matrix indices are contracted, and the MPO is ready
to be applied to an MPS by simple contraction of vertical (physical) indices.
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It turns out that this can be turned into a ground state algorithm much more efficient than imaginary
time evolution from some random state. In order to solve this problem, we introduce a Lagrangian
multiplier k, and extremize

hwjbHjwi! khwjwi: ð201Þ

In the end, jwi will be the desired ground state and k the ground state energy. The MPS network that
represents Eq. (201) is shown in Fig. 40.

The problem with this approach is that the variables (the matrix elements Mr
aa0 ) appear in the form

of products, making this a highly non-linear optimization problem. But it can be done iteratively, too,
and this is the idea that also drives DMRG: while keeping the matrices on all sites but one (‘) constant,
consider only the matrix entries Mr‘

a‘!1a‘ on site ‘ as variables. Then the variables appear in Eq. (201)
only in quadratic form, for which the determination of the extremum is a benign linear algebra prob-
lem. This will lower the energy, and find a variationally better state, but of course not the optimal one.
Now one continues to vary the matrix elements on another site for finding a state again lower in en-
ergy, moving through all sites multiple times, until the energy does not improve anymore.

Let us first consider the calculation of the overlap, while keeping the chosen Mr‘ explicit. We find

hwjwi ¼
X

r‘

X

a‘!1a‘

X

a0
‘!1a0

‘

WA
a‘!1 ;a0‘!1

Mr‘%
a‘!1 ;a‘

Mr‘
a0
‘!1 ;a

0
‘
WB

a‘ ;a0‘
; ð202Þ

where

WA
a‘!1 ;a0‘!1

¼
X

r1 ;...;r‘!1

ðMr‘!1y & & &Mr1yMr1 & & &Mr‘!1 Þa‘!1 ;a0‘!1
; ð203Þ

WB
a‘;a0‘
¼

X

r‘þ1 ;...;rL

ðMr‘þ1 & & &MrL MrLy & & &Mr‘þ1yÞa0
‘
;a‘ : ð204Þ

As is particularly clear in the graphical representation, for obtaining the last two expressions the same
rules about smart contracting apply as for overlaps; moreover, if we move through sites ‘ from neigh-
bour to neighbour, they can be updated iteratively, minimizing computational cost. In the case where
sites 1 through ‘! 1 are left-normalized and sites ‘þ 1 through L right-normalized, normalization
conditions lead to a further simplification, namely

WA
a‘!1 ;a0‘!1

¼ da‘!1 ;a0‘!1
WB

a‘a0‘
¼ da‘a0‘

: ð205Þ

Let us now consider hwjbHjwi, with bH in MPO language. Taking into account the analysis of bHjwi in
the last section, we can immediately write

hwjbHjwi ¼
X

r‘;r0‘

X

a0
‘!1a0

‘

X

a‘!1a‘

X

b‘!1 ;b‘

L
a‘!1 ;a0‘!1
b‘!1

Wr‘;r0‘
b‘!1 ;b‘

Ra‘;a0‘
b‘

Mr‘%
a‘!1 ;a‘

Mr0
‘

a0
‘!1 ;a

0
‘

ð206Þ

with L and R as defined before; how such an expression can be evaluated efficiently has been discussed
previously.

If we now take the extremum of Eq. (201) with respect to Mr‘%
a‘!1 ;a‘

we find
X

r0
‘

X

a0
‘!1a0

‘

X

b‘!1 ;b‘

L
a‘!1 ;a0‘!1
b‘!1

Wr‘ ;r0‘
b‘!1 ;b‘

Ra‘ ;a0‘
b‘

Mr0
‘

a0
‘!1 ;a

0
‘
! k

X

a0
‘!1a0

‘

WA
a‘!1 ;a0‘!1

WB
a‘a0‘

Mr‘
a0
‘!1 ;a

0
‘
¼ 0: ð207Þ

Fig. 40. Network to be contracted to obtain the functional to be extremized to find the ground state and its energy. The left-
hand side represents the term hwjbHjwi, the right-hand side the squared norm hwjwi.
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Application to the Thirring model
1+1 dimensional massive Thirring model

2

I. INTRODUCTION

STh

[

ψ, ψ̄
]

=

∫

d2x
[

ψ̄iγµ∂µψ −m0ψ̄ψ −

g

2

(

ψ̄γµψ
)2
]

(1)

Acknowledgments

The authosr thank people for very useful discussions. This work is supported by grants.

