ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquium, April 7, 2015

BERGISCHE UNIVERSITÄT WUPPERTAL

The Most Energetic Particles in Nature

Karl-Heinz Kampert University of Wuppertal

Astroteilchenphysik

Großgeräte der physikalischen Grundlagenforschung

HELMHOLTZ

Allianz für Astroteilchenphysik Area 🗠 Grant

Karl-Heinz Kampert

Karl-Heinz Kampert – University Wuppertal

Taipei Colloq, 7.04.2015

Key Questions about Ultra High-Energy Cosmic Rays

- Where do they come from?
- What are they made of ?
- How do their accelerators work?
- Is there a maximum limit to their energy ?
- What can they tell us about fundamental and particle physics?

Features of CR spectrum

Features of CR spectrum

Features of CR spectrum

10²⁰ eV CRs in our Galaxy ?

Lamor radii at **10²⁰ eV** compared to Milky-Way

Interesting feature: Can do astronomy with cosmic rays !

Size × B-Field needs to be very large ...

Conjecture: Extragalactic origin

UHECR Astronomy

Cosmic Magnetic Fields $R_L = kpc Z^{-1} (E / EeV) (B / \mu G)^{-1}$ $R_L = Mpc Z^{-1} (E / EeV) (B / nG)^{-1}$

weak deflection $E > 10^{19} eV$

Potential Sources of 10²⁰ eV particles

Radio Images of Cosmic Accelerators

Supernova Remnants

Cas A (3.4 kpc) $E < 10^{16} eV$

Accreting Supermassive Black Holes

Cygnus A (250 Mpc)

$E \sim 10^{20} \text{ eV}$?

NRAO/AUI

1.4 , 5, & 8.4 GHz

The Cosmic Zevatron

1962: The First 10²⁰ eV Event

VOLUME 10, NUMBER 4

PHYSICAL REVIEW LETTERS

15 FEBRUARY 1963

EVIDENCE FOR A PRIMARY COSMIC-RAY PARTICLE WITH ENERGY $10^{20} \text{ eV}^{\dagger}$

John Linsley

Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts (Received 10 January 1963)

1962: The First 10²⁰ eV Event

VOLUME 10, NUMBER 4

PHYSICAL REVIEW LETTERS

15 FEBRUARY 1963

EVIDENCE FOR A PRIMARY COSMIC-RAY PARTICLE WITH ENERGY $10^{20} \text{ eV}^{\dagger}$

John Linsley

Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts (Received 10 January 1963)

1965: Discovery of CMB

Taipei Colloq, 7.04.2015

1966: "End to the CR Spectrum ?"

GZK-effect: Rapid Energy Loss of p & nuclei in CMB

The GZK - Horizon

100 million ly

Expect an isotropies for protons at $E > 10^{19} eV$

Situation ~8 years ago

Experiments: AGASA, HiRes, Haverah Park, Yakutsk, SUGAR

- does the GZK-suppression exist?
 - Flux data contradictory
 AGASA → no suppression
 HiRes → possibly a suppression
- Composition mostly protons
- Apparent isotropy

 \rightarrow expect EHE y's and v's

Taipei Collog, 7.04.2015

Apparent continuation of spectrum in AGASA gave birth to exotic source and propagation scenarios

- Top Down Models
 - Topological Defects, Super-Heavy Dark Matter Particles, WIMPzillas, Cryptons, ...
- Z-Burst Model → massive neutrinos

A New Generation: Hybrid Observation of EAS

Fluorescence light

Particle-density and -composition at ground

Also: Detection of Radio- & Microwave-Signals Karl-Heinz Kampert - University Wuppertal

Pierre Auger Observatory

OS

Minas El Sosr

Cent

Malargue Comp:

Ex For

Kar

Province Mendoza, Argentina

OS Ortíz

Pampa

1660 detector stations on 1.5 km grid

40

10212

20

bras

10

El Sa tral-Pto

Virgen del Carmen

27 fluores. telescopes at periphery

160 radio antennas

Taipei Collog, 7.04.2015

Water Cherenkov Station

...1660 stations in total

Karl-Heinz Kampert

Central Campus

Visitors are welcome (almost 100 000 visitors already)

Auger and TA

Event Example in Auger Observatory

Event Example in Auger Observatory

Taipei Collog, 7.04.2015

Auger Combined E-Spectrum (0°-80°)

Karl-Heinz Kampert – University Wuppertal

GZK-Effect or Exhausted Sources?

