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Claim: The phenomena we present here do not violate the
special relativity, which is a cornerstone of the modern
understanding of physics for more than a century.
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The Fastest Per son

Usain Bolt is a Jamaican sprinter widely regarded as the fastest
person ever. 100 m in 9.58 s, Speed ~ 10 m/s

PROFILE )

Height: 6'5" (1.95 metres)

Weight (approximate): 207 Ibs (93.89 kg)
Place of Birth: Trelawny, Jamaica

Date of Birth: 21 August 1986

Place of Residence: Kingston, Jamaica

WORLD RECORDS

2009 WORLD CHAMPIONSHIPS - BERLIN
100m - 9.58 Seconds
200m - 19.19 Seconds

2008 OLYMPICS - BEJING CHINA
100m - 9.69 Seconds

200m - 19.30 Seconds

4x100m - 37.10 Seconds

WORLD JUNIOR CHAMPION 2002
(KINGSTON, JAMAICA)

WORLD JUNIOR RECORD (2004)
200m - 19.93 Seconds

Top Speed of Racing Car: Formula 1

The 2005 BAR-Honda set an unofficial speed record of 413
km/h at Bonneville Speedway. Speed ~ 115 m/s




Flight Airspeed Record: SR-71 Blackbird

The SR-71 Blackbird is the current record-holder for a

Controlled Flight Airspeed Record:
Space Shuttle

Fastest manually controlled flight in atmosphere during
atmospheric reentry of STS-2 mission is 28000 km/h ~ 7777 m/s.




Highest Particle Speed: LEP Collider

The Large Electron—Positron Collider (LEP) is one of the largest
particle accelerators ever constructed. The LEP collider energy
eventually topped at 209 GeV with a Lorentz factor y over 200,000.
LEP still holds the particle accelerator speed record.
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Matter cannot exceed the speed of light in vacuum.

How about wave?

Superluminal Mechanism: Anomalous dispersion

The index of refraction N(w) is a function of frequency. n(k) = a)c;kk)
n{w)
Phase velocity: v, = a)f(k) = n(Ck) (7.88)
. dw C
G locity: v, = = 7.89
TOHP YEIOCIY- Y dk n(w)+w(dn/dw) (7.89)
dg d(kL) _ L

Group delay: 7, = q q
w w V
g

See waves in a dielectric medium [Jackson Chap. 7]




Anomalous Dispersion: Waves in a dielectric medium

f. _ N 2
8:80+N92 I R e/t‘_/ (7.51)
m j (bound) Cz)j - — IC()}/J- WO — |0))/
Properties of & negligible (. f, = 0 or very small)

When @is near each @ (binding frequency of the j™ group of
electrons), € exhibits resonant behavior in the form of anomalous
dispersion and resonant absorption.
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The data was measured with a THz-TDS system.
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Thetunneling effect

E
. PEY) _,
V, m

The microwave propagating in a waveguide system seems to be
analogous to the behavior of a one-dimensional matter wave.

%

L
Comparing with the matter wave, the electromagnetic wave is
much more easier to implement in experiment.
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Summary #1

Anomalous dispersion and tunneling effect are the two major
mechanisms for the superluminal phenomena.

Both mechanisms involve evanescent waves, which means
waves cannot propagate inside the region of interest.
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Part II. Analogies Between
Schrodinger’s Equation and
Maxwell's Equation
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Anal ogies Between Schrodinger and Maxwell Equations

82

Maxwell's wave equation
for a TE waveguide mode
2

Time-independent
Schrodinger’s equation

az
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Anything else? =»Transmission and reflection coefficients
=>» Probability and energy velocities
=>» Group and phase velocities 13

Transmission for a Rectangular Potential Barrier

I II 1III
2
! l( V=Vo) ]sinh2(2l(a), where k2 :M

E<V QMiz=l+ V_EXEV) e

By analogy, the transmission parameter of an electromagnetic wave
can be expressed as

2 2 \2 Y 2
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Anal ogies Between Probability and Energy Vel ocities

Quantum Mechanics: Electromagnetism:
Probability velocity Energy Velocity
v = Ix : P P=[,& S
prob 2 " Ve =— 1 Lo o
‘ ‘ . U =EIA(E-D+B H)da

2(V-E) 2Im(T™) / 2Im(T)
m  [e™+|T|e”? +2Re(I)] : \/E (e +\F\2e‘2"z)+2Re(F)

E<v§a)<a)C

Can we use EM wave to study a long-standing debate in QM,

1.e. the tunneling time? s

2a
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E<V| QM: Tunneling Time Calculation At = X

0 Vprob
m 1 T 2 kZ
Al “\2V-E) 2Im(T") {[(
m 1 1 4@ 1y | etk
= /2(\/_E) 2Im(F*)[M((e )—|T (e 1))+4aRe(F)}

+|T]*€™%) + 2 Re(I")]dz

2a dX

Ve

w<a;| EM: Tunneling Time Calculation At=

0

! j (2% + [T €2¥%) + 2 Re(T")]dz
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A= @ - @ 2cIm(T”)
_ [ed?
W —

2¢Im(T") Ux (€ -D-[rf e -1+ 4aRe(F)}
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Summary #2

® Superluminal effect 1s common to many wave phenomena.

