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The Initial Expansion was Fast
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Stanford Professor Andrei Linde celebrates physics breakthrough
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Assistant Professor Chao-Lin Kuo surprises Professor Andrei
Linde with evidence that supports cosmic inflation theory. The
discovery, made by Kuo and his colleagues at the BICEP2
experiment, represents the first images of gravitational waves,
or ripples in space-time. These waves have been described as
the “first tremors of the Big Bang.”
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The Universe is Still Expanding...

Hubble and others found that ER: "
distant galaxies all appear to be 3 38r ,
receding from us, with recession = 3s} o
speed (“redshift”) proportional to £ ,,f %
distance. 2 L&

“Redshift”



The Universe is Still Expanding...

Hubble and others found that 2 f .
distant galaxies all appear to be 3 8¢ e
receding from us, with recession < 3sf 8 4
speed (“redshift’) proportional to £ ,,f %
distance. 2 pa

Hubble’s Law
Is what you
getin a
uniformly
expanding
Universe



... And at an Accelerating Rate

Type la Supernovae are
“standard candles” - their
brightness tells you their
distance, and they are
very luminous

3 Weeks Supernova
Befare Discovery

© ¢ (as seen from
* telescopes
on Earth)
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Why?



Dark Energy

Albrecht et al 2006 Dark Energy Task Force report



Dark Energy

“Dark energy appears to be the dominant component of
the physical Universe, yet there is no persuasive
theoretical explanation for its existence or
magnitude.”

Albrecht et al 2006 Dark Energy Task Force report



Dark Energy

“Dark energy appears to be the dominant component of
the physical Universe, yet there is no persuasive
theoretical explanation for its existence or
magnitude.”

“The nature of dark energy ranks among the very most
compelling of all outstanding problems in physical
science.These circumstances demand an ambitious
observational program to determine the dark energy
properties as well as possible.”

Albrecht et al 2006 Dark Energy Task Force report



The Expansion of the Universe has been Accelerating
Measuring distance as a function of redshift quantifies this history
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The Expansion of the Universe has been Accelerating
Measuring distance as a function of redshift quantifies this history
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Standard candles, rulers, buckets, timers etc

* Type la supernovae: standard candles



Standard candles, rulers, buckets, timers etc

* Type la supernovae: standard candles

* Fluctuations in the Cosmic Microwave Background radiation
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* Type la supernovae: standard candles

Standard candles, rulers, buckets, timers etc

* Fluctuations in the Cosmic Microwave Background radiation
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Standard candles, rulers, buckets, timers etc

* Type la supernovae: standard candles

* Fluctuations in the Cosmlc Mlcrowave Background radiation
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Standard candles, rulers, buckets, timers etc

* Type la supernovae: standard candles

* Fluctuations in the Cosmic Microwave Background radiation
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What is this?



Here’s 4% of it in detail



Here it is, slightly better measured



Standard candles, rulers, buckets, timers etc

* Type la supernovae: standard candles

* Fluctuations in the Cosmic Microwave Background radiation
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Gravitational Lensing

Weak lensing
(small distortions, ubiquitous)

Strong lensing
(multiple imaging, rare)




Strongly Lensed Galaxies
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SLACS: The Sloan Lens ACS Survey

A. Bolton (U. Hawai'i IfA), L. Koopmans (Kapteyn), T. Treu (UCSB), R. Gavazzi (IAP Paris), L. Moustakas (JPL/Caltech), S. Burles (MIT)

Image credit: A. Bolton, for the SLACS team and NASA/ESA

www.SLACS.org




Strongly Lensed AGN

Point-like, variable sources



Time Delay Gravitational Lenses

Point-like, variable sources:

different path lengths,
different travel times
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B1608+656 Variability in Radio Observations

Credits: 5, H, Suyy, C, D, Fassnacht, NRAQ/AUINSF




Time delay distances

Signals from the AGN appear at different times -
this effect can be predicted with a model of the lens:

Image position Source

position Lens potential




Time delay distances

Signals from the AGN appear at different times -
this effect can be predicted with a model of the lens:

t =

Image position Source
position

Lens potential

We can only measure time delays At: these can be
predicted as Atas =D X (1/ca’ - 1/cg’)

Compare predicted and observed time delays with
likelihood function Pr(obs|pred) - multiply by terms for
image positions, arc surface brightness etc, infer D(Ho,w)



