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@ Overview: Hubble sequence of galaxies
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ELLIPTICAL GALAXIES

BAR

 2/3 of spiral galaxies host bars, especially in infrared
* Understanding of the Milky Way bar is key to understanding
other barred galaxies in the Universe



Barred galaxies in the Universe

-

NGC 1300

"+ Bars are straight — rigid angular pattern speed

v'no winding up due to differential rotation!
* Bars often host dust lanes & vigorous star formation at the
. end of bars
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Rings in Barred galaxies

IC 5240

p
 Barred galaxies often show rings of star formations

| IC 5240 has an outer ring (~4 kpc) at the end of bar

\
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Rings in Barred galaxies

Radius ~1000 ly

McDonald Observatcry

HST
Galaxy NGC 4314 * Nuclear-Ring
Hubble Space Telescope * Wide Field Planetary Camera 2

PRC98-21 « June 11, 1998 « ST Scl OPO * G. F. Benedict (University of Texas) and NASA

Rings are thought to be associated with resonances
in barred galaxies.




Boxy/peanut-shaped barred galaxies

NGC4565

* edge-on barred galaxies often exhibit boxy
or peanut shapes

* They follow more complex kinematics



Peanut-shaped galaxy NGC 128

NGC 128

* Located in a group of five galaxies.

* External tidal origin (Li, Mao et al. 2009) or
internal secular evolution?



X-shaped Structure

NGC 4710 by Hubble




X-shaped structure

NGC 128

» X-shaped structure may be related to
resonant orbits




Summary: barred galaxies

 Barred galaxies are very common
> Straight - rigid rotation.
> Dust lanes (gas streaming motions).
> Rings of star formation (resonances).
 Edge-on bars
> exhibit as boxy, peanut-shaped or X-
shaped galaxies.
> Kinematics are more complex.
* They likely form via internal secular (long-
term) evolution.



® The Milky Way bar

2MASS NIR images of the MW: disk + bulge




COBE map of the Milky Way bar

DIRBE 1.25, 2.2, 3.5 um Composite

e p
»  Milky Way from the space satellite COBE.

» The asymmetric shapes implies the presence of a bar.
\ J




Top-down view of the Galaxy

Credit:
Robert Hurt
(SSC/)PL/
Caltech)

The Milky Way is a beautiful SBc type galaxy}




©® Photometric modelling of the

Milky Way bar

* Bar basic parameters:
v Bar angle
v’ Bar tri-axial lengths
* How many bars?
v boxy/peanut bar
v' Long, thin bar
v’ Super-thin bar
* Needs tracer
populations: RR Lyrae
stars, red clump giants




Color Magnitude Diagram close to the Sun

Red clump giants
are metal-rich
horizontal branch
stars

 Small intrinsic
scatter in

e | luminosity
| (~0.09mag)
Hipparcos
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Bulge Color-magnitude diagrams

Illllllll‘ll'lllllllllll

12

12

IIIIl""'l"(""""Ol"
. . . vo.

| 2BUL:SC22

I (mag)
I (mag)

|reddening

I B R A A A

0 1 2 3 4

o
o

V-I (mag)

* Observed RCG width is larger in the bulge due to the
extension of the bulge.

 Careful studies of RCGs provide a 3D map of the bar.
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OGLE-III sky coverage
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[ OGLE-III fields Cover ~ 100 square degrees }



Other surveys

UKIDSS VVV

Wegg, Gerhard &

Portail (2015)
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/Views of the Milky Way combining three surveys b

« Vista Variables in the Via Lactea (VVV)
* United Kingdom Infrared Deep Sky Survey (UKIDSS)




Red clump giants luminosity function

For each field, we can obtain
* luminosity function .
(number as a function of -
brightness) .
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Integrated number counts Rattenbury, Mao et al. (2007)
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Number counts of red clump giants
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€ Regular elliptical contours close to the plane
* Fit smooth tri-axial ellipsoidal models, such as
v p =p, exp(-r¥/2),  Gaussian model
v p = p, exp(-r), exponential model,
L v where r2=(x/xy)2+(y/y,)2+(z/z,)? )




Photometric model of the MW

4 N

» Tri-axial “exponential” density model

preferred over Gaussian (Cao, Mao et al.
2012):

v’ X0:Y0:Zo=0.68kpc: 0.28kpc: 0.25kpc.
v' Close to being prolate (cigar-shaped).
v' Bar angle ~ 30 degrees (statistically

k very well constrained).




Double peaks in RCG counts
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Mcwilliam & Zoccali (2010); Nataf et al. (2010)

* Most fields exhibit a single peak.
Double peaks are only prominent at large b.