Taipei Colloq, 7.04.2015

Longitudinal Shower Development → Primary Mass

KHK, Unger, APP 35 (2012) EPOS 1.99 Simulations

Decomposition of Xmax-Distributions

Auger collaboration, Phys. Rev. D 90, 122006 (2014)

Cosmogenic Neutrinos and Photons – a guaranteed signal in presence of GZK –

Absence of Photons ⇒ **TopDown ruled out**

Photon upper limits rule out Top-Down Models and start to constrain GZK-expectatinons

Search for EeV Neutrinos in inclined showers

- Protons & nuclei initiate showers high in the atmosphere.
 - Shower front at ground:
 - mainly composed of muons
 - electromagnetic component absorbed in atmosphere.
- Neutrinos can initiate "deep" showers close to ground.
 - Shower front at ground:
 electromagnetic + muonic
 components

Searching for neutrinos ⇒ searching for inclined showers with electromagnetic component

Upper Limits on Neutrinos

Neutrino upper limits start to constrain cosmogenic neutrino fluxes of p-sources

Upper Limits on Neutrinos

Neutrino upper limits start still above cosmogenic neutrino fluxes for Fe-sources

UHECR Sky surprisingly isotropic

Weak excess of events around Cen A

Feain et al., ApJ 740 (2011) 17

Résumé

Data from the Auger Observatory indicate that the flux suppression is mostly due to seeing the exhaustion of the sources:

- 1) change towards a heavier composition
- 2) constraints on GZK photons and neutrinos
- 3) highly isotropic sky

Logical next step:

Measure composition event-by-event into the flux suppression region
⇒ composition becoming increasingly heavier?
⇒ enable composition enhanced anisotropy studies
⇒ do particle physics at √s≈100 TeV

UHECR: Near Future

Auger upgrade: mass composition with ground array

origin of the flux suppression

hadronic interactions beyond LHC

more rapid increase of statistics

UHECR: Long Term Plan

Global Cosmic Ray Observatory (GCOS) few sites in N+S, 90 000 km²

Bounds on LIV and Smoothness of Class. Space-Time

Klinkhamer/Risse; PRD77 (2008) 016002; 117901; Klinkhamer, AIP Conf. Proc. 977: 181-201, 2008

Observation of 10²⁰ eV events proofs absence of Vacuum Cherenkov-Radiation

- Provides limits on smoothness of space & LIV-effects
- Conservative limit on any small-scale structure of space: LEP/LHC: $\ell \leq 10^{-19} \text{ m} \approx \hbar c/(1 \text{ TeV}).$
- Use published 27 Auger events + I AGASA + I Fly's-Eye

 \hookrightarrow single scale classical space-time foam at

UHECRs: $b \leq 10^{-26} \text{ m} \approx \hbar c/(2 \cdot 10^{10} \text{ GeV})$

by far best (3 to 8 orders of magn.!) existing bounds of Standard Model Extension parameters of nonbirefringent modified Maxwell theory

Results complemented by TeV γ -rays

 Conjecture: fundamental length scale of quantum space time may be different from Planck length and may be linked to cosmological constant

p-Air Cross-Section from Xmax distribution

- fluctuations in X_{max}
- experimental resolution ~ 20 g/cm²

In practice: σ_{p-Air} by tuning models to describe Λ seen in data

p-Air and pp Cross section @ $\sqrt{s}=57$ TeV

Interaction Models lack Muons in EAS

Auger Collaboration, Phys. Rev. D 91, 032003 (2015); editors suggestion

µ-deficit points to deficiencies of hadronic interaction models LHC forward physics program highly relevant joint efforts by people from both communities