51008 ooqgle ap R PFaradiso QEE
File Edit View History Bookmarks Tools Help

v & € 4 [*¥ nttp://maps.google.com/ ﬂLJ [Cl~ Fermat would have loved this
*§ B1608 - Google Maps % | v
Web Images Videos Maps News Shopping Gmail more ¥ dr.phil.marshall@gmail.com | My Profile | My Account | Help | Sign out
’G(_)L )8|C maps | Search Maps | Show search options
Get Directions My Maps & J RSS lﬁ,*lPrin'c B-] Send ?Lk
—— — wyr (238 : o ST R—
Collaborate [ Traffic  |{ More... [ map | satelite | Terrain |

VAT STHTE,

Eberly Recreation Area

Ardenwicod 8 > (@ i:i’
: % Fremont Valiey

San Jose Time Delays

lllustrating lens time delays - 4 routes, we know the lL
average speeds for each (because we have a model for [ , h Miced
the traffic conditions!) and we measure the relative arrival l - ,/f‘ g Newark n 8 'gi';!#g‘" Josg
times of four cars, in minutes. What's the map scale? ¢ .

ol Regional

; Ohlone Regicnal
Vilderness

Wilderness

* Measure route lengths x in inches on the map i

‘_._®;[____ -

* Assume all cars leave atthe same time, and use the E;51
average speeds v provided |'lorth Palo Alto
Fa @ Oaks .

* Each time delay gives an (almost) independent estimate Menl :Park

of the map scale A, in inches per mile: (e

Calaveras
Reservoir

(x2/v2 -x1/v1) = A*delay(2-1) Alviso

14 views - Public . ierrame
ted on Jan 14 - Updated < 1 minute ago Laders Castro City By,
By 5 Los Altos  Mountain (3D “Hly A LS,
Rate this map - Write a comment v falo View SPEED ieta San Jose 5
' - SUnvale LIMIT | natonal siort
“a\l] Bright Variable Source Palo Alto e
o Foothils Park ?- 3 5 = % 5
3 e
; ; ; 3 Reid-Hillview
Route 1 (280): 39.3 mph, arrives first @ = San Jose @ 4 of Santa Clara
45.9 mi -about 1 hour 6 mins (up to 1 hour 10 mins in Antanio Co Park b 3 ’ il m County Airpo
- SunolEMigtown
Route 2 (85): 39.9 mph, delay=4mins ige M onk te Bello E@‘“ﬁm"i"ﬁ‘——‘z’&&r

49.2 mi - about 1 hour 11 mins (up to 1 hour 14 minsin ¢ Albanceg Evergreen

Willow Glen %,

D) @ % A
©, ¥y @
- !
3

Campbell : 7 o' _‘»’ 1
tral Park = b
Cambrian % 2

e Park
e
hte:

Castie Rock ENO ak Ridge

ik & %o,
L 05 Gatos B Piffer uming l'o,.
(i ©2009 Géogle - Map data ©2009 Goog@c Bsrms of Use [Report 2 problem =

| Done | B

Route 3 (101): 33.9 mph, delay=10mins
45.2mi -about 1 hour 15 mins (up to 1 hour 20 mins in

Route 4 (Dumbarton Bridge): 33.9 mph, delay=30mins
56.5 mi - about 1 hour 28 mins (up to 1 hour 40 mins i

Observer ]

3

spuiit




Outline

Dark Energy from B1608 and RXJ1131
*Time delay lens cosmography with LSST




Two Accurate Time-Delay Distances
from Strong Lensing:

Implications for Cosmology

Sherry Suyu (ASIAA)
Matt Auger (loA), Stefan Hilbert (MPE),

Phil Marshall (KIPAC), Tommaso Treu (UCSB),
Malte Tewes, Frederic Courbin, Georges Meylan (EPFL),
Chris Fassnacht (UC Davis), Roger Blandford (KIPAC),
Leon Koopmans (Kapteyn), Dominique Sluse (AIFA)

RXJ1131 & B1608 cosmography: Suyu et al (2013), astro-ph/1208.6010
RXJ1131 time delays: Tewes et al (2013), astro-ph/1208.6009
B1608 modeling: Suyu et al (2010), astro-ph/0910.2773



Precision Time Delays

A ~ day 127

C ~ day 131 -
.k
D~ day 172

B ~ day 95
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B1608+656 Variability in Radio Observations
Credits: 5, H, Suyy, C, D, Fassnacht, NRAQ/AUINSF

VLA monitoring campaign

Relative time delays:
Atyg = 31.5*22 days
Af5=36.0 + 1.5 days
Atpg=77.0*23 days

(Fassnacht et al. 1999, 2002)



Precision Time Delays

RXJ1131 is optically variable, monitored by the
COSMOGRAIL team. Long-term monitoring essential
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Lens modeling

Model the lens mass distribution, to predict the time
delays and derive the distance.