5

FIG. 1: Qualitative feature of RG flows of the massive Thirring model based on Eqs. (7) and (8) in the regime where �⇡ < g
and m/⇤ <⇠ 0.01. The arrows present the flows towards the IR limit. The line m = 0 is a fixed line under RG transformation.
It is separated into two sectors, with g < ḡ⇤ being stable and g > ḡ⇤ being unstable.

It should be stressed that the above discussion is based on an expansion in terms of m/⇤. In this project, we
carry out non-perturbative study for the non-thermal phase structure of the massive Thirring model through lattice
simulations, employing the method of MPS. Our investigation can shed light on the scaling behaviour of the theory
beyond perturbation theory.

The rest of this paper is organized in the following way. Section II contains the formalism of the theory that
we simulate, and Sec. III gives details of the numerical implementation. In Sec. IV, we present main numerical
computations in this project. The outcome of these computations is used in Sec. V for addressing the phase structure,
the scaling behaviour, as well as the continuum limit of the massive Thirring model in 1+1 dimensions. We then
conclude in Sec. VI. Preliminary results of this work were presented in our contributions to the proceedings for the
Lattice conferences in Refs. [39, 40].

II. LATTICE FORMULATION AND THE CORRESPONDING SPIN MODEL

In this section, we first describe subtleties in constructing the Hamiltonian at the operator level in the continuum,
then discuss the latticization procedure of the system and the comparison with the quantum spin-chain model. In
our numerical implementation, we use the XXZ-model Hamiltonian in Sec. II B.

A. The Hamiltonian operator at quantum level and the staggered regularization

To perform lattice simulations using the MPS approach, we first have to obtain the corresponding Hamiltonian of
the classical action in Eq. (1). At the quantum level, the Hamiltonian operator cannot be related to the Lagrangian
through a straightforward Legendre transform. The main subtlety arises from quantum e↵ects that modify the current
conservation laws, leading to an ambiguity in defining the vector current that appears in the four-fermion operator
in Eq. (1)5. In the path integral formalism, these e↵ects are easily understood via analysing anomalies that result
from the fermionic measure in a field-redefinition procedure [99]. When working with the operator formalism, this
ambiguity can be accounted for by employing a non-local definition of the currents [100, 101]. As explained in the

5 In 1+1 dimensions, the vector and the axial-vector currents are related to each other.

Gapped
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A critical phase             Expect BKT transitions.
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Phase structure of the Thirring model

1+1 dimensional QFT

1 dimensional XXZ quantum spin chain with constant and staggered B-field

Commonly-studied correlators in QFT can be turned into spin correlates

Look at : exponential/power law in the gapped/critical phaseC(r)

Well… but this is challenging….



55

A string correlator in the spin model helps…

Cstring(r) = ⟨0 |σz
0σz

1σz
2⋯σz

r |0⟩

r → ∞

Cstring(r) → k ≠ 0
Gapped

Cstring(r) → 0
Critical

This corresponds to  at each lattice siteψ̄(x)ψ(x)

NOT a commonly studied quantity in QFT
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Probing phase structure with Cstring(r) 23
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FIG. 17: The central value of the parameter C for di↵erent combinations of the fermion mass m̃0a and coupling �(g).

FIG. 18: Non-thermal phase structure of the massive Thirring model from our numerical investigation. In addition to the data
points that can be identified to be in the gapped phase (blue stars) or at criticality (red circles), there are points (black squares)
where our simulations cannot determine which phase the theory is in. The grey area indicates the regime where we find these
“undetermined” point. The BKT phase transition must occur within this grey area.

above. It is obvious that the BKT transition occurs in this grey region, with the phase boundary described by a
function

�⇤(m̃0a) = �[g⇤(m̃0a)] , (46)

= cos ( π − g
2 )

Value of  at Cstring(r) r → ∞
M.C.Banuls, K.Cichy, Y.-J.Kao, CJDL, Y.-P.Lin, D.T.-L.Tan, PRD100 (2019)



57

Probing phase structure with Cstring(r)
M.C.Banuls, K.Cichy, Y.-J.Kao, CJDL, Y.-P.Lin, D.T.-L.Tan, PRD100 (2019)
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FIG. 17: The central value of the parameter C for di↵erent combinations of the fermion mass m̃0a and coupling �(g).

