NTU/ASIAA Joint Colloquium May 13, 2014

The Dark Ages of the Universe

Naoki Yoshida Physics / Kavli IPMU University of Tokyo

CONTENTS

+ From the big bang to the first stars

A missing piece in cosmic history

+ First light

The mass of the first stars

+ Early blackholes and supernovae

Setting the scene for galaxy formation

References:

Hosokawa, Omukai, NY, Yorke, 2011, Science Bromm, NY, 2011, ARAA

Hosokawa, Yorke, Omukai, Inayoshi, NY, 2013, ApJ Tanaka, Moriya, NY, 2013, MN

Hirano et al. 2014, ApJ

γ-ray burst

Afterglow

Every few days
From all directions on the sky (=extragalactic)
The record redshift of z=9.4!
~ 13.5 billion light yrs

A YOUNG BUT BIG! 、 BLACKHOLE 2 billion times heavier 13 billion light years away than the sun (130億光年彼方)

Stellar relics in the Milky Way

Low-mass (<1*M*_{sun}),

extremely metal-poor (not only iron-poor) Metallicity below 4.5×10^{-5} that of the sun.

No spectral features

Ordinary stars like the sun contains a few percent (in mass) of heavy elements → many lines in the spectrum

There are many stars in Galaxy that contain less amount of heavey elements

A few of them contain almost no elements other than hydrogen and helium.

Seemingly different phenomena

- Prompt emission of high-energy photons
- Emergence of a super-massive blackhole
- A nearby star with very low metal content

They may have the same origin, which is also related, ultimately, to the beginning of our own existence.

THE COSMIC HISTORY

13.7 billion years

Blackholes Planets,

TODAY

First stars Galaxies

Supernovae

All the rich structure we see today in our Universe emerged from tiny ripples left over from the Big Bang

The Dark Ages

Has not been observed by any wavelength

In the beginning, there was a sea of light elements and dark matter…

and tiny ripples left over from the Big Bang

Compare with present-day star formation

Supernovae

Magnetic field

Cosmic rays

Radiation

Stellar winds

Turbulence

Early universe

THEORY OF STAR FORMATION

molecular cloud protostar

STANDARD COSMOLOGICAL MODEL

FIRST STAR NURSERIES

Web-like structure in the early universe.

Yellow spots are clumps of dark matter.

First star nurseries are 1000 times heavier than the sun.

Strongly clustered.

From primeval ripples to a protostar

Molecular cloud

New-born protostar

Resolving planetary scale structures in a cosmological volume!

A complete picture of how a protostar is formed from tiny density fluctuations.

25 solar-radii NY, Omukai, Hernquist 2008

5pc

Physics is hard


```
edot 3body rate = 4.478 * eV to erg *
 ((k55 edot * SphP[ithis].HI * SphP[ithis].HI * SphP[ithis].HI
   + k57_edot * SphP[ithis].HI * SphP[ithis].HI * SphP[ithis].H2I)*base.numden*base.numden*base.numden
  -(k56 edot * SphP[ithis].H2I * SphP[ithis].HI
    k58_edot * SphP[ithis].H2I * SphP[ithis].H2I)*base.numden*base.numden);
                                                                  A[2][3][0][3]=1.29e-/;
                                                                  A[2][3][0][5]=6.98e-8;
                                                                  A[2][3][1][1]=4.98e-7;
                                                                  A[2][3][1][3]=4.12e-7;
                                        photo-ionization D
  ----- 60: DI + p
                      -> DII + e
  ----- 61: HDII + p -> HI + DII
                                        photo-dissociation HD+
                                                                  A[2][3][1][5]=3.18e-7;
  ----- 62: HDII + p -> HII + DI
                                        photo-dissociation HD+
                                                             ----- 63: HD + p -> 2DI
                                        photo-dissociation HD
                                                                  A[2][3][2][1]=4.12e-10;
  3 body reactions
                                                                  //JI = 4
  ----- 71: HI + HI + HI -> H2I + HI
                      -> HI + HI + HI reverse reaction
  ----- 72: H2I + HI
                                                                  //vI=0
  ----- 73: HI + HI + H2 -> H2I + H2I
                                                                  A[0][4][0][2]=2.76e-9;
  ----- 74: H2I + H2I
                         -> HI + HI + H2 reverse reaction
                                                                  //vI=1
                                                                  A[1][4][0][2]=3.98e-7;
     k table[121][i]= 4.98e-11; // H + CH -> C + H2
                                                                  A[1][4][0][4]=2.65e-7;
     k table[122][i]= 2.7e-10; // H + CH2 -> CH + H2
                                                                  A[1][4][0][6]=1.50e-7;
                                                                  A[1][4][1][2]=2.59e-9;
     k table[125][i]= 7.0e-14 * pow(T300, 2.80) * exp(-1950.0/T
     k_table[126][i]= 6.83e-12 * pow(T300, 1.60) * exp(-9720.0/'
     k_table[127][i]= 3.3e-10 * exp(-8460.0/T[i]);
                                                                  //vI=2
     k_table[128][i]= 6.64e-10 * exp(-11700.0/T[i]);
                                                                  A[2][4][0][2]=2.38e-7;
     k table[129][i]= 3.43e-13 * pow(T300, 2.67) * exp(-3160.0/! A[2][4][0][4]=1.25e-7;
                                                                  A[2][4][0][6]=4.72e-8;
                                                                  A[2][4][1][2]=5.60e-7;
                                                                  A[2][4][1][4]=3.91e-7;
                                                                  A[2][4][1][6]=2.28e-7;
```

