	Outline	
Charge, Spin, and Heat Transport in the Proximity of Metal/Ferromagnet Interface	 Introduction 1G and 2G Spintronic devices Spin current Spin Hall effect 	
Ssu-Yen Huang	 Spin Seebeck Effect (SSE) Entangled with anomalous Nernst effect (ANE) Intrinsic spin-dependent thermal transport Entangled with magnetic proximity effect (MPE) 	
Johns Hopkins University	 Intrinsic Spin Seebeck effect New MR by MPE (or Spin Hall MR) Summary 	

Hall effect An	omalous Hall effe	ect Spin Hall effect	
1879		2004	
Ordinary Hall effect with magnetic field H Hall voltage but no spin accumulation	Anomalous Hall effect with magnetization M (carrier spin polarization) Hall voltage and spin accumulation	(Pure) spin Hall effect no magnetic field necessary No Hall voltage but spin accumulation n-Orbit Coupling	
Only Charge Detect by voltage	Charge + Spin Detect by voltage	Only Spin Why? Detect by what ?	
F=q (E+ V×B) AHE can be either sign SHE can be either sign Definite Sign q(v×B) Definite Axis but Not Definite Sign			
(Nagaosa et al.,)			

6

Comparison of Pt/YIG and Au/YIG				
	Pt/YIG vs. Au/YIG			
Spin Seebeck	50x larger	Observed		
New MR	Yes	No		
Anomalous Hall	Yes	No		
Moment (Theory)	Yes	No		
Moment (XMCD)	Yes	Not observed		

		New MR vs.	Spin Hall Mi	र	
		Experimental observation	Induced Moment ? (AHE, XMCD)	Spin Hall MR Prediction ?	
	Pt/YIG	New MR	Yes	Yes	
1	Pt/Py	AMR + New MR	Yes	?	
	Pt/YIG _{BB}	New MR	Yes	?	
	Au/Py	AMR	No	?	
	Au/YIG	No new MR	No	?	
New MR observed in cases with induced moments					
	Magnetic proximity effect accounts for all cases				

Summary

- Transverse Spin Seebeck (V_xT) (metals, semiconductors, insulators): <u>Entanglement</u> with anomalous Nernst (V_zT) <u>Intrinsic spin-dependent thermal</u> transport on substrate free sample
- Longitudinal Spin Seebeck Effect (ferromagnetic insulators): <u>Complicated Magnetic proximity effects</u> in Pt <u>Entanglement of SSE and ANE</u>
- New MR in FM metals and Insulator

new MR in Pt/YIG, Py/YIG, Pt/YIG_{BB}, and Pt/Py
 <u>No</u> new MR in Au/YIG and Au/Py

New MR by magnetic proximity effect or Spin Hall MR ?

Pt is not an ideal spin current detector (magnetic proximity effects):
 Au is better spin current detector

Acknowledgement

- Johns Hopkins University: Prof. Chia-Ling Chien, Danru Qu, Bingfeng Miao
- University of Arizona: Prof. Weigang Wang
- National Tsing Hua University: Prof. J. Raynien Kwo
- Academia Sinica: Dr. Shang-Fan Lee
- University of Delaware: Prof. John Q. Xiao
- Arizona State University: Prof. Tingyong Chen
- University of California, irvine: Prof. Ruaiqn Wu
- Chinese Academy of Science: Prof. Jianwang Cai