FIG. 18: Non-thermal phase structure of the massive Thirring model from our numerical investigation. In addition to the data
points that can be identified to be in the gapped phase (blue stars) or at criticality (red circles), there are points (black squares)
where our simulations cannot determine which phase the theory is in. The grey area indicates the regime where we find these
“undetermined” point. The BKT phase transition must occur within this grey area.

above. It is obvious that the BKT transition occurs in this grey region, with the phase boundary described by a
function

�⇤(m̃0a) = �[g⇤(m̃0a)] , (46)
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FIG. 1: Qualitative feature of RG flows of the massive Thirring model based on Eqs. (7) and (8) in the regime where �⇡ < g
and m/⇤ <⇠ 0.01. The arrows present the flows towards the IR limit. The line m = 0 is a fixed line under RG transformation.
It is separated into two sectors, with g < ḡ⇤ being stable and g > ḡ⇤ being unstable.

It should be stressed that the above discussion is based on an expansion in terms of m/⇤. In this project, we
carry out non-perturbative study for the non-thermal phase structure of the massive Thirring model through lattice
simulations, employing the method of MPS. Our investigation can shed light on the scaling behaviour of the theory
beyond perturbation theory.

The rest of this paper is organized in the following way. Section II contains the formalism of the theory that
we simulate, and Sec. III gives details of the numerical implementation. In Sec. IV, we present main numerical
computations in this project. The outcome of these computations is used in Sec. V for addressing the phase structure,
the scaling behaviour, as well as the continuum limit of the massive Thirring model in 1+1 dimensions. We then
conclude in Sec. VI. Preliminary results of this work were presented in our contributions to the proceedings for the
Lattice conferences in Refs. [39, 40].

II. LATTICE FORMULATION AND THE CORRESPONDING SPIN MODEL

In this section, we first describe subtleties in constructing the Hamiltonian at the operator level in the continuum,
then discuss the latticization procedure of the system and the comparison with the quantum spin-chain model. In
our numerical implementation, we use the XXZ-model Hamiltonian in Sec. II B.

A. The Hamiltonian operator at quantum level and the staggered regularization

To perform lattice simulations using the MPS approach, we first have to obtain the corresponding Hamiltonian of
the classical action in Eq. (1). At the quantum level, the Hamiltonian operator cannot be related to the Lagrangian
through a straightforward Legendre transform. The main subtlety arises from quantum e↵ects that modify the current
conservation laws, leading to an ambiguity in defining the vector current that appears in the four-fermion operator
in Eq. (1)5. In the path integral formalism, these e↵ects are easily understood via analysing anomalies that result
from the fermionic measure in a field-redefinition procedure [99]. When working with the operator formalism, this
ambiguity can be accounted for by employing a non-local definition of the currents [100, 101]. As explained in the

5 In 1+1 dimensions, the vector and the axial-vector currents are related to each other.

Perturbation theory (qualitative) Simulation with MPS
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Conclusion and outlook

Strong dynamics can play an important role in BSM physics

Lattice Field Theory is a powerful method in this subject

New approaches inspired by BSM physics and condensed matter theory

Thank you all for your attention!
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Backup slides
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The Higgs boson as a bound state:
Dilaton Higgs
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Lesson from Quantum Chromodynamics

 GeVMπ = 0

1 GeVMρ ,  MN , . . . ∼ Λ(QCD)
b ∼

SSB via ⟨0 | q̄q |0⟩
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Introducing (approximate) scale invariance 

 GeVMGB = 0

Bound states at  GeV∼ Λ(DH)
b ∼ 103

SSB via ⟨0 | q̄q |0⟩

Flavour scale  ~  GeVΛf 107

System at criticality
(For Higgs and SM fermion masses)

SSB of approximate scale invariance

The Higgs as the pseudo GB (dilaton)

125 GeV
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Looking for viable candidate theories

Z.Fodor, J.Kuti, K.Holland, S.Mondal, D.Nogradi, PRD94 (2016)
CJDL, K.Ogawa, A.Ramos, JHEP12 (2015)

T.-W.Chiu, PRD99 (2019)

T.DeGrand, Y.Shamir, B.Svetitsky, PRD82 (2010)

A.Hasenfratz, C.Rebbi, O.Witzel, PRD101 (2020)
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SU(3) gauge theories with various fermion contents 
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…
SU(2) gauge theories with various fermion contents 
…



