

& Confidentia

The Proven Path to Success

ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys/NTNU-Phys Joint Colloquium

2D Materials for Electronics: Prospects and challenges

Dr. Yu-Ming Lin 林佑明

Deputy Director Advanced Transistor Research Division Taiwan Semiconductor Manufacturing Company Ltd. (TSMC)

& Confidentia

The Proven Path to Success

Outline

- Introduction the role of 2D materials for future electronics
- Structure and properties graphene, transition metal dichalcogenides, and black phosphorus
- Synthesis
- 2D Devices transistor and tunnel FET
- Conclusion

Family of 2-D Crystals

- More than 140 two-dimensional (2-D) materials, and the number is still growing
- Covering insulators, semiconductors, and metals

Material	Structure	Bandgap	Mobility (cm²/Vs)
Graphene		0	1000-100,000
h-BN		~7.2 eV (indirect)	-
TMD (MX ₂) M: W, Mo, Hf, Zr, Ti, Cr, Ta X: S, Se, Te		0.6 – 2.3 eV, and depending on layer #	10~500
Black Phosphorus (BP)		~2 eV (Monolayer) ~0.3eV (few layer)	100~1000

50 Years of Moore's Law

Source: Intel VISUALIZING PROGRESS If transistors were peopl If the transistors in a microprocessor were represented by people, the following timeline gives an idea of the pace of Moore's Law. 32 Million 1.3 Billion 2,300 134.000 Average music hall capacity Large stadium capacity Population of Tokyo Population of China 2011 1980 1970 1990 2000 Intel 4004 Intel 286 Pentium III Core i7 Extreme Edition **1.3B** Transistors 2.3K Transistors 122 mm² 12 mm^2

Imagine fitting the entire China population in 10 original music halls – That's the scale of Moore's Law!

50 Years of Moore's Law: Can it be continued?

& Confidential

The Major Issue is Leakage

Haensch et al., IBM J. R&D 50, pp. 339-361 (2006)

No leakage control, no scaling!

t_{ox}

D

1

Scaling Issue for 3D Materials

- Electrostatic length $\lambda = \sqrt{t_S t_{OX} \varepsilon_s / \varepsilon_{OX}}$
- L ~ 5 λ to suppress short-channel effect (SCE)
- Severe mobility degradation for body thickness < 5nm

DIBL: Drain-Induced Barrier Lowering

S

G

* Double gate with EOT = 0.8 nm, L = 5nm

 t_{s}

Materials	Dielectric Constant		Body Thickness (nm)			
Si	11.7		0.82			
Ge	16.2		0.58			
GaAs	12.9		0.74			
Less than 1nm!!						

2D: Ultra-thin Channel with Good Mobility Confidential

2D Channel FET

2D materials could exhibit high mobility values for sub-nm thickness!

Proprietary & Confidential

Fundamental Properties of (selected) 2D Materials

Family of 2-D Crystals

Material Structure Bandgap **Mobility** (cm²/Vs) 1000-100,000 Graphene 0 h-BN ~7.2 eV (indirect) TMD (MX_2) 0.6 - 2.3 eV, and 10~500 M: W, Mo, Hf, Zr, Ti, depending on layer # Cr. Ta X: S, Se, Te Black ~2 eV (Monolayer) 100~1000 ~0.3eV (few layer) Phosphorus (BP)

Graphene: Lattice and Band Structure

Lattice structure

k_x

In-plane sp2 covalent bond

Band structure

- Two carbon atoms per ٠ unit cell
- Massless fermion ٠
- Linear E(k) dispersion ٠
- Zero bandgap due to ٠ inversion symmetry

2-D Transition Metal Dichalcogenide

• Lattice structure (1H)

M = Transition metal (Mo, W, etc.) X = Chalcogen (S, Se, Te)

Band structure of MoS₂

1 Layer

MK

Г

Г

Г

- Direct gap at monolayer
- Indirect gap with smaller
 E_G at few layers
- Weak interlayer bonding by van der Waals forces

Splendiani et al., Nano Lett. 10, 1271 (2010)

Direct to Indirect Gap in TMD - Layer dependence

10⁴ times stronger photoluminescence (PL) in 1 layer MoS₂

The Proven Path to Success

SM

Black Phosphorus - Phosphorene

Lattice structure – puckered honeycomb

Band structure

Lam et al., EDL 35, 963 (2014)

- Direct gap (ML to bulk)
- E_G = 0.3eV for bulk, and 2.0eV for ML
- Highly anisotropic effective mass in x (light) and y (heavy) for both electron and holes

Castellanos-Gomez et al., 2D Mater. 1, 025001 (2014)

Proprietary & Confidential

Synthesis of 2D Materials

Carbon in All Dimensionalities

Graphene (2D)

Graphite (3D)

Nanotube (1D)

How to Make Graphene?

Proprietary & Confidential

Or, Try This at Home ...

You may win one of these ten years ago....

Also works for other 2D Materials!

Large-Area Graphene Growth by CVD

& Confidential

Low-Cost Graphene Production

Large-Area Graphene Production

2005

~5 µm

~50 cm

~1 m

Scalable Synthesis of MX₂

MoS₂ by MoO₃/S CVD at 700°C

van der Zande et al., Nat. Mater. 12, 554 (2013)

Sulfurization of sputtered metal

MoS₂ by thermolysis at 1000°C

K. K. Liu et al., Nano Lett. 12, 1538 (2012)

Challenge – how to maintain Mo:S = 1:2?

Open Innovation Platform®

W531

Synthesis of Black Phosphorus

BP by transport reaction at 650°C

M. Kopf et al., J. Cry. Gro. 405, 6 (2014)

Raman Spectra of Synthesized BP

Challenges – Breakthrough to achieve direct synthesis of thin-film BP on substrate!

24

Status of 2D Materials Synthesis

- A number of growth methods to produce large-area TMD films on various substrates (oxide, metal) are available
- Top-down growth of phospherene is yet to be demonstrated

R&D / ATRD

© 2012 TSMC, Ltd

W531

Security C – TSMC Secret

2D Electronics

R&D / ATRD © 2014 TSMC, Ltd W531

Open Innovation Platform®

© 2012 TSMC, Ltd

Graphene Technology Roadmap

Graphene vs. bulk Semiconductors

	Si	GaAs	In _{.53} Ga _{.47} As	InAs	InSb	Graphene
Electron mobility (cm ² /Vs) at $n = 10^{12}$ cm ⁻²	600	4,600	7,800	20,000	30,000	25,000 (flake) ~3000 (Epieaxial) ~2000 (CVD)
Electron saturation velocity (10 ⁷ cm/s)	1	1.2	0.8	3.5	5	8
Ballistic mean free path (nm)	28	80	106	194	226	400
Band-gap (eV)	1.12	1.42	0.72	0.36	0.18	0

Key features

- A true two-dimensional system
- Ambipolar transport
- Optically transparent
- Flexible with high mechanical strength
- Zero bandgap

Graphene Field-Effect Transistor (FET)

Graphene for RF electronics

High on/off ratio is not required for RF applications.

0.6 ΔI Drain Current [mA/µm] g_m $\overline{\Delta V_g}$ 0.5 0.4 Vd = 1V-3 -2 2 0 1 Vg [V] $h_{21} = \frac{i_d}{i_g} \sim$

 f_{T} : cut-off frequency where current gain is 1

3

$$f_T = \frac{g_m}{2\pi C_g}$$

GHz Graphene Device and Circuit

Proprietary & Confidential

BREVIA

Lin et al., Science 327, p. 662 (2009)

100-GHz Transistors from Wafer-Scale Epitaxial Graphene

Y.-M. Lin,* C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu, A. Grill, Ph. Avouris*

Gate length: 240 nm f_T : 60 – 100 GHz

Gate length: 550 nm f_T : 25 – 50 GHz

GHz Graphene Device and Circuit

Lin et al., Science 332, 1294 (2011)

Wafer-Scale Graphene Integrated Circuit

Yu-Ming Lin,* Alberto Valdes-Garcia, Shu-Jen Han, Damon B. Farmer, Inanc Meric,† Yanning Sun, Yanqing Wu, Christos Dimitrakopoulos, Alfred Grill, Phaedon Avouris,* Keith A. Jenkins

Beyond 400 GHz Operation

LETTER

Nature 472, 74 (2011)

doi:10.1038/nature09979

High-frequency, scaled graphene transistors on diamond-like carbon

Yanqing Wu¹, Yu-ming Lin¹, Ageeth A. Bol¹, Keith A. Jenkins¹, Fengnian Xia¹, Damon B. Farmer¹, Yu Zhu¹ & Phaedon Avouris¹

Lg = 40nm 350 GHz (IBM) PNAS 109, 11588 (2012)

Nanowire Gate ~ 40 nm 427 GHz (UCLA)

High-frequency self-aligned graphene transistors with transferred gate stacks

Rui Cheng^{a,1}, Jingwei Bai^{a,1}, Lei Liao^b, Hailong Zhou^b, Yu Chen^a, Lixin Liu^b, Yung-Chen Lin^a, Shan Jiang^b, Yu Huang^{a,c}, and Xiangfeng Duan^{b,c,2}

*Departments of Materials Science and Engineering, and *Chemistry and Biochemistry, and *California Nanosystems Institute, University of California, Los Angeles, CA 90095

Creating a Bandgap in Graphene

 $E_g \sim 1.4 eV/W$, (Width in nm)

Graphene Nanoribbon

Edge roughness

The Proven Path to Success

Width variation

Han et al, Phys. Rev. Lett. 98, 206805

Challenge-Atomically smooth edge with a precise width control

Proprietary & Confidential

Choice of 2D Material for CMOS

Ling et al., PNAS 112, 4523 (2014)

The Proven Path to Success

Short-Channel MoS₂ FET - Good switching down to 11nm

Proprietary & Confidential

Phospherene p-FET

Xia et al., Nature Comm. 5, 4458 (2014)

Stability of Phosphorene in Air

24 hours

Proprietary & Confidential

10 mins

BP disintegrates in ambient.

B. Ozyilmaz et al., Nature Comm. 6, 6647 (2015)

Chen et al., Nature Comm. 6, 7315 (2015)

The Proven Path to Success

Issues of Contacts in 2D Materials

- Schottky barrier and Fermi-level pinning
- Currently achievable Rc for TMDs and BP are still two orders of magnitude higher than Si and ITRS requirement

Transistor type	$\frac{R_{\rm co}}{(\Omega \ {\rm mm})}$	Metal	Comment	
Graphene MOSFET	0.011-0.08	Ni, Ti	BL	
	0.1-0.2	Ti, Ni, Pd/Au,	SL	
	\frown	Cr/Au		ITDC 2024 requirements De = 0.005 Orange
MoS ₂ MOSFET	0.2–1.6	Ni/Au, Ti/Au,	\mathbf{FL}	$\frac{11}{100} \times \frac{1000}{100} \times 1000$
		Au		
	2	Au	\mathbf{SL}	
WSe ₂ MOSFET	1.4	Graphene	BL	
	2	Graphene	\mathbf{FL}	
Phosphorene	1.75	Ni/Au, PdAu	\mathbf{FL}	
MOSFET				
Si MOSFET	< 0.01			
InP HEMT	0.03			
GaAs mHEMT	0.02			
F. Se	chwierz et al.	, Nanoscale 7, 8	261 (2015)	

Tunnel FET: Low voltage operation

MOSFET with n/i/n junction

 $I_A/I_B \sim \exp(-\Delta V/kT)$ $\Delta V = 60 \text{mV}, I_A/I_B = 1/10$

Tunnel FET with n/i/p junction

Thermal tail is filtered by bandgap and thus is not limited to 60mV/dec as in MOSFET

Tunnel FET vs. MOSFET

Proprietary & Confidential

Lower operating voltage \rightarrow lower power comsumption!

The Proven Path to Success

Tunnel FET based on TMDs

From tunneling consideration:

- 1. Direct bandgap
- 2. Small mass in transport direction
- 3. Bandgap ~ 0.6eV

Comparison of TFET Performance

Proprietary & Confidential

2D Candidates for TFET

Multilayer BP is also promising:

- Bandgap < 1eV
- Highly anisotropic carrier mass (m_x << m_y)
- Direct bangdap

	MoS ₂	MoSe ₂	MoTe ₂	WS ₂	WSe ₂	WTe ₂	BP 1L	BP 3L	BP 5L
m_{hx}/m_o	0.64	0.72	0.75	0.43	0.5	0.3	0.15	0.15	0.14
m _{hy} /m _o	0.64	0.72					6.35	1.12	0.89
Eg (eV)	1.68	1.51	1.085	1.93	1.56	0.75	1.53	0.73	0.52

Vertical Tunnel FET with 2-D Materials

- Stacking of n- and p-type 2D crystals
 - Enhanced tunnel area
 - Ultra-short junction

Gong et al., Appl. Phys. Lett. 103, 053513 (2013)

The Proven Path to Success

2D Heterojunction Vertical TFET

T. Roy et al., ACS Nano 9, 2071 (2015)

Open Innovation Platform®

© 2012 TSMC, Ltd

& Confidential

Benchmarking of Beyond-CMOS Exploratory Devices for Logic Integrated Circuits

DMITRI E. NIKONOV (Senior Member, IEEE), AND IAN A. YOUNG (Fellow, IEEE)

Components Research, Intel Corporation, Hillsboro, OR 97124 USA CORRESPONDING AUTHOR: D. E. NIKONOV (dmitri.e.nikonov@intel.com)

Device name	acronym	material
Si MOSFET high perf.	CMOS HP	silicon
Si MOSFET low voltage	CMOS LV	InAs
van der Walls FET	vdWFET	MoS ₂
Homojunction III-V TFET	HomJTFET	InAs
Heterojunction III-V TFET	HetJTFET	GaSb/InAs
Graphene nanoribbon TFET	gnrFTET	graphene
Interlayer tunneling FET	ITFET	graphene
Two D Heterojunction Interlayer TFET	ThinFET	WTe ₂ /SnSe ₂
GaN TFET	GaNFET	GaN
Transition Metal Dichalchogenide TFET	TMDTFET	WTe ₂
Graphene pn-junction	GpnJ	graphene

D. E. Nikonov and I. A. Young IEEE J. XCDC 1 (2015)

Tunnel FETs are promising for better EDP than Si MOSFETs.

Conclusion

- 2D materials have potential for future electronics
 - The real and unique benefits is the atomically thin body
- So far, experimental studies have yet to demonstrate the full advantage and potential of 2D materials for electronic devices
 - Short history of only ~4 year for TMDs and ~1 year for BP
- Materials synthesis will be one deterministic factor
 - Most 2D materials in their bulk form has been extensively used in industrial applications
 - Defect density?
- Other fundamental challenges
 - Contact resistance
 - Doping scheme
 - Gate stack options

Proprietary & Confidential

Thank you