X-shaped structure in the Milky Way

* At high latitude fields, double peaks
* Low latitude fields exhibit a single peak




More complexities in the outer part

T / The Galaxy may not \

only contain a central
955 boxy/peanut tri-axial

A
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ik bar.
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O Dynamical modelling of MW bar

 Kinematic data

* Dynamical
modelling
techniques




Radial velomty fields of BRAVA
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~
Radial velocities of 8500 red giants.

Radial velocity accuracy ~ 5 km/s.
More data available from other surveys (ARGOS).
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BRAVA Radial velocity data
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Proper motions of stars with HST

"« Two decades of microlensing surveys enabled N
proper motions to be measured for millions of
stars (~few mas/yr).
* HST observations enable proper motions to even
. higher accuracy (~ 0.2-0.6 mas/yr) -




Galactic dynamics

Stars in galaxies are collisionless.

stars move in collective gravitational field
with effects of star-star scattering
negligible over the Hubble time.

Galaxies are a sum of stars on different
orbits.



Orbits in spherical potentials

Rosette orbit

e Loop
orbit

. In a Keplerian 0 (. Rosette orbits for a h
potential, Force ~ 1/r? potential, Force ~ 1/r
» all orbits are closed » eventually fills an

\ ellipses VAN annulus. Y




Orbits in 3D Stackel tri-axial potentials
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box orbits




Resonant Orbits in 3D triaxial potentials

4 N 4 N

Pretzel orbits Fish orbits

4:3 resonance 3:2 resonance
\_ Y, \_ Y




Chaotic orbits
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 Chaotic orbits diverges in the phase space.

* How do we find chaotic orbits is not an easy issue!
(Wang, Athanassoula & Mao 2015, in preparation).
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Orbital families in rotating bars:
x1 and x2 ailies of closed orbits

W -

bar

As viewed in the co-rotating frame

Contopoulos & Grosbol (1989)




Gas motions in a rotating bar

i Bar major axis

Athanassoula (1992)




Typical regular orbits
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Chaotic orbits
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Many orbits are in fact chaotic!




Methods of orbit superposition

a

 Schwarzschild method: orbit-based
v Choose ®(x), integrate orbits, fit data by
weighting orbits.

"

changing particle weights.

* Made-to-Measure method: particle-based
v Choose ®(x), integrate orbits, fit data by

/




Schwarzschild method

+ chaotic orbits

e

-

Find the right mix of orbits to fit density and -
kinematics.

May suffer from degeneracy & stability issues./




Made-to-Measure Method

(Syer & Tremaine 1996)
In a given potential

* N (~10°) particles are
orbited

* Adjusts the weights on-
the-fly to fit obs. Data

 More flexible than
Schwarzschild method

+ De Lorenzo 07, 08; Morganti &
Gerhard 12;
. Dehnen 09; * Cross-check on model

+ Long & Mao 10, 12; Zhu et al. 14

* Hunt et al. 12 ) degeneracy




Numerical Model of the Milky Way Bulge

o / Shen et al. (2010) starm
Em———

So with an exponential disk
N plus a dark matter halo.

face-on

» Bar and buckling
instabilities form boxy/
peanut-shaped bulges.

5

Y (5@6)

*  We use this as the initial
condition and adjusts
the particle weights to

r— better match the
10 =5 0 5 10 \kinematics. /
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Reproducmg BRAVA radial velocity
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Constraints on the Galactic bar
. arameters
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* Fit both surface brightness and BRAVA radial

velocities well.

* bar pattern speed: 40 km/s/kpc, angle: 30 degrees.

_*+ not well constrained! Need more data! y




Effects of the MW bar
on the solar neighbourhood
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Velocity substructures from

LAMOST

K We selected 13000 F&G dwarfs from \

LAMOST and 2MASS surveys
v' S/N>20, 100pc<z<500pc

* Biggest sample in similar volume
v With fainter and more distant stars

e We use the extreme de-convolution method
v" Can better identify large-scale structures than

& the wavelet method used previously /

Xia, Liu, Mao et al. (2014)
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Summary & open questions

Photometric modelling indicates

v' a short, exponential boxy/peanut bar with a
bar angle ~ 30 degrees.

v" There may be other thinner, longer bars in the
outer part.

Both the Schwarzschild and Made-to-Measure

methods can be used to fit the data.

Open questions

v How long is the bar (5kpc)?

v How fast does the bar rotate (30 km/s/kpc)?

v' Are different components distinct in
kinematics and chemical abundances?



Future outlook

* Lots of new data to come
v" Photometric data: OGLE-1V and VISTA
surveys.
v" Kinematic data: ARGOS, APOGEE-II, OGLE
(proper motions), GAIA.

* Much theoretical work yet to be done
v Needs to explain new chemo-dynamical
correlations (Ness et al.) in particular.
v' Stability and degeneracy issues need to be
further explored.