Q: How do you model
a gravitational lens?

z,= 0.63 [Myers et al. 1995]
z_= 1.39 [Fassnacht et al. 1996]



http://www.slac.stanford.edu/~pjm/lensing/wineglasses




Lens modeling

Q: How do you model
NV 5 Model surface
a gravitational lens” “| brightness 1(3)

Look up
predicted
surface
brightness L 0

I(9(,3))




B1608+656: lens model

2 elliptically-symmetric, power-law density profile (index y), galaxies,

plus pixelated linear corrections to lens potential; gOOd fit o
HST/ACS imaging, after dust correction, and radio image positions

Predicted Dato

8, / orcsec

Hormmalzed Image Res: =8

S(_)urce reconstruction on a
grid of pixels




B1608+656: lens model

2 elliptically-symmetric, power-law density profile (index y), galaxies,

plus pixelated linear corrections to lens potential; gOOd fit o
HST/ACS imaging, after dust correction, and radio image positions

Frac of Accum Pot Corr: it=8

L Potential is smooth to 2%! '



RXJ1131-1231

Bright, quad-lensed quasar, observed with HST/ACS.
Modeled in the same way as B1608
Observed Predicted Arc Predicted AGNs & Lens
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Inferring cosmological parameters

Let ™= {Ho, 2, Qa,w} (cosmological parameters)
¢ = {m,v} (all model parameters)

We are after the posterior PDF for v given the data,
marginalised over the nuisance parameters v:

P(7l'|dAcs,At,O') = /dI/P(ﬁldAcs,At,O')

where {Eﬂ
P(&|dacs, At, o) 0<£(dAcs|€)P(At|§)P(U|€/P(§)

3-dataset likelihood

Method: importance sample from WMAPS Pr(z) and
Pr(v), using 3-dataset likelihood. What are v and Pr(v)?



“Mass-sheet” model degeneracy
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Lens mass, profile slope and 0

line of sight mass distribution  JUSRICELSUISICECIEELT
are all degenerate we need more information about the

mass distribution:
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The source gets strongly
lensed by the lens galaxy -
and weakly lensed by
everything else

The combined weak
lensing effect mimics a lens
with a different density
profile - and makes the time
delays different
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“External Convergence”

AAAAAA
AAAAAAAAA

TTTTTTT

The B1608+656 field
has twice the average

galaxy density
(Fassnacht et al. 2009)

Use this observation to
calibrate simulations of
mass along line of sight
to strong lenses, and
estimate convergence




The Millennium Simulation

Ray tracing to find lines of sight
to strong lenses, including
stellar mass (Hilbert et al 2008)

Approximation: sum up
mass in planes to estimate

Kext @Nd its PDF
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External Convergence Pr(Kext)
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* Only choosing fields with 2x
over-dense in galaxy number
counts (like B1608) gives a

broader, offset Pr(K,)




RXJ1131-1231

Model requires external shear, consistent with nearby foreground
cluster. Include shear in the ray tracmg Koy @Nnalysis

~all
— — — all, weighted
1.35<n,<145
—-135<n, <145, weighted

P df(Kext)
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Kext




Inferring cosmological parameters

Let ™= {Ho, 2, Qa,w} (cosmological parameters)
¢ = {m,v} (all model parameters)

We are after the posterior PDF for 7 given the data,
marginalised over the nuisance parameters v:

P(7l'|dAcs,At,O') = /dI/P(ﬁldAcs,At,O')

where {Eﬂ
P(&|dacs, At, o) 0<£(dAcs|€)P(At|§)P(U|€/P(§)

3-dataset likelihood

Method: importance sample from WMAPS Pr(mr) and
Millenium Simulation Pr(k.,;), using 3-dataset likelihood



Dark Energy from B1608
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Dark Energy from B1608

Ho W Kext
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Dark Energy from B1608

Ho W Kext
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This one lens was more informative

<2 -0 02 than the HST key project, and

ﬁ
Ji ) comparable to SDSS+2DF BAO

30 50 70 90 110 Hy/ kms—! NII)C_1 w
Ho WMAP5P 74705 20%  —1.0617 07, 42%
WMAP5+HST KP#b:c 7217174 10%  —1.01102  23%
WMAP5+SNaP.d 69.4 116 2.3% —0.97719-96% ¢ 5%

WMAP5+BAO2b-e 73.9%71 6.6% —1.15102) 22%

WMAP5+Riess' 74.2 + 3.68 50% —1.124+0.12 12%
WMAP5+B1608 69.7122 6.9% —0.941017 18%




RXJ1131-1231 + B1608+656

cosmological parameter analysis

—_— e =

WMAP7 + BAO | WMAP7 + BAO

WMAP7 + SN WMAP7 +SN
— WMAP7 + RXJ1131 + B1608 1 — \WWMAP7 + RXJ1131 + B1608

05 = ‘ T T T T T
40 50 60 70 80 90 100 -25 20 -15 -10 -05

Ho [km's™' Mpc™'] W

oQk(x10)@ |
OwCDM model: variable w and curvature * %w ]

° —
* Curvature well-constrained
* Interesting tension between Da and D ?

Percent Precision

Bl B |

SDSS BAO Lenses SN Cepheids Rec. BAO




Next Steps

 To reach precision on w, and to check for

residual systematic errors, we need
:(v-

* Time delays coming from COSMOGRAIL
project, HST data for modeling being analyzed
by Wong & Suyu at ASIAA




Conclusions, Outlook

* Time delay lenses are an interesting
independent cosmological probe, with very
different systematics to BAO, SNe etc but
providing comparable precision

* To reach sub-percent precision on Ho(w), we
would need time delay lens systems,
each as well-measured as B1608

* Future samples of time-delay lenses could be a
competitive cosmological probe -

but we are going to need to find a lot more,
and then measure them all...



Outline

Dark Energy from B1608 and RXJ1131
*Time delay lens cosmography with LSST




Large Synoptic Su

rvey Telescope

Overview

High etendue survey telescope:

* 5.7m effective aperture

* 10 sq degree field

* 24 mag in 30 seconds

* Visible sky mapped every few nights
* Cerro Pachon, Chile: 0.7” seeing

Ten year movie of the
entire Southern sky

* 120 Petabytes of data
(1Pb = every book ever published)

* All data to be made public: nightly
transient alerts, yearly data releases
starting 2021 (+2yrs, worldwide)
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Status

* Top-ranked ground-based project in the Astro 2010
Decadal Survey of US astronomy
* Joint NSF & DoE project (astronomers and HE physicists)

Large Synoptic Survey Telescope

* Now approved: federal
construction funding in the
2014 President’s budget

* Primary/Tertiary mirror was
finished September 2013

* First light in 2019, 2 years
commissioning, survey to | =
start in 2021

* Science collaborations, over 400 members. International
affiliates negotiating to join, & contribute to operating costs.
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The LSST survey

« 20000 sq deg

« 6 filters, ugrizy

- 10 years planned, 800
visits per field

- 3 - 14 day cadence

- depth ~ 24 mag per visit,
~ 27 mag after 10 years

» resolution 0.4-1.0”

http://www.lsst.org


http://www.lsst.org/lsst/scibook
http://www.lsst.org/lsst/scibook













The LSST image archive will
contain a /ot of lenses

% 104> galaxy-scale lenses, 1000s of clusters...

CFHTLS images + Space Warps sims, SL2S lenses (More, Marshall et al)



How many lensed quasars?

QSO (detected)

QSO (measured)

Survey Nnonlens Nlens Nhonlens Nlens
SDSS-I1 1.18 x 105 [ 26.3 (15%) 3.82 x 10* [ 7.6 (18%)
SNLS 9.23 x 10° | 3.2 (12%) 3.45 x 103 | 1.1 (13%)
PS1/3m 7.52 x 106 | 1963 (16%) e .
PS1/MDS 9.55 x 10* | 30.3 (13%) 3.49 x 10* | 9.9 (14%)
DES /wide 3.68 x 106 | 1146 (14%) e .