64

What does a viable spectrum look like

the ratio of the vector mass to the pseudoscalar mass steadily
increases as we approach the chiral limit, providing indirect
indication that the theory exhibits spontaneous chiral
symmetry breaking. We also find the ratio of the vector
mass to the pseudoscalar decay constant to be comparable
to its QCD value, Mρ=Fπ ≈ 8, and rather constant as we
decrease the masses. In the context of models of dynamical
electroweak symmetry breaking, this suggests (via the
Kawarabayashi–Suzuki–Riazuddin–Fayyazuddin (KSRF)
relations [56,57]) a multi-TeV-scale vector resonance with
a large decay width Γ=M ≃ 0.2, comparable to that of the
QCD ρ meson. This is broader than the typical width
assumed in past LHC searches for such states [25];
dedicated searches for broad resonances, although chal-
lenging, are well-motivated by the lattice results.
We summarize our conclusions and prospects for further

progress in Sec. VI. In particular, we focus on the issue of
the appropriate low-energy effective field theory (EFT) to
describe the 8-flavor spectrum we observe. A consequence
of the light flavor-singlet scalar is that we cannot expect to
carry out chiral extrapolations by fitting our data to chiral
perturbation theory (χPT), which assumes that the PNGBs
are much lighter than all other particles. Finally, in the
Appendices we provide additional information about auto-
correlations and topological charge evolution, more technical
details about fitting correlation functions for the flavor-singlet
scalar, and studies of finite-volume and discretization effects.

II. LATTICE ACTION AND
FINITE-TEMPERATURE PHASE DIAGRAM

Our numerical calculations use improved nHYP-smeared
staggered fermions [58,59] with smearing parameters

α ¼ ð0.5; 0.5; 0.4Þ, and a gauge action that includes both
fundamental and adjoint plaquette terms with couplings βF
and βA, respectively, related by βA=βF ¼ −0.25 [43]. This
lattice action was used in several previous studies of the
8-flavor system, including explorations of the phase diagram
[38,39,43], the composite spectrum [31], the discrete β
function [26] and the scale-dependent mass anomalous
dimension γmðμÞ [29]. Using the same lattice action for
all of these complementary investigations makes it easier to
compare their results and thereby gain more comprehensive
insight into the dynamics of Nf ¼ 8.
The first work using this action observed a strongly

coupled “S4” lattice phase in which the single-site shift
symmetry (S4) of the staggered action is spontaneously
broken [43]. In the massless limit, a first-order bulk (zero-
temperature) transition around βF ≈ 4.6 separates the S4

phase from the weak-coupling phase where the continuum
limit is defined. At even stronger couplings there is a
second bulk transition into a chirally broken lattice phase.
A similar phase structure has been seen by other many-
flavor lattice investigations using different improved stag-
gered actions [60,61].1 However, the characteristics of these
strong-coupling phases are not universal and depend on the
details of the lattice action. Although in this section we scan
the lattice phase diagram, including the transition into the
S4 phase, our zero-temperature calculations reported in the
rest of the paper will consider a coupling βF ¼ 4.8 safely
on the weak-coupling side of this bulk transition.
The presence of the S4 phase prevents lattice inves-

tigations from reaching arbitrarily strong couplings. For
example, Ref. [26] was only able to determine the
continuum-extrapolated discrete β function for renormal-
ized couplings up to g2c ≲ 14 (in finite-volume Wilson
flow renormalization schemes introduced by Ref. [64]). As
summarized in Sec. I, although this β function is monotonic
throughout the accessible range of couplings, this does not
guarantee that the 8-flavor theory exhibits spontaneous
chiral symmetry breaking. It remains possible that, at
stronger couplings, the β function might reach an extremum
and then return to βðg2⋆Þ ¼ 0 at some large g2⋆ ≳ 15.
(Indeed, this happens in four-loop perturbation theory in
the MS scheme, which predicts g2⋆ ≈ 19.5 [65,66], but
perturbation theory seems unlikely to be reliable at such
strong couplings.)
In the remainder of this section we present a comple-

mentary search for spontaneous chiral symmetry breaking in
the 8-flavor system, by studying its finite-temperature phase
diagram. Initial results from this work appeared in Ref. [41].
As described in Sec. I, in order to establish spontaneous
chiral symmetry breaking, the finite-temperature transitions

FIG. 1. Comparison of our spectroscopy results for Nf ¼ 4
(left) and Nf ¼ 8 (right). Hadron masses (vertical axis) and the
fundamental fermion mass (horizontal axis) are both shown in
units of the pion decay constant Fπ ; the chiral limit mf ¼ 0 is at
the center of the plot for both theories. The hadrons shown are the
lightest 0þþ meson (σ), 0−þ PNGB meson (π), 1−− vector meson
(ρ), 1þþ axial-vector meson (a1), and the nucleon (N). The major
qualitative difference between the two values of Nf is the
degeneracy of the light scalar σ with the pions at Nf ¼ 8.

1Investigations using unimproved staggered fermions with
either improved or unimproved gauge actions see a simpler bulk
phase structure with only a single, chirally broken strong-
coupling phase [34,62,63].
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