

Formation and Discovery of

Extrasolar Planetary Systems

Phil Armitage (Colorado)

Formation and Discovery of Extrasolar Planetary Systems

Physical principles of planet formation

orbital stability + encounter outcomes

Giant exoplanets

dynamical evolution, migration

Terrestrial exoplanets

coupling to giants, Kepler

What can we observe?

Gas
Dust s ~ 1mm

Gas – dust interaction

Dust from collisions

Missing:

- growth mm km ("planetesimals")
- planet-gas disk interactions
- young planetary systems

planets

N-body dynamics

Dynamics of growth Terrestrial planets

 $v_{esc} < v_{K}$: terrestrial planets grow "in place"

High initial disk Σ :

- more massive terrestrials
- fewer

simulation: Sean Raymond

Feeding zone narrow: collisions lead to low eccentricity

Works well at leading order for the Solar System – largest discrepancy is over-prediction of mass of Mars...

Dynamics of growth Giant planets

Require: form > 5 M_{Earth} core before gas is dissipated in ~ few Myr

Giant Exoplanets Observations

Sky projected angle between stellar spin axis and planetary orbital axis

Require migration and eccentricity excitation

Hot Jupiters are sometimes misaligned or retrograde

Giant Exoplanets Observations

Working hypothesis: explained as consequence of

- "standard" giant planet formation (core accretion)

 possibly at modestly smaller radii than in
 Solar System
- evolution due to exchange of energy and angular momentum with gas, other planets, binary companion

Giant Exoplanets E, L exchange processes

Planet-gas disk interaction

Kozai-Lidov interaction (planet + misaligned binary)

Planet-planet scattering

Secular chaos

Giant Exoplanets Planet-planet scattering

Moeckel & Armitage (2012)

Planet formation + migration typically leads to unstable multiple planet system as gas dissipates

Eccentricity and hot Jupiters form dynamically

Occurs early, but gas may be negligible to leading order

Initial conditions:
3 gas giants, circular orbits, forming as close as 1 AU

N-body only

Payne et al. (2014)

Match f(e) distribution for giant exoplanets 0.1 AU < a < 1 AU

Initial conditions: 3 gas giants, circular orbits, forming as close as 1 AU

N-body only

Broad inclination distribution of planets scattered to e ~ 1 and then tidally circularized (c.f. Nagasawa et al. 08; Beauge & Nesvorny 12)

Scattering gives consistent but not unique solution to most close-in properties of giant exoplanets

Dynamics of growth Large radii

Neptune and extrasolar planets at "large" radii (50 AU) are also incompatible with *in situ* core accretion

HR8799 and other directly imaged systems critical constraints

Marois et al. 2008

Dynamics of growth Large radii

First evidence for a new gravitational instability channel for giant planet formation?

Predicted to be inevitable for large massive disks, but hard to keep masses below brown dwarf scale...

(Rice et al. 2010; Kratter et al. 2010)

OR – multiple cores formed at smaller scales, migrated out, and later accreted gas?

Need more data....

Terrestrial Exoplanets Theory

- "Solar System-like"
 - slow (~100 Myr), hence gas free
 - in place
 - ~independent of giant planets
- Giant-controlled
 - substantially impacted by violent giant planet dynamics
- Migration dominated
 - orbital evolution among terrestrial precursors

Giant dominated

Assume
planet-planet
scattering
dominant
(Raymond
et al. 2011, 12)

Terrestrial Exoplanets Theory

Rich terrestrial planet systems live in systems with near-circular giant planets

Predict currently unobserved population of dynamically excited terrestrials

Kepler systems

Batalha et al. 2013

2 obvious challenges for theory...

High abundance of planets with radii not represented in Solar System... what are these planets?

Many stars with close-in planetary systems, where formation time is so short (<10⁵ yr) that gas disk effects **must** be important

evidence for a migration dominated mode?

100 $\dot{M} = 10^{-8} M_{\odot} \text{yr}^2$ 1 mm 0.1 mm relative concentration 10 0.1 r / AU

$$\alpha_{\rm in}$$
 = 10⁻², $\alpha_{\rm out}$ = 10⁻³, width w = 2h

c.f. coagulation models of Drazkowska et al. (2013)

planetesimal formation at traps

Local pressure maxima trap particles of sizes formed from coagulation (mm-cm) readily, especially in outer disk

If gas disk has local maxima, particle density much higher at these locations

high densities lead to planetesimal formation via collective instabilities

"Least problematic" route to planetesimal formation from small particles involves instabilities in coupled gas / particle mixtures ("streaming instability", Youdin & Goodman 2005)

2D streaming: Jake Simon

Require locations in disk where ρ_{particle} / ρ_{gas} > threshold to form planetesimals... in a disk with traps this will be at the location of the traps

formation of planets if planetesimals form at preferred location in inner disk

produce packed multiple systems for mass fluxes of $^{\sim}10 M_{Earth}$ / Myr into traps in inner disk

also form co-orbital planets...

not yet clear if orbital properties are better or worse match to Kepler systems than in situ models

Bruns & Armitage, in prep

Summary

Solar System appears to be a planetary system where the giant planets were only *moderately dynamically active*, and the mass in the terrestrial region was low enough that the Earth & Venus formed after the gas was gone

More active giant planets (higher mass, closer together, less damping from Kuiper belt) are common – result in eccentric extrasolar gas giants, hot Jupiters

More mass in (or migrating through?) the terrestrial region forms low mass planets earlier – close-in Kepler systems?