DES /deep 1.26 x 104 | 4.4 (12%) 6.05 x 103 2. ( %)
HSC /wide 1.76 x 10 | 614 (13%)

HSC/deep 7.06 x 10* | 20.7 (1291.) 4.30 x 104 | 15.3 (13“* )
JDEM/SNAP 5.00 x 10* | 21.8 (12%) 5.00 x 10* | 21.8 (12%)
LSST 2.35 x 107 | 8101 ( 3%)) 0.97 x 106 3150 (14%) )




How many lensed quasars?

QSO (detected)

QSO (measured)

Survey Nnonlens Nlens Nhonlens Nlens
SDSS-II 1.18 x 105 [ 26.3 (15%)) 3.82x 10¢ [ 7.6 (18%) )
SNLS 0.23 x 103 | 3.2 (12%) 3.45 x 103 | 1.1 (13%)
PS1/3w 7.52 x 106 | 1963 (16%) - ..
PS1/MDS 9.55 x 10* | 30.3 (13%) 3.49 x 10* | 9.9 (14%)
DES /wide 3.68 x 108 | 1146 (14%) - ‘.
DES /deep 1.26 x 104 | 4.4 (12%) 6.05 x 103 | 2.0 (13%)
HSC/wide 1.76 x 10 | 614 (13%) . -
HSC/deep 7.96 x 104 | 29.7 (12%) 4.30 x 10% | 15.3 (13%)
JDEM/SNAP 5.00 x 10* | 21.8 (12%) 5.00 x 10* | 21.8 (12%)
(LSST 2.35 x 107 | 8191 (13%) 9.97 x 106 | 3150 (14%) )

)

*LSST should detect ~8000 lenses (1000 quads)



How many lensed quasars?

QSO (detected)

QSO (measured)

Survey Nnonlens Nlens Nhonlens Nlens
SDSS-II 1.18 x 105 [ 26.3 (15%)) 3.82x 10¢ [ 7.6 (18%) )
SNLS 9.23 x 10% | 3.2 (12%) 3.45 x 10 | 1.1 (13%)
(PS1/3w 7.52 x 108 | 1963 (16%) | ) e ..
PS1/MDS 9.55 x 10* | 30.3 (13%) 3.49 x 10* | 9.9 (14%)
(DES‘;"\\-’ide 3.68 x 106 1146 (14%) e e
DES /deep 1.26 x 104 | 4.4 (12%) 6.05 x 103 | 2.0 (13%)
(HSC/wide 1.76 x 10 | 614 (13%) -
HSC/deep 7.96 x 10* | 20.7 (12%) 4.30 x 104 | 15.3 (13%)
JDEM/SNAP 5.00 x 10* | 21.8 (12%) 5.00 x 10* | 21.8 (12%)
(LSST 2.35 x 107 | 8191 (13%) 9.97 x 106 | 3150 (14%) )

)

*LSST should detect ~8000 lenses (1000 quads)
HSC, DES, PS1: ~3000 lenses (400 quads);



How many lensed quasars?

QSO (detected)

QSO (measured)

Survey Nnonlens Nlens Nhonlens Nlens
SDSS-II 1.18 x 105 ( 26.3 (15%) 3.82 x 104 [ 7.6 (18%)
SNLS 9.23 x 10° | 3.2 (12%) 3.45x 10° | 1.1 (13%)
PS1/3w 752 x 106 | 1963 (16%) |
PS1/MDS 9.55 x 10* | 30.3 (13%) | 3.49 x 10* | 9.9 (14%)
DES /wide 3.68 x 106 | 1146 (14%)
DES /deep 1.26 x 10+ | 4.4 .’1) t 6.05 x 103 | 2.0 (13%)
HSC/wide 1.76 x 10° | 614 (13
HSC/deep 7.96 x 10* | 29.7 (12¢ 4.30 x 104 15.3 (13%
JDEM/SNAP 5.00 x 10* = 21.8 (12 5.00 x 10* | 21.8 (12%)
LSST 2.35 x 107 | 8191 (13% .' 9.97 x 106 | 3150 (14%) |

*LSST should detect ~8000 lenses (1000 quads)

, PS1: ~3000 lenses (400 quads);
*Until LSST additional monitoring will be needed.
LSST itself should measure 3000 time delay

lenses, including 400 quads



Lens detection

Large Synoptic Survey Telescope

e Catalog-based candidate detection. Needs: good
deblender, the right parameters (color, morphology,
variability) saved, rapidly executable DB queries.

