New Opportunities in Two-dimensional Materials

Yuanbo Zhang (张远波) Dept. of Physics, Fudan University, China

A Brief History of Materials

The Stone Age

The Bronze Age

The Iron Age

The Silicon Age?

"Interface is the Device"

The first transistor, Bell Lab, 1947

Graphene: The Beginning of 2D Material Research

Geim group (2004)

Graphene : Dirac Fermions in 2D

P. R. Wallace, *Phys. Rev.* 71, 622 (1947).T. Ando et al, *J. Phys. Soc. Jpn* 67, 2857 (1998).

 $E = \hbar k v_F$ E = pc

Less is different

Families of New Materials in 2D

Hundreds of 2D crystals waiting to be explored

Opportunities to Tune the Material Properties in 2D

New device paradigm?

Black phosphorus (semiconductor)

- \Box 1T-TaS₂ (metal)
 - Gate-controlled intercalation
 - □ Tunable Phase in 1T-TaS₂

Allotropes of Phosphorus

White Phosphorus

Red Phosphorus

Allotropes of Phosphorus: Black Phosphorus

Black Phosphorus

TWO NEW MODIFICATIONS OF PHOSPHORUS.

By P. W. BRIDGMAN. Received May 4, 1914.

The two new modifications of phosphorus to be described here were obtained during an investigation of the effect of high pressure on the melting point of ordinary white phosphorus. The two new forms have perfectly distinct characteristics; in this they are different from the questionable modifications of red phosphorus often announced. The first of these modifications is a new form of white phosphorus, which changes

Layered crystal structure

Review: Morita, *Applied Physics A* **39**, 227–242 (1986).

Phosphorene v.s. Graphene

Graphene

- Planar honey-comb lattice
- **4** valence electrons
- Half-filled conduction band
- Zero-gap semiconductor

Phosphorene

- Puckered honey-comb lattice
- **5** valence electrons
- **Fully filled** valence band
- **Gapped** semiconductor

Phosphorene v.s. Graphene

Phosphorene

Graphene

Y. Takao, et al., *J. Phys. Soc. Jpn.* 50, 3362 (1981)

P. R. Wallace, Phys. Rev. 71, 622 (1947).

Thickness-dependent Bandgap in few-layer Phosphorene

Band structure of the bulk

Direct band gap ~ 0.3 eV

Thickness-dependent bandgap

Direct bandgap tunable by varying thickness

Thickness-dependent Band Gap

Bridging the gap

Churchill and Jarillo-Herrero, Nature Nano. (2014)

Black Phosphorus Field-effect Transistor

Likai Li

Fangyuan Yang

Likai Li *et al.* Nature Nano. **9**, 372 (2014).

See also:

Liu, H. et al. ACS Nano 8, 4033 (2014). Koenig, S. P. et al., APL 104, 103106 (2014). Xia, F. et al., Nature Comm. 5, 4458 (2014).

Highest on-off ratio $\sim 10^5$

Limiting Factors of Carrier Mobility

Before

After

Sample left in air for 3 days

Black Phosphorus on Hexagonal Boron Nitride

Optic Image of Black Phosphorus on BN

Cross-sectional View

Protecting the bottom surface with hBN

Quantum Oscillations in Black Phosphorus on hBN

B = 31T, T = 0.3K

2D Electron and Hole Gases in Black Phosphorus

2D Electron and Hole Gases in Black Phosphorus

2D electron and hole gases are confined to ~ 2 atomic layers

2D Electron and Hole Gases in Black Phosphorus

Crucial information obtained from the quantum oscillations Likai Li *et al.* Nature Nano., Advance Online Publication (arXiv:1411.6572).

```
See also:
Tayari, V. et al., arXiv:1412.0259 (2014).
Chen, X. et al., arXiv:1412.1357 (2014).
Gillgren, N. et al., 2D Mater. 2, 011001 (2015).
```

Even Higher Mobility?

Top View

Side View

Graphite local gate screens impurity potential, leads to high mobility

High Mobility Black Phosphorus 2DEG

Factor of 3 increase in mobility

Quantum Hall Effect in Black Phosphorus 2DEG

Likai Li et al. arXiv:1504.07155 (2015)

Landau Level Energy Landscape

Anyons in Black Phosphorus 2DEG?

Even-denominator fractional quantum Hall states in ZnO

Black phosphorus potentially harbors similar FQH states

1T-TaS₂: a Strongly Correlated 2D Material

Crystal structure of 1T-TaS₂

Yijun Yu

Various CDW Phases in 1T-TaS₂

Various CDW Phases in 1T-TaS₂

Commensurate CDW and Mott Insulator State

Wilson et al., *Adv. Phys.* (1975) Fazekas, P. & Tosatti, E. *Philos. Mag. B* (1979) Sipos, *et al. Nat. Mater.* (2008).

Gate Doping Limits

Conventional Dielectric Gating

Gate + + + + + + SiO₂ Ion Liquid Gating

Maximum n ~ 10¹³ cm⁻²

Maximum n ~ 10¹⁴-10¹⁵ cm⁻² Only top atomic layer

K.Ueno, Nat. Mater. (2008); D.K.Efetov, Phys. Rev. Lett. (2010); J.T.Ye, Nat. Mater. (2010); J.G.Checkelsky, Nat. Phys. (2012); Nakano, Nature (2012); J.T.Ye, Science (2013)

Tuning TaS₂ through Gate-controlled intercalation

Gate-controlled intercalation in TaS₂

 $n \sim 10^{15} \text{ cm}^{-2}$ for EACH atomic layer

Device Structure

Yijun Yu et al. Nature Nano., 10, 270 (2015).

1T-TaS₂ Ionic Field-effect Transistors (iFET)

iFET operates through ion diffusion

Electron Doping from Charge Transfer

~ 20% electron doping from charge transfer from Li

Tunable Phases in 1T-TaS₂ iFET

Intercalation Compared with Pressure and Isovalent Substitution

Tunable Phases in 1T-TaS₂

Acknowledgement

Fudan Univ.

Fangyuan Yang

<u>Yijun Yu</u>

<u>Likai Li</u>

Liguo Ma

Prof. Donglai Feng

Qinqin Ge

Prof. Hua Wu Xuedong Ou

KIAS, Korea

Prof. Young Woo Son

USTC Prof. Xianhui Chen Guo Jun Ye Xiu Fang Lu Ya Jun Yan

NIMS, Japan

Dr. Takashi Taniguchi

Dr. Kenji Watanabe

Rutgers Univ. Prof. Sang-Woo Cheong Y. H. Cho

Univ. of WashingtonInstitute of Metal ResearchProf. Li YangProf. Wencai RenVy TranFei