® The matter wave and the electromagnetic wave share many
common characteristics.

The moment of truth:
Put the idea to the test in a 3D-EM system.
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Part I1I. Modal Analysis:

Effect of high-order modes
on tunneling characteristics

H. Y. Yao and T. H. Chang, “Effect of high-order modes on tunneling characteristics", Progress In
Electromagnetics Research, PIER, 101, 291-306, 2010.

18




Geometric and material discontinuities

For TE,,mode 4, =& =l1forallregions
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Transmission amplitude for two systems

D= 2k1kze_;le . T=DxD"* . Transmission
2k k, cos(k,L)—i(k,” +k,")sin(k,L) amplitude

Theory B Theory
*  »HFSS simulation {experiment) * » HFSS simulation {experiment)
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Group delay for two systems

L _do

g

v. dw

g
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Phase time theory
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Modal Effect

Region I Region II Region III
(a) .
VAN Vo
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________ 0 tc)
It is a 3-D problem.

Modal effect should be considered.

22




Complete wave functions and boundary conditions
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Modal Effect Correctsthe Problems(l1)

Potential barrier
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Summary #3

® Model effect plays an important role for a 3D discontinuity.

To achieve a better agreement between the theory and
experiment in a quantum tunneling system, the model effect
should be considered.
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Part IV. Superluminal Effect:

Theoretical and Experimental Studies

a hew mechanism

H.Y. Yao and T. H. Chang, Progress In Electromagnetics Research, PIER 122, 1-13 (2012).

Transmitted/Reflected Properties due to Modal Effect
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The existence of the higher order modes (evanescent waves)
will modify the amplitude and phase of the dominant mode.
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Group Delay Measurement
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Experiment data and analysis

We can get the information from oscilloscope!

| .i ;i:|'5|| o '||||||ll’||||“‘|M 'l '|J ||"Ww| J illh | ""“ |
(i i




Experimental Result
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Effect of Waveguide Length
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Summary #4

® A new mechanism of the superluminal effect has been

theoretically analyzed and experimentally demonstrated.

® In contrast to the two traditional mechanisms which all
involve evanescent waves, this mechanism employs
propagating waves.

® This mechanism features high transmission and broad
bandwidth.
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Part V. Manipulate the Group Delay

H. Y. Yao, N. C. Chen, T. H. Chang, and H. G. Winful, Phys. Rev. A 86, 053832 (2012).
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Superluminality
in a Fabry-Pérot Interferometer
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Manipulate the Group Delay
(©)

(a)

Region I Region II Region III
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Group Delay Analysis 11

Ty = (740 + 274, fyr) + (2%t +27,, fMR)+ T,

Dwdll time; (Tdo +274, fMR)

=>» Effective time for the signal staying within the system excluding boundary
dispersion effect.

< Lifetime of stored field energy escaping through the both ends (B, and B;) of FP
cavity excluding boundary dispersion effect.

Boundary transmission times: 27,

=> Effective transmission time for the signal passing through the both boundaries of
FP cavity.

Boundary reflection time: 274 fur

=> Effective reflection time accumulated from signal reflecting on the both
boundaries of FP cavity (modified by multiple-reflection factor).

Dispersivetime: 74
=> due to frequency-dependent reflectivity

Slow Wave and Fast Wave Criteria

On-resonance constructive interference: Slow wave

T(on) _ 1+R,j L d¢t d¢t, (2d¢r’j( R, )
o (I—R/ v, | do do \“de \I-R

Off-resonance destructive inter ference: Fast wave
Tmﬁ):(l—wj L +d¢t+d¢;_(2d¢;j[ R J
g
1+R)\vy | do do do \1+R

Is it possible that the group delay becomes negative?

Yes, it is possible in a birefringent waveguide system.




Negative Group Delays
in a Birefringent Waveguide

(a) Anisotropic waveguide system
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Output pulse profile

Negative Group Delays

® Expt.
8 BS theory
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¢ (a) Transmission and phase
(b) Group delay when ®= 45°

z (c) The time-domain profiles of the
incident and transmitted pulses.

The black dots are the measured data,
while the blue squares represent the
theoretical results. The red curves are
the simulation results.
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Adjustable Group Delays & Summary #5

® We have demonstrated a
= negative group delay in an

(ns)

b
kY
ned spectrum

> 6 2> . . :
E £ anisotropic waveguide
o 0 —
5 2= system.
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31 315 32 325 33 335 34 ® This study provides a means
Frequency (GHz) to control the group delay by
simply changing the

polarization azimuth of the
incident wave.

Normalized pulse
profile (arb. units)
= 2
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Phase velocity: v, =

Group velocity: Vg = ak

Group delay: 7, = q apparent group velocity or phase time

X

Probability velocity: Vorob =5
4

Energy velocity: Vg = U

Information velocity: The speed at which information is
transmitted through a particular medium.

Signal velocity: The speed at which a wave carries information.
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