| é R
— Source, Object
L Tables

Detect, Deblend, SEEREEREEEE
- /[Cluster, MeasureJ ____________

A e




Lens detection

Large Synoptic Survey Telescope

e Catalog-based candidate detection. Needs: good
deblender, the right parameters (color, morphology,
variability) saved, rapidly executable DB queries.

e Image-based candidate classification. Needs:
access to postage stamp images at data center in a
“Multi-Fit,” via level 3 API, reliable PSF models and
Image registration. Joint w/ Euclid? Practise w/ HSC!

| [ N\
— Source, Object
L Tables

Detect, Deblend, SEEREEREEEE
- /[Cluster, MeasureJ ____________

A e




Lens detection

Large Synoptic Survey Telescope

e Catalog-based candidate detection. Needs: good
deblender, the right parameters (color, morphology,
variability) saved, rapidly executable DB queries.

* Image-based candidate classification. Needs:
access to postage stamp images at data center in a
“Multi-Fit,” via level 3 API, reliable PSF models and
image regqistration. Joint w/ Euclid? Practise w/ HSC!

e Candidate visualization for quality control. Needs:
optimally-viewable color images, potential for crowd-
sourcing

| [ N\
— Source, Object
L Tables

Detect, Deblend, SEEREEREEEE
- /[ClUSter, Measure] ------------

A e




Lens measurement

Large Synoptic Survey Telescope

|

|
<
S
d

400 600 800 1000 1200 1400 1600
t / days

200

0



Lens measurement

Large Synoptic Survey Telescope

* Time delay estimation. Needs:
good photocal, long seasons,
reqular sampling, optimal
lightcurve extraction, multi-filter
AGN/SN+microlensing model.
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AB magnitude

| | | | | | | |
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Time Delay Challenge

Goals:

1. Assess performance of current time delay estimation
algorithms on LSST-like data

2. Assess impact of baseline LSST observing strategy on time
delay accuracy, and possibly recommend changes

Plan:

e “Evil Team” to generate large set of simulated lightcurves
spanning expectations for Stage II-IV

e Challenge community “Good Teams” to infer time delays
blindly, and submit results

e Publish paper on results together

Evil Team:
Kai Liao, Greg Dobler, Tommaso Treu (UCSB), Chris Fassnacht,
Nick Rumbaugh (UCDavis), Phil Marshall (SLAC)



Time Delay Challenge

Goals:

1. Assess performance of current time delay estimation
algorithms on LSST-like data

2. Assess impact of baseline LSST observing strategy on time
delay accuracy, and possibly recommend changes

Plan:
e “Evil Team” to generate large set of simulated Iig%Q

spanning expectations for Stage II-IV “
e Challenge community “Good Teamg < e‘&

blindly, and submit results n‘
e Publish paper on re I;sw\
Y .

Evil »\“
Kai % obler, Tommaso Treu (UCSB), Chris Fassnacht,

Nick®Sumbaugh (UCDavis), Phil Marshall (SLAC)
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LSST TDC: example lightcurves
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TDCO: challenge qualifying

Metrics:

* Precision P

* Accuracy A

* Fraction f

* Goodness of fit

TDCO qualifying:

e ~50 datasets

e 7/ teams, 27
entries

* 3 teams have
beaten 15% P,
A so far

e Goal: A=0.2%

log P

I I |

e Shaded area = success
Ly
z? A u% b
o © )
nou T
1 | Liao (UCSB)
i T —
o ¥ | e 8
s & Tt
§ gi.am 1} 887 fo
1 ‘ ‘ 1
[ ¥3 BREA, 4
04 06 08 1.0 -2 -1 0 2 32101 2 3
f log P A



Lens measurement
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Lens measurement ?

* Time delay estimation. Needs:
good photocal, long seasons,
reqular sampling, optimal
lightcurve extraction, multi-filter
AGN/SN+microlensing model.
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Lens measurement

9

o0 o0
g g
g &8
A
— (=]
T+ T!
< al

| |

pnyusewr qy

400 600 800 1000 1200 1400 1600
t / days

200

0




Lens measurement ?

* Time delay estimation. Needs:
good photocal, long seasons,
reqular sampling, optimal
lightcurve extraction, multi-filter
AGN/SN+microlensing model.

AB magnitude




Lens measurement ?

