Photometric and dynamical modelling of the Milky Way bar

Shude Mao Tsinghua University/NAOC

April 14, 2015@Taiwan

Collaborators: Yougang Wang, Richard Long, Juntai Shen, Liang Cao, ...

Outline

Observed properties of barred galaxies

2 The Milky Way bar

B Photometric modelling

Oynamical modelling

G Summary and Future Outlook

Overview: Hubble sequence of galaxies

- 2/3 of spiral galaxies host bars, especially in infrared
- Understanding of the Milky Way bar is key to understanding other barred galaxies in the Universe

Barred galaxies in the Universe

- Bars are straight rigid angular pattern speed
 ✓ no winding up due to differential rotation!
- Bars often host dust lanes & vigorous star formation at the end of bars

Rings in Barred galaxies

- Barred galaxies often show rings of star formations
- IC 5240 has an outer ring (~4 kpc) at the end of bar

Rings in Barred galaxies

Rings are thought to be associated with resonances in barred galaxies.

Boxy/peanut-shaped barred galaxies

- edge-on barred galaxies often exhibit boxy or peanut shapes
- They follow more complex kinematics

Peanut-shaped galaxy NGC 128

- Located in a group of five galaxies.
- External tidal origin (Li, Mao et al. 2009) or internal secular evolution?

X-shaped Structure

X-shaped structure

• X-shaped structure may be related to resonant orbits

Summary: barred galaxies

- Barred galaxies are very common
 - > Straight \rightarrow rigid rotation.
 - Dust lanes (gas streaming motions).
 - **>** Rings of star formation (resonances).
- Edge-on bars
 - exhibit as boxy, peanut-shaped or Xshaped galaxies.
 - > Kinematics are more complex.
- They likely form via internal secular (long-term) evolution.

2 The Milky Way bar

2MASS NIR images of the MW: disk + bulge

COBE map of the Milky Way bar

- Milky Way from the space satellite COBE.
- The asymmetric shapes implies the presence of a bar.

Top-down view of the Galaxy

Credit: Robert Hurt (SSC/JPL/ Caltech)

The Milky Way is a beautiful SBc type galaxy

B Photometric modelling of the Milky Way bar

- Bar basic parameters:
 ✓ Bar angle
 ✓ Bar tri-axial lengths
- How many bars?
 - ✓ boxy/peanut bar
 - ✓ Long, thin bar
 - ✓ Super-thin bar
- <u>Needs tracer</u>
 <u>populations:</u> RR Lyrae
 stars, red clump giants

Color Magnitude Diagram close to the Sun

- Red clump giants are metal-rich horizontal branch stars
- Small intrinsic scatter in luminosity (~0.09mag)
- Good standard candles!

Bulge Color-magnitude diagrams

- Observed RCG width is larger in the bulge due to the extension of the bulge.
- Careful studies of RCGs provide a 3D map of the bar.

OGLE-III sky coverage

Longitude (degrees)

OGLE-III fields Cover ~ 100 square degrees

Other surveys

Views of the Milky Way combining three surveys

- Vista Variables in the Via Lactea (VVV)
- United Kingdom Infrared Deep Sky Survey (UKIDSS)
- 2MASS

Red clump giants luminosity function

For each field, we can obtain

- luminosity function (number as a function of brightness)
- integrated number counts

Number counts of red clump giants

- Regular elliptical contours close to the plane
- Fit smooth tri-axial ellipsoidal models, such as

 ✓ ρ = ρ₀ exp(-r²/2), Gaussian model
 ✓ ρ = ρ₀ exp(-r), exponential model,
 ✓ where r²=(x/x₀)²+(y/y₀)²+(z/z₀)²

Photometric model of the MW

- Tri-axial "exponential" density model preferred over Gaussian (Cao, Mao et al. 2012):
 - ✓ x₀:y₀:z₀=0.68kpc: 0.28kpc: 0.25kpc.
 - ✓ Close to being prolate (cigar-shaped).
 - ✓ Bar angle ~ 30 degrees (statistically very well constrained).

Double peaks in RCG counts

Mcwilliam & Zoccali (2010); Nataf et al. (2010)

- Most fields exhibit a single peak.
- Double peaks are only prominent at large b.

X-shaped structure in the Milky Way

- At high latitude fields, double peaks
- Low latitude fields exhibit a single peak

More complexities in the outer part

- The Galaxy may not only contain a central boxy/peanut tri-axial bar.
- The outer part may contain a long, thinner bar with similar bar angle.
- Are they dynamically distinct?

Oynamical modelling of MW bar

• Kinematic data

 Dynamical modelling techniques

Radial velocity fields of BRAVA

- Radial velocities of 8500 red giants.
- Radial velocity accuracy ~ 5 km/s.
- More data available from other surveys (ARGOS).

BRAVA Radial velocity data

Proper motions of stars with HST

Kozlowski, Wozniak, Mao et al. (2006)

- Two decades of microlensing surveys enabled proper motions to be measured for millions of stars (~few mas/yr).
- HST observations enable proper motions to even higher accuracy (~ 0.2-0.6 mas/yr)

Galactic dynamics

- Stars in galaxies are collisionless.
- stars move in collective gravitational field with effects of star-star scattering negligible over the Hubble time.
- Galaxies are a sum of stars on different orbits.

Orbits in spherical potentials

- In a Keplerian potential, Force ~ 1/r²
- all orbits are closed ellipses

- Rosette orbits for a potential, Force ~ 1/r
- eventually fills an annulus.

Orbits in 3D Stackel tri-axial potentials

short-axis (z-) tube orbits major-axis (x-) tube orbits

box orbits

From Barnes

Resonant Orbits in 3D triaxial potentials

Pretzel orbits 4:3 resonance

Fish orbits 3:2 resonance

From Barnes

Chaotic orbits

Chaotic orbits diverges in the phase space.
How do we find chaotic orbits is not an easy issue! (Wang, Athanassoula & Mao 2015, in preparation).

Orbital families in rotating bars: x1 and x2 families of closed orbits

As viewed in the co-rotating frame

Contopoulos & Grosbol (1989)

Gas motions in a rotating bar

Typical regular orbits

Provided by Yougang Wang

Chaotic orbits

Many orbits are in fact chaotic!

Methods of orbit superposition

- Schwarzschild method: orbit-based
 ✓ Choose Φ(x), integrate orbits, fit data by weighting orbits.
- Made-to-Measure method: particle-based
 ✓ Choose Φ(x), integrate orbits, fit data by changing particle weights.

Schwarzschild method

- Find the right mix of orbits to fit density and kinematics.
- May suffer from degeneracy & stability issues.

Made-to-Measure Method (Syer & Tremaine 1996)

- De Lorenzo 07, 08; Morganti & Gerhard 12;
- Dehnen 09;
- Long & Mao 10, 12; Zhu et al. 14
- Hunt et al. 12

- In a given potential
- N (~10⁶) particles are orbited
 - Adjusts the weights onthe-fly to fit obs. Data
 - More flexible than Schwarzschild method
 - Cross-check on model degeneracy

Numerical Model of the Milky Way Bulge

- Shen et al. (2010) starts
 with an exponential disk
 plus a dark matter halo.
- Bar and buckling instabilities form boxy/ peanut-shaped bulges.
- We use this as the initial condition and adjusts the particle weights to better match the kinematics.

Reproducing BRAVA radial velocity

Constraints on the Galactic bar

- Fit both surface brightness and BRAVA radial velocities well.
- bar pattern speed: 40 km/s/kpc, angle: 30 degrees.
- not well constrained! Need more data!

Effects of the MW bar on the solar neighbourhood

Velocity substructures from LAMOST

- We selected 13000 F&G dwarfs from LAMOST and 2MASS surveys
 - ✓ S/N>20, 100pc<z<500pc
- Biggest sample in similar volume
 - ✓ With fainter and more distant stars
- We use the extreme de-convolution method
 ✓ Can better identify large-scale structures than

the wavelet method used previously

Summary & open questions

- Photometric modelling indicates
 - ✓ a short, exponential boxy/peanut bar with a bar angle ~ 30 degrees.
 - There may be other thinner, longer bars in the outer part.
- Both the Schwarzschild and Made-to-Measure methods can be used to fit the data.
- Open questions
 - ✓ How long is the bar (5kpc)?
 - ✓ How fast does the bar rotate (30 km/s/kpc)?
 - ✓ Are different components distinct in kinematics and chemical abundances?

Future outlook

- Lots of new data to come
 - ✓ Photometric data: OGLE-IV and VISTA surveys.
 - ✓ Kinematic data: ARGOS, APOGEE-II, OGLE (proper motions), GAIA.
- Much theoretical work yet to be done
 - ✓ Needs to explain new chemo-dynamical correlations (Ness et al.) in particular.
 - ✓ Stability and degeneracy issues need to be further explored.