Colloquium @ Department of Physics, NTU

Application of diffusion MRI to cancer, heart and brain connectome imaging

March 11, 2014

Wen-Yih Isaac Tseng MD, PhD

Advanced Biomedical MRI Lab Center for Optoelectronic Medicine National Taiwan University College of Medicine

 $\rho(\mathbf{r'}, \Delta) = \rho(\mathbf{r}, 0) * P(\mathbf{r} | \mathbf{r'}, \Delta)$ where $P(\mathbf{r} | \mathbf{r'}, \Delta)$ = probability density function

Encoding diffusion with MR

The spin of each proton is endowed by a phase term Exp($i\Delta\phi$) where $\Delta\phi = 2\pi \mathbf{q} \cdot (\mathbf{r'} - \mathbf{r})$ and $\mathbf{q} = \gamma \mathbf{g}\delta/2\pi$

Diffusion signal and PDF

Paul T. Callaghan Principle of nuclear magnetic resonance microscopy 1991

Given $\rho(\mathbf{r}', \Delta) = \rho(\mathbf{r}, 0) * P(\mathbf{r} | \mathbf{r}', \Delta)$ where the phase term for each spin $\exp(i\Delta\phi) = \exp(i2\pi\mathbf{q}\cdot(\mathbf{r}' - \mathbf{r}))$

$$S(g) = \int_{\mathbf{r}} \int_{\mathbf{r}'} \rho(\mathbf{r}) P(\mathbf{r} | \mathbf{r}', \Delta) \exp(i\gamma \delta \mathbf{g} \cdot (\mathbf{r}' - \mathbf{r})) d\mathbf{r}' d\mathbf{r}$$

$$S(\mathbf{q}) = \int_{\mathbf{r}} \int_{\mathbf{r}'} \rho(\mathbf{r}) P(\mathbf{r}|\mathbf{r}', \Delta) \exp(i2\pi \mathbf{q} \cdot (\mathbf{r}'-\mathbf{r})) d\mathbf{r}' d\mathbf{r}$$

$$S(\mathbf{q}) = \int_{\mathbf{r}} \rho(\mathbf{r}) d\mathbf{r} \int_{\mathbf{R}} P(\mathbf{R}, \Delta) \exp(i\Delta\phi) d\mathbf{R} = S_0 \exp\left(-\left\langle\Delta\phi^2\right\rangle\right)$$

Diffusion-weighted EPI sequence

Diffusion contrast varies with gradient directions

Diffusion-weighted imaging

- In 1990, Moseley et al demonstrated in an animal stroke model that the ADC decreased by approximately 30%-50% within 30 minutes after onset of focal ischemia.
- Sodium ion pumps fail water goes in cells and can not diffuse DW image gets bright (note – much later cells burst and stroke area gets very dark).

Conventional T2WI

Diffusion anisotropy

- Douek et al., JCAT 1991

Tensor model for diffusion

isotropic

anisotropic

Courtesy: G. Kindlmann

 $\lambda_1 = \lambda_2 = \lambda_3 \qquad \qquad \lambda_1 > \lambda_2 \approx \lambda_3 \qquad \qquad \lambda_1 \approx \lambda_2 > \lambda_3$

Eigenvectors define alignment of axes

Diffusion tensor imaging (DTI)

Garrido et al. (Circ Res 1994) and Basser et al. (Biophys J 1994)

Diffusion-sensitive gradients [1 1 0] [1 -1 0] [0 1 1] [0 -1 1] [1 0 1] [-1 0 1]

$$\ln(\frac{S(\mathbf{q})}{S_0}) = -\int_0^{TE} \mathbf{q}(t')^T \widetilde{D} \mathbf{q}(t') dt' = -\mathbf{b}\widetilde{D}$$

$$\widetilde{D} = \begin{bmatrix} Dxx & Dxy & Dxz \\ Dyx & Dyy & Dyz \\ Dzx & Dzy & Dzz \end{bmatrix}$$

Tensor invariants

- Apparent diffusion coefficient (ADC) $ADC = \frac{\lambda_1 + \lambda_2 + \lambda_3}{3}$
- Fractional anisotropy (FA)

$$FA = \sqrt{\frac{3}{2}} \times \sqrt{\frac{(\lambda_1 - trace)^2 + (\lambda_2 - trace)^2 + (\lambda_3 - trace)^2}{\lambda_1^2 + \lambda_2^2 + \lambda_3^2}}$$

• Principal direction of diffusion tensor 1st eigenvector (ev1)

First engenvector map

Detection of prostate cancer by ADC

Chen et al. JMRI 2010

ADC correlates with Gleason scores

Chen et al. JMRI 2010

Diffusion tensor MRI of normal myocardial fiber architecture Fiber helix angles (color-code) increase smoothly from epi- to endocardium

Tseng et al. Radiology 216:128-39;2000

Myocardial fiber archiecture

whole ventricle fibers

Motion of inner heart system

•Spiral fibers at Apex and Base might contribute to LV **torsion** τ

•Longitudinal fibers in the LV inner wall might contribute to **longitudinal shortening** F

Motion of outer heart system

view from base

Force of contraction F_c

 Circumferential fibers connecting LV and RV might contribute to <u>radial contraction</u> of LV wall Fc

Diffusion MRI

Conventional MRI

Wedeen, MGH-NMR

Diffusion spectrum imaging 6D (q and k) Space Imaging

 $S(\mathbf{k},\mathbf{q}) = \int \rho(\mathbf{r}) \exp(i \ 2\pi \,\mathbf{k} \cdot \mathbf{r}) \int P(\mathbf{r},\mathbf{R}) \exp(i \ 2\pi \,\mathbf{q} \cdot \mathbf{R}) d\mathbf{R} d\mathbf{r}$

Probability Orientation density function distribution function

Wedeen, MGH-NMR

DSI acquisition scheme

How can we assess white matter integrity from local diffusion information?

Tractography was used to generate connection paths between points in the brain based on local diffusion direction

_ 8 ×

051108jua.trk -1 30 -b 051108jua_b0.img -by 70 -wp 400 -roi_disk 66 87 19 11 0 1 0 1**rjgtht lateral geniculate nucleus**

The Geometric Structure of the Brain Fiber Pathways

Wedeen et al. Science 2012;335:1628-34

The 3D grid structure in an owl monkey brain

Close-up view of the grid structure in the caudal brain

Fiber grid pattern: also found in human brain

Quantify fiber integrity

 $^{>}$ GFA = SD (ODF)/RMS (ODF) \Box

Generalized fractional anisotropy Calculated from the ODF

- Degree of myelination
- Directional coherence
- Axonal diameter and density

GFA mapping

Mean Path Algorithm

Tract-specific analysis

GFA profiles for each fiber tract

Loss of left-greater-than-right asymmetry in autism

Lo et al. Psych Res Neuroimaging, 2011

Mean Path Algorithm

Tract-specific analysis

GFA profiles for each fiber tract

Loss of left-greater-than-right asymmetry in autism

Lo et al. Psych Res Neuroimaging, 2011

DSI template of 122 normal subjects

Association fibers

Commissural fibers

Projection fibers

An array-based brain connectome

Conclusion

- Diffusion MRI allows us to probe tissue microstructure at microscopic level
 - It is detects cancerous tissue
 - It reveals ingenious design of fiber architecture of the myocardium
 - It allows us to visualize and analysis connectivity of the wired brain
- Therefore, diffusion MRI is a potentially power tool in clinical cancer, cardiac and brain imaging

blog.roodo.com/nashchou/archives/2799081.html