AB magnitude
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* Time delay estimation. Needs:
good photocal, long seasons,
reqular sampling, optimal
lightcurve extraction, multi-filter
AGN/SN+microlensing model.

e Detailed pixel modeling. Needs:

high res follow-up: JWST, ELTs




Lens measurement ?

* Time delay estimation. Needs:
good photocal, long seasons,
reqular sampling, optimal
lightcurve extraction, multi-filter
AGN/SN+microlensing model.

e Detailed pixel modeling. Needs:

AB magnitude
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e Redshifts. Needs: deep spectra




Lens measurement ?

AB magnitude

I~}

23.5

| | | | | | |
0 200 400 600 800 1000 1200 1400 1600

t / days

* Time delay estimation. Needs:
good photocal, long seasons,
reqular sampling, optimal
lightcurve extraction, multi-filter
AGN/SN+microlensing model.

e Detailed pixel modeling. Needs:
high res follow-up: JWST, ELTs

e Redshifts. Needs: deep spectra
e Environment density

characterisation. Needs: M* and
Z (photo-z?) for all galaxies within
~5 arcmin radius




Lightcone reconstruction

Large Synoptic Survey Telescope
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Collett, Marshall et al 2013 in prep:

Line of sight mass reconstruction from photometric catalogs,
calibrated with and tested against the Millennium Simulation.
What will sub-percent distance accuracy take?



Lightcone reconstruction

P(k — Rtrue‘p)
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Line of sight mass reconstruction from photometric catalogs,

—0.02

0.00
K — Rtrue

calibrated with and tested against the Millennium Simulation.
What will sub-percent distance accuracy take?




Lightcone reconstruction

Large Synoptic Survey Telescope
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Collett, Marshall et al 2013 in prep:

Line of sight mass reconstruction from photometric catalogs,
calibrated with and tested against the Millennium Simulation.
What will sub-percent distance accuracy take?



Following up 1000 lenses

Large Synoptic Survey Telescope

IFU observations (standard in
2025). Redshifts, lens kinematics,
3D ring images all in one shot.

Exposure time ~ D? R? for faint
extended sources: it's the Einstein
Rings we need.

How much telescope time for 1000

lenses?

o Keck (2012): ~3000 hrs

o Keck (NGAO): ~350 hrs

e TMT: ~60 hrs g

e JWST: ~1000 snapshots (few oy
hundred orbits) :

y / arcsec
o

2 T B A B 1M -100.0

(Simulations and ETC with T. Treu) > ', e ' °




Dark Energy from just 100 LSST quads

e Assume:

Sandford, Marshall et al in prep



Dark Energy from just 100 LSST quads

* Assume:
* spectroscopic redshifts, lens galaxy velocity
dispersions, JWST/ELT ring modeling and good
time delays,

Sandford, Marshall et al in prep



Dark Energy from just 100 LSST quads

* Assume:
* spectroscopic redshifts, lens galaxy velocity
dispersions, JWST/ELT ring modeling and good
time delays,
* such that detailed analysis of individual lenses
gives 5% precision on each time delay distance

Sandford, Marshall et al in prep



Dark Energy from just 100 LSST quads

* Assume:
* spectroscopic redshifts, lens galaxy velocity
dispersions, JWST/ELT ring modeling and good
time delays,
* such that detailed analysis of individual lenses
gives 5% precision on each time delay distance

* Importance-sample the Planck prior
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Dark Energy from just 100 LSST quads

Precision:
Ho: 2%, Qk: 0.01,
Qpe: 0.02, wo: 0.2, wa: 0.7

How does this compare

with the other LSST
Dark Energy probes?
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Dark Energy from 100 LSST quads
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5% time delay distances to 100 lenses found and
monitored with LSST, and followed-up to B1608
levels, would yield Dark Energy constraints
competitive with the primary LSST probes
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‘Welcome to the Strong Lens Time Delay Challenge!

Strong lens time delays have been demonstrated to be a powerful tool for cosmology. At
present, the power of the method is limited by the small number of lenses with measured
time delays. However, things are about to change: wide-field surveys will increase the
numbers of lensed quasars by an order of magnitude, and then LSST will monitor them all

Jump ahead a few years. It's the mid 2020s, and we have detected thousands of strong
gravitational lenses with LSST. Each one has a growing muiti-fiter ightcurve, photometric

measurements of each AGN or SN image in 6 bands, from observations spaced on
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