The Elusive Neutrinos – neutrino oscillation, mixing and mass hierarchy

Yee Bob Hsiung 熊怡 National Taiwan University

March 4, 2014 (a)National Taiwan University

What is Neutrino? 什麼是微中子?

It's nothing, almost nothing. As would say F.Reines, it is "... the most tiny quantity of reality ever imagined by a human being". Despite that (or because of that!), this particle never ceased to question physicists and to give headaches to the one who wants to detect it.

Reines & Cowen

1956

At Solvay conference in Bruxelles, in October 1933, Pauli says, speaking about his particles:

"... their mass can not be very much more than the electron mass. In order to distinguish them from heavy neutrons, mister Fermi has proposed to name them "neutrinos". It is possible that the proper mass of neutrinos be zero... It seems to me plausible that neutrinos have a spin 1/2... We know nothing about the interaction of neutrinos with the other particles of matter and with photons: the hypothesis that they have a magnetic moment seems to me not funded at all."

Spin 1/2, nearly massless, neutral particle!

from neutron decay

Physicists continue their quest !

1956

It took until 1956 before neutrinos were detected They are difficult to detect

Double coincidence method reduces background

v_e+p → e⁺+n

Prompt signal in scintillator Delayed 8 MeV total

gammas on cadmium capture

Short baseline (a few meters) + huge neutrino flux (>10 trillion cm⁻²s⁻¹) enables small detector "All you have to do is imagine something that does practically nothing. You can use your son-in-law as a prototype" -Richard Feynman illustrating the difficulty in detecting neutrinos

-Also, like your son-in-law, they change form when you are not looking

Measuring the Neutrino Signal Reines and Cowan, Phys.Rev. 113(1959)273

1995 Nobel Prize in Physics

Neutrinos?

Neutrinos are <u>weird</u>!

- Neutral, spin-1/2 "fundamental" particles
- Only appear in the "weak interaction"
- Very tiny mass, but <u>not</u> massless (< 2.2 eV)

Neutrinos might hold a key to the Universe

 One of those things that is just too cool to be an accident...

Masses of "Elementary" Particles

The "SeeSaw" Mechanism A "Grand" View of Neutrino States

New "eigenvalues" are M and m^2/M Take $M \approx 10^{16}$ GeV and $m \approx 10^2$ GeV Then $m^2/M \approx 10^{-12}$ GeV = 10^{-3} eV (!) =Neutrino mass!? Neutrinos and Accelerators "Observation of High-Energy Neutrino Reactions and the Existence of Two Kinds of Neutrinos"

Lederman, Schwartz, Steinberger 1988 Nobel Prize in Physics

The Missing Solar Neutrinos

Some of the v_e from the sun are missing. RAYMOND DAVIS, JR

The Nobel Prize in Physics 2002 was divided, one half jointly to Raymond Davis Jr. and Masatoshi Koshiba "for pioneering contributions to astrophysics, in particular for the detection of cosmic neutrinos" and the other half to Riccardo Giacconi "for pioneering contributions to astrophysics, which have led to the discovery of cosmic X-ray sources".

Are Due to Neutrino Oscillation

 v_e missing but $v_e + v_\mu + v_\tau$ agree

Neutrino Oscillation?

In 1957 Pontecorvo proposes a process called neutrino oscillation

- Initially the process $v_L \leftrightarrow v_L$, later after the v_μ was discovered he proposes $v_e \leftrightarrow v_\mu$

Assume there are two forms of neutrino, and they oscillate from one to the other. Relativistic quantum mechanics predicts that the probability of observing a particular type goes like this:

 $P(v_x \rightarrow v_x) = 1 - sin^2(2\theta_{xy}) sin^2(1.27 \Delta m_{12}^2 L/E)$

here L is distance in meters, E energy in MeV, $\Delta m_{12}^2 = |m_1^2 - m_2^2|$ in eV²

Notice that if $\Delta m_{12}{}^2$ is large, the frequency of oscillation is large

Also invented a way to detect neutrinos (from the sun) and anti-neutrinos (from reactors)

The Elusive Neutrino

The past two decades have seen the neutrino family take its place in the Standard Model

+ Higgs boson

The Elusive Neutrino

Solar and Atmospheric Neutrinos Missing in Action

Total Rates: Standard Model vs. Experiment Bahcall-Pinsonneault 2000

It Really Is Neutrino Oscillations!

Super-Kamiokande

2-Flavor Neutrino Oscillation in Vacuum

Principle:

Mass eigenstates ≠ Interaction (weak) eigenstates

Weak states (v_a) (participate in weak interactions)

 v_2

Mass states (v_i)

mass: m₁, m₂

v₁

 $\nu_{\alpha} = U\nu_i$

2-Flavor Neutrino Oscillation in Vacuum

One can then calculate the appearance probability:

$$\boldsymbol{\theta}$$
 : oscillation amplitude

$$P_{e\mu} = |\langle \nu_e | \nu_{\mu}(t) \rangle|^2 = \sin^2 2\theta \sin^2 \left(1.27 \Delta m^2 [eV^2] \underbrace{L[m]}_{E[MeV]} \right)$$
$$\Delta m^2 = m_1^2 - m_2^2 \qquad \Delta m^2: \text{ oscillation} \text{frequency} \text{ frequency}$$

The survival probability is

$$P_{ee} = |\langle
u_e |
u_e(t)
angle|^2 = 1 - P_{e\mu}$$

In the generalized case, U is a 3x3 unitary matrix.

$$|\mathbf{v}_{e}\rangle = \sum U_{ei}^{*} |\mathbf{v}_{i}\rangle$$

Significance of θ_{13}

.

Some Methods For Determining $\boldsymbol{\theta}_{13}$

Method 1: Accelerator Experiments

$$P_{\mu e} \approx \sin^2 2\theta_{13} \sin^2 2\theta_{23} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v}\right) + \dots$$

- $v_{\mu} \rightarrow v_{e}$ appearance experiment
- need other mixing parameters to extract θ_{13}
- baseline O(100-1000 km), matter effects present
- expensive

Method 2: Reactor Experiments

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v} \right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E_v} \right)$$

- $\cdot \overline{v}_e \rightarrow X$ disappearance experiment
- baseline O(1 km), no matter effect, no ambiguity
- relatively cheap

Limitations of Past and Current Reactor Neutrino Experiments

Typical precision is 3-6% due to

- limited statistics
- reactor-related systematic errors:
 - energy spectrum of v_e
 (~2%)
 - time variation of fuel composition (~1%)
- detector-related systematic error (1-2%)
- background-related error (1-2%)

Daya Bay: Goal And Approach

• Determine $sin^2 2\theta_{13}$ with a sensitivity of ≤ 0.01

by measuring deficit in $\overline{\nu}_{e}$ rate and spectral distortion.

Recommendation of the APS Neutrino Study Group:

• An expeditiously deployed multidetector reactor experiment with sensitivity to $\overline{\nu}_{e}$ disappearance down to $\sin^{2} 2\theta_{13} = 0.01$, an order of magnitude below present limits.

Reactor-based θ_{13} Experiments

RENO at Gonggwang, Korea

Reactor \overline{v}_e

 Fission processes in nuclear reactors produce huge number of low-energy v_e:

3 GW_{th} generates 6 × $10^{20} \overline{v}_e$ per sec

Determining θ_{13} With Reactor $\overline{\nu}_{e}$

 Look for disappearance of electron antineutrinos from reactors:

$$P(\overline{v}_{c} \rightarrow x) \approx \sin^{2} 2\theta_{13} \sin^{2} \left(\frac{\Delta m_{31}^{2} L}{4E}\right) + \cos^{4} \theta_{13} \sin^{2} 2\theta_{12} \sin^{2} \left(\frac{\Delta m_{21}^{2} L}{4E}\right)$$

Yee Bob Hsiung

Knowledge of θ_{13} before 2012

Detecting Low-energy \overline{v}_e

- The reaction is the inverse β -decay in 0.1% Gd-doped liquid scintillator:

$$\overline{v}_e + p \rightarrow e^+ + n$$
 (prompt)
0.3b → + p → D + γ(2.2 MeV) (delayed)
50,000b → + Gd → Gd*
→ Gd + γ's(8 MeV) (delayed)

- Time- and energy-tagged signal is a good tool to suppress background events.
- Energy of \overline{v}_e is given by:

$$E_{\bar{v}} \approx T_{e^+} + T_n + (m_n - m_p) + m_{e^+} \approx T_{e^+} + 1.8 \text{ MeV}$$

Anterctica

Political Map of the World, June 1999

Europe (3) (10)

JINR, Dubna, Russia Kurchatov Institute, Russia Charles University, Czech Republic

North America (16)(~100)

BNL, Caltech, LBNL, Iowa State Univ., Illinois Inst. Tech., Princeton, RPI, Siena, UC-Berkeley, UCLA, Univ. of Cincinnati, Univ. of Houston, Univ. of Wisconsin-Madison, Virginia Tech., Univ. of Illinois-Urbana-Champaign

~ 250 collaborators

Asia (19) (~140)

IHEP, Beijing Normal Univ., Chengdu Univ. of Sci. and Tech., CGNPG, CIAE, Dongguan Polytech. Univ., Nanjing Univ., Nankai Univ., Shandong Univ., Shanghai Jiao Tong Univ., Shenzhen Univ., Tsinghua Univ., USTC, Zhongshan Univ., Univ. of Hong Kong, Chinese Univ. of Hong Kong, National Taiwan Univ., National Chiao Tung Univ., National United Univ.

> 台大, 交大 and 聯合 from Taiwan

Daya Bay Collaboration Meeting in CUHK

Daya Bay Nuclear Power Complex

Where To Place The Detectors ?

• Since reactor \overline{v}_e are low-energy, it is a disappearance experiment:

$$P(\overline{\nu}_e \rightarrow \overline{\nu}_e) \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E}\right)$$

- Place near detector(s) close to reactor(s) to measure raw flux and spectrum of $\overline{v_e}$, reducing reactor-related systematic
- Position a far detector near the first oscillation maximum to get the highest sensitivity, and also be less affected by θ_{12}

Detecting Reactor $\overline{\nu}_e$

• Use the inverse β -decay reaction in Gd-doped liquid scintillator:

$$\overline{v}_{e} + p \rightarrow e^{+} + n \quad (prompt signal)$$

$$\stackrel{\sim 180\mu s}{\rightarrow} + p \rightarrow D + \gamma(2.2 \text{ MeV}) \quad (delayed signal)$$

$$\stackrel{\rightarrow + Gd}{\rightarrow} + Gd \rightarrow Gd^{*}$$

$$\stackrel{\sim 30\mu s}{\text{for } 0.1\% \text{ Gd}} \stackrel{\downarrow}{\rightarrow} + Gd + \gamma's(8 \text{ MeV}) \quad (delayed signal)$$

- Energy of \overline{v}_e is given by: $E_v \approx T_{e^+} + T_n + (m_n - m_p) + m_{e^+} \approx T_{e^+} + 1.8 \text{ MeV}$ 10-40 keV
 - Time- and energy-tagged signal is a good tool to suppress background events.

Antineutrino Detectors

- Three-zone cylindrical detector design
 - Target: 20 T (0.1% Gd-LS), radius = 1.55 m
 - Gamma catcher: 20 T (LS), thickness = 0.42 m
 - Buffer : 40 T (mineral oil) , thickness = 0.48 m
- Low-background 8" PMT: 192
- Reflectors at top and bottom

Eight 'identical' detector modules

Interior of Antineutrino Detector

3m IAVs produced in Taiwan

- All 3m inner acrylic vessels are produced in Taiwan
- 10mm thick wall, 15mm top /bottom covers
- Completely sealed with two penetration ports for Gd-LS filling and calibations.
- UV transparent down to 300nm wavelength

Calibration System of Antineutrino Detectors

3 Automatic calibration 'robots' (ACUs) on each detector

ACU-C ACU-A R=1.7725 m R=0 R=1.35m

Three axes: center, edge of target, middle of gamma catcher

3 sources for each z axis on a turntable (position accuracy < 5 mm):

- 10 Hz ⁶⁸Ge (2×0.511 MeV γ's)
- 0.5 Hz 241 Am- 13 C neutron source (3.5 MeV n without γ) + 100 Hz 60 Co gamma source (1.173+1.332 MeV γ)
- LED diffuser ball (500 Hz) for PMT

Assemble Antineutrino Detectors

Stainless Steel Vessel (SSV) in assembly pit

Install lower reflector

Install PMT ladders

Yee Bob Hsiung

Install top reflector

Install calibration units

Liquid Scintillators

- Gd (0.1%) + PPO (3 g/L) +
 bis-MSB (15 mg/L) + LAB
- Number of proton: (7.169±0034) × 10²⁵ p per kg
- 185-ton Gd-LS + 196-ton LS production

Yee Bob Hsiung

Monitoring Date (since production)

Fill Antineutrino Detectors (ADs)

- Target mass is measured with:

 (1) 4 load cells supporting the 20-t ISO tank
 (2) Coriolis mass flow meters Absolute uncertainty: 0.02% Relative uncertainty: 0.02%
- Temperature is maintained constant
- Filling is monitored with in-situ sensors

Daya Bay Near Hall (EH1)

Getting Ling Ao Near and Far Halls Ready

EH 2 (Ling Ao Near Hall): Began operation on 5 Nov 2011

EH 3 (Far Hall): Started data-taking on 24 Dec 2011

Triggers & Their Performance

Discriminator threshold:

- ~0.25 p.e. for PMT signal

Triggers:

- AD: ≥ 45 PMTs (digital trigger)
 - ≥ 0.4 MeV (analog trigger)
- Inner Water Cherenkov: ≥ 6 PMTs
- Outer Water Cherenkov: ≥ 7 PMTs (near)
 ≥ 8 PMTs (far)
- RPC: 3/4 layers in each module

Trigger rate:

- AