ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquia

2015.4.28

Probing Membrane Lipids: a Perspective from Solid-State NMR Study

Michio Murata

村田道雄

大阪大学大学院理学研究科

JST ERATO脂質活性構造プロジェクト

Biomembrane comprise diverse lipids and proteins and form complex structures without proteins

Model Membrane of Lipid Rafts Sphingomyelin and Cholesterol Binary System Sphingomyelin and Phosphatidylcholine System **Development of new Raman Tagged Sphingomyelin**

Lipid rafts

- Resistance to solubilization with Triton X-100 (DRM)
- Ordered lipids (Lo phase) undergoes domain formation
- Implication in many cellular processes (signal transduction etc.)

Molecular basis of lipid raft formation

1) Simons,K.; Ikonen,E. *Nature*, **1997**, *387*, 569-572. 2) Pike, L. J. *J. Lipid Res.* **2006**, *47*, 1597-1598.

How can we elucidate the conformatoin and interactions of lipids in membrane?

Lipid-lipid & lipid-protein interaction in membrane

O Drug-membrane interaction

Lipid bilayer membranes

Noncervstelline

Anisotropic

Elucidation of 3D structures and interactions of lipids in membrane is essential

Difficulties in structure elucidation

- × X-ray Crystallography
- △ Solution NMR

Solid state NMR works in such weird systems ?

membranes

Size-dependent orientation of bicelles along magnetic field

Conformation of SM head group deduced from NOEs and J coupling in small bicelles

NOEs are similar between the Cho-containing and Cho-free bicelles

Conformation of SM is similar between pure SM and SM-Cho

11

Yamaguchi, T. Suzuki, T., Yasuda, T. Oishi, T., Matsumori, N., Murata, M. Bioorg. Med. Chem. 20, 270-278 (2012).

How REDOR works I

Accuracy is <0.1 Angstrom !

T. Gullion, J. Schaefer, *J. Magn. Reson.*, 1989, 13, 57 *REDOR data; A. Naito, et al., *J. Phys. Chem.* 1996, *100,* 14995

12

How REDOR works II

 J_n : Vessel Function, $n\tau_r$: REDOR dephasing time γ_l : Gyromagnetic Ratio of I nucleus. γ_s : That of S nucleus h: Plank const., μ_0 : Permeability of Vacuum

Gullion, T. et al. Adv. Magn. Reson. 13, 57 (1989); Gullion, T. et al. J. Magn. Reson. 89, 479 (1990).

13

¹³C{¹⁵N}REDOR used for evaluation of mobility and orientation

REDOR data for ¹³C-¹⁵N-labeled SM in SM/Chol and SM only membranes Mol. axis Wobbling S

REDOR reveals *S*mol and orientation

Not only conformation but orientation

is not affected by Cho. Difference is in mobility

	1				
	C1' / ¹⁵ N	C2' / ¹⁵ N	C1 / ¹⁵ N	C2 / ¹⁵ N	C3 / ¹⁵ N
<i>D₀</i> (Hz)	1302	232	233	1073	229
D _{C-N} SM/Chol	265	12	63	82	33
D _{C-N} SM only	158	2	69	55	48

Rotational axis

B

Ο

$$D_{C-N} = D_0 \cdot S_{mol} \cdot \frac{3\cos^2 \theta - 1}{2}$$

Major conformer in SM-Chol: *S*mol: 0.94, $(\alpha, \beta) = 166^{\circ}$, 32° Major conformer in SM only : *S*mol: 0.70, $(\alpha, \beta) = 158^{\circ}$, 35°

Cho ordering effect and orientation lead to intermolecular H-bonds

Motion capture of alkyl chains of membrane lipid by ²H NMR

Palmitoyl-sphingomyelin (PSM)

Synthesis of ²H-labeled fatty acids

Depth-dependent order of SM by ²H NMR

Matsumori, N.; Yasuda, T. et al. Biochemistry **2012**, *51*, 8363-8370.

21

Comparison between SM and PC

Both SM and saturaed PC are known to form Lo domains

What is the difference between SM and PC in formation of L₀ domains.

Systematic comparison between SM and saturated PC

Space : Atomic ~ Molecular ~ Entire membrane

Time : nanosecond ~ millisecond

Lipid constituents : Unary system ~ Ternary system

The structure properties make SM preferentially form lipid rafts

Comparison of chain mobility between SM and PSPC

The rigid tetracycle of Cho is located more deeply in SM membrane Probably due to hydrogen bond network by amide groups of SMs

1) Matsumori, N.; Yasuda, T. et al. Biochemistry 2012, 51, 8363-8370. 2) Yasuda, T. et al. Biophys. J. 2014, 106, 631-638 24

Temperature dependent ordering of SM and PC

at low Cho concentration

SM-Cho membrane is more tolerant to temperature change than PC-Cho membrane. (Lesser temperature dependence)

Yasuda, T. et al. Biophys. J. 2014, 106, 631-638.

Evaluation of membrane fluidity in nanosecond time domain -Fluorescent lifetime experiment Fluorescent lifetime τ The success time that fluorescence 10^4 Example :SSM+33 mol% Cho

Membrane fluidity on nanosecond time scale

NMR cannot detect the coexistence of domains.

Lipid cluster with short lifetime

Low concentration of Cho \rightarrow Similar behavior with gel phase

1) Chachaty, C. et al. Biophys. J. 2005, 88, 4032-4044.

Can SM form macroscopic domains without Cho?

DOPC: Unsaturated PC, a typical Ld lipid in the presence of SM and Cho

Kinoshita, M., Goretta, S., Tsuchikawa, H., Matsumori, N., Murata, M., Biophysics 9, 37-49 (2013). 30

DHSM forms macroscopic domains without Cho

Kinoshita, M., Matsumori, N., Murata, M. *Biochim. Biophys. Acta* 1838, 1372-1381 (2014).

31

Approaches towards Membrane Lipids with Variable Time and Spacious Scales

Domain separation of ternary SM/Cho/DOPC as observed by microscope and ²H NMR

Fractional abundance of Ternary SM/Cho/DOPC system as revealed by ²H NMR

Depth-dependent order of Lo and Ld domains in SM-Cho-DOPC system

Occurrence of SM-only domains even in ternary systems

Labelled lipids for fluorescence spectroscopy do not reproduce original lipids due to balky substituents

should closely mimic native lipid behaviour

Small Raman tags of SM for imaging

Goretta, S. A., Kinoshita, M., Mori, S., Tsuchikawa, H., Matsumori, N., Murata, M. Bioorg. Med. Chem. **2012**, 20, 4012-4019.

Diyne moiety shows strong intensity in background-free area

Cui, J., Lethu, S., Yasuda, T., Matsuoka, S., Matsumori, N., Sato, F., Murata, M. *Bioorg. Med. Chem. Lett.* **25,** 203-206 (2015). **39**

Diyne SM shows similar behavior to original lipid on ²H NMR

(a)d-Cho/DOPC (1/1 mol),

(b)SM/d-Cho/DOPC (1/1/1 mol), and

(c)diyne SM/d-Cho/DOPC (1/1/1 mol) at 25 °C.

(a) d_2 -SM/DOPC/Cho (1/1/1 mol), and (b) d_2 -diyne SM/DOPC/Cho (1/1/1 mol) at 25 °C.

Cui, J., Lethu, S., Yasuda, T., Matsuoka, S., Matsumori, N., Sato, F., Murata, M. *Bioorg. Med. Chem. Lett.* **25**, 203-206 (2015).

Diyne probe mimics SM in Lo domains on supported monolayer

Fluorescence

Raman

Fluorescence + Raman

Quartz-supported monolayer Diyne-SM/Cho/DOPC (1/1/1 mol)

Concentration graduation of SM revealed by Raman imaging

Monolayer of diyne-SM/DOPC/Cho (1:1:1)

Site-selective ²H labeling precisely discloses depthdependent mobility of alkyl chains of SM and PC in L₀ and L_d membranes

Intermolecular hydrogen-bonds play a key role in SM-SM interaction, which may lead to formation of raft-like L₀ domains.

Nano-domains largely consisting of SM can be formed in the presence or absence of Cho.

Formation mechanism of SM/Cho-rich rafts in biological membranes

Hypothetical nano-sized cluster of SM

Acknowledgments

大阪大学理学研究科 化学専攻 松森信明准教授 (九州大学教授) (Prof. Matsumori) 花島眞弥講師 土川博史博士 山口敏幸博士 Sarah Goretta博士 安田智一 (Dr. Yasuda) Jin Cui 高田美沙

Prof. Matsumori

JST ERATO, 理研 袖岡幹子主任研究員 (Dr. Sodeoka) 安藤 潤 博士 山越 博幸 博士 間間 孝介 博士 藤田 克昌准教授 (大阪大学)

Dr. Sodeoka

Åbo Akademi Univ. (Finland) Prof. J. P. Slotte Dr. T. K. M. Nyholm Mr. M. Lönnfors

Dr. Yasuda

Dr. Jin Cui

Dr. Yamaguchi

Thank you for your attention

Stat. of Osaka University

Graduate schools: 20 Faculty members : 2600 Undergraduate students: 12000 Graduate students: 7800 (including 1000 foreign students)

The largest national university in Japan in terms of the number of undergraduate students.

SM-Cho interaction results in stable SM-SM hydrogen bond formation while SM-Cho affinity is not high

High mobility

Low mobility

50

Lo domain-forming ability in SM and PSPC memb.

Temperature dependence of mean lifetime in SM and PSPC membrane containing Chol

Similar behavior to the data from ²H NMR

The decreasing degree of lifetime in SM membrane is smaller with increasing temperature.

The local mobility of acyl chain in phospholipids is closely correlated to the entire membrane order. 52

関連する戦略目標:生命システムの動作原理の解明と活用のための基盤技術の創出 53

偏光減衰全反射赤外分光法(pATR-FTIR)

リン脂質膜中でYTXによるGpA-TMの配向変化の解析

細胞膜内ステロールと相互作用する天然物

Espiritu, R. A., Matsumori, N., Murata, M., Nishimura, S., Kakeya, H., Matsunaga, S., Yoshida, M., Biochemistry 2013, 52, 2410. 57

DHMS相挙動のDOPC依存性

DHSM/DOPC系の相分離は珍しい例

SM類縁体だけの相分離の観測 コレステロールがなくても強い相互作用を示すか? SM: Sphingomyelin (C18) DHSM: Dihydrosphingomyelin (C18) a) SM b) DHSM VS ΗÑ d) tripleSM c) tSM •代表的SM ・ラフトモデル膜に用いられる 少量成分SM 通常のChol存在下SMより固い膜を形成 DOPC不飽和リン脂質: 相分離して軟らかい相を形成

Kinoshita, M., Goretta, S., Tsuchikawa, H., Matsumori, N., Murata, M., *Biophysics* 9, 37-49 (2013). 60

SM誘導体の物理学的膜物性の測定

61

Figure 7. The partial molecuar area of chol in (blue) diyneSM/chol and (red) SSM/chol binary monolayers at 5 mN/m was estimated from Figure 5 c and d.

Table 1. A real compressional modulus of SM $C_{\rm SM}^{-1}$ (mN/m) at 5 mN/m.

	$x_{chol}=0$ (LE phase)	$x_{chol} \ge 0.5$ (ordered phase)
diyneSM	33 ± 10	130 ± 20
SSM	47 ± 10	120 ± 20

三重結合1つでは感度不足:共役ジインの強度は10倍 -実際の膜で測定してみると-

脂質ラフト形成モデル

