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How a wave packet propagates at a speed 
faster than the speed of light

A novel superluminal mechanism 
with high transmission and broad bandwidth

Tsun-Hsu Chang (張存續)
Department of Physics, National Tsing Hua University

Claim: The phenomena we present here do not violate the 
special relativity, which is a cornerstone of the modern 
understanding of physics for more than a century.
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The Fastest Person
Usain Bolt is a Jamaican sprinter widely regarded as the fastest 
person ever. 100 m in 9.58 s, Speed ~ 10 m/s

.[
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Top Speed of Racing Car: Formula 1

The 2005 BAR-Honda set an unofficial speed record of 413 
km/h at Bonneville Speedway. Speed ~ 115 m/s

.[
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Flight Airspeed Record: SR-71 Blackbird

The SR-71 Blackbird is the current record-holder for a 
manned air breathing jet aircraft. 3530 km/h ~ 980 m/s
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Controlled Flight Airspeed Record: 
Space Shuttle

Fastest manually controlled flight in atmosphere during 
atmospheric reentry of STS-2 mission is 28000 km/h ~ 7777 m/s.
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Highest Particle Speed: LEP Collider
The Large Electron–Positron Collider (LEP) is one of the largest 
particle accelerators ever constructed.  The LEP collider energy 
eventually topped at 209 GeV with a Lorentz factor γ over 200,000.  
LEP still holds the particle accelerator speed record.

Matter cannot exceed the speed of light in vacuum.
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The index of refraction n(ω) is a function of frequency.
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Superluminal Mechanism: Anomalous dispersion
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See waves in a dielectric medium [Jackson Chap. 7]



Anomalous Dispersion: Waves in a dielectric medium

Properties of ε: 
When ω is near each ωj (binding frequency of the jth group of 
electrons), ε exhibits resonant behavior in the form of anomalous 
dispersion and resonant absorption.
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PA: Polyamides are semi-crystalline polymers.
The data was measured with a THz-TDS system.
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The tunneling effect

The microwave propagating in a waveguide system seems to be  
analogous to the behavior of a one-dimensional matter wave. 
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Comparing with the matter wave, the electromagnetic wave is 
much more easier to implement in experiment.  
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 Anomalous dispersion and tunneling effect are the two major 
mechanisms for the superluminal phenomena.  

 Both mechanisms involve evanescent waves, which means 
waves cannot propagate inside the region of interest.

Summary #1 
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Part II. Analogies Between 
Schrödinger’s Equation and 

Maxwell’s Equation
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Analogies Between Schrodinger and Maxwell Equations

Maxwell’s wave equation
for a TE waveguide mode

Time-independent 
Schrodinger’s equation
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Anything else? Transmission and reflection coefficients
Probability and energy velocities
Group and phase velocities
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Transmission for a Rectangular Potential Barrier
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By analogy, the transmission parameter of an electromagnetic wave
can be expressed as
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Analogies Between Probability and Energy Velocities

Quantum Mechanics:
Probability velocity

Electromagnetism:
Energy Velocity

Can we use EM wave to study a long-standing debate in QM, 
i.e. the tunneling time?
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 Superluminal effect is common to many wave phenomena. 

 The matter wave and the electromagnetic wave share many 
common characteristics.  

Summary #2 

The moment of truth: 
Put the idea to the test in a 3D-EM system.
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Part III. Modal Analysis:

Effect of high-order modes 
on tunneling characteristics

H. Y. Yao and T. H. Chang,  “Effect of high-order modes on tunneling characteristics", Progress In 
Electromagnetics Research, PIER, 101, 291-306, 2010.
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Geometric and material discontinuities
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Transmission amplitude for two systems
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Group delay for two systems
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Modal Effect
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It is a 3-D problem.
Modal effect should be considered.
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Complete wave functions and boundary conditions
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Modal Effect Corrects the Problems (I)
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Modal Effect Corrects the Problems (II)
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 Model effect plays an important role for a 3D discontinuity. 

 To achieve a better agreement between the theory and 
experiment in a quantum tunneling system, the model effect 
should be considered.    

Summary #3 
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Part IV. Superluminal Effect:
Theoretical and Experimental Studies

a new mechanism

H. Y. Yao and T. H. Chang, Progress In Electromagnetics Research, PIER 122, 1-13 (2012).

Transmitted/Reflected Properties due to Modal Effect 
I II(a)
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The existence of the higher order modes (evanescent waves) 
will modify the amplitude and phase of the dominant mode. 



Group Delay Measurement
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Experiment data and analysis

We can get the information from oscilloscope!



Experimental Result
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Effect of Waveguide Height
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Effect of Waveguide Length
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 A new mechanism of the superluminal effect has been 
theoretically analyzed and experimentally demonstrated. 

 In contrast to the two traditional mechanisms which all 
involve evanescent waves, this mechanism employs 
propagating waves.  

 This mechanism features high transmission and broad 
bandwidth.  

Summary #4 
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Part V. Manipulate the Group Delay

H. Y. Yao, N. C. Chen, T. H. Chang, and H. G. Winful, Phys. Rev. A 86, 053832 (2012).

Superluminality 
in a Fabry-Pérot Interferometer
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Manipulate the Group Delay

37

Group Delay Analysis
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Group Delay Analysis II
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( ) ( )0 02 2 2T
g d d MR t r MR Rf fφ φτ τ τ τ τ τ= + + + +

Dwell time: 
 Effective time for the signal staying within the system excluding boundary 

dispersion effect.
 Lifetime of stored field energy escaping through the both ends (B1 and B2) of FP 

cavity excluding boundary dispersion effect.

Boundary transmission times:
Effective transmission time for the signal passing through the both boundaries of 

FP cavity. 

Boundary reflection time:
 Effective reflection time accumulated from signal reflecting on the both 

boundaries of FP cavity (modified by multiple-reflection factor).

Dispersive time: 
 due to frequency-dependent reflectivity
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Slow Wave and Fast Wave Criteria 
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Is it possible that the group delay becomes negative? 

On-resonance constructive interference: Slow wave
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Off-resonance destructive interference: Fast wave
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Yes, it is possible in a birefringent waveguide system. 



Negative Group Delays 
in a Birefringent Waveguide
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Negative Group Delays
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(a) Transmission and phase

(b) Group delay when Φ= 45o

(c) The time-domain profiles of the 
incident and transmitted pulses.



Adjustable Group Delays & Summary #5
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 We have demonstrated a 
negative group delay in an 
anisotropic waveguide 
system. 

 This study provides a means 
to control the group delay by 
simply changing the 
polarization azimuth of the 
incident wave.
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Conclusions

Information velocity: The speed at which information is  
transmitted through a particular medium.

Signal velocity: The speed at which a wave carries information.
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