Hyper-accreting protostar

A "classic" picture

The central protostar accretes the surrounding gas at a very large rate:

 $dM/dt \propto T^{1.5}/G$ = 0.01-0.1 M_{sun}/yr

The mass and the fate of a star

mass lifetime fate

1 solar ~ 10 billion years white dwarf

10 ~ 10 million years supernova

200 ~ 2 million years energetic
 > 1 million times brighter supernova than the sun

Protostars grow through gas accretion, mergers, plus, protostellar feedback over ~ 100,000 years

> The Key Question How and when does a first star stop growing ?

Pressure-driven outflow around a protostar

Bi-polar HII regions vs accretion flow.

Self-regulation mechanism.

McKee-Tan08; Hosokawa+11; Stacey+12

Final mass of a first star

A long standing puzzle … resolved.

Metal-poor stars were formed from a gas cloud enriched by the first supernova explosions

100 First Stars

Hirano, NY+ 2014, ApJ

Cosmological hydro simulation + radiation-hydro calculation of protostellar evolution

100 star forming clouds located in the cosmological volume.

Characteristic mass of the first stars

Toward Primordial IMF

Imagine this enormous effort...

The result : final masses

evolutionary paths

Hunting for the first supernova explosions

Tanaka, Moriya, NY, Nomoto 2012, MNRAS, 422, 2675 Moriya et al. 2013, MNRAS, 428, 1020 Tanaka, Moriya, NY, arxiv 1306.3743

Distant supernova

Type IIn at z=2.4

Cooke et al. 2009, 2012, Nature

Super-luminous

supernovae

absolute magnitude

Powered by shockinteraction with dense gas cloud

Bright in ultra-violet

Death of a very massive star (> 50 Msun?)

Super-Luminous SN

Powered by shockinteraction with dense CSM.

Bright in rest-UV

Death of a very massive star (> 50 Msun?)

Monte-Carlo Simulation

Subaru-HSC 2014-

	Area	Δt	n_1	n_2	Limiting magnitude*				
	(deg^2)	(day)			m_g	m_r	m_i	m_z	m_y
Subaru/HSC Deep	30	6	2	3	26.1	25.8	25.6	24.5	23.2
Subaru/HSC Ultra Deep	3.5	6	3	4	26.9	26.6	26.6	25.6	24.3

Probing stellar mass

N (z=3-6)

Γ

Future surveys

Redshift Tanaka, Moriya, NY 2013

Redshift

First blackholes

Blackhole mass

Blackhole seeds: Rees diagram

PopIII remnant

Volonteri 2012, Science

via a super-massive star

Direct collapse model

Gravitational stability

Blackhole growth

10

Summary

- Formation of massive primordial stars as origin of objects in the early universe
- Supernova explosions might be visible to the most distant places
- Rapid growth of a primordial star makes a supermassive star and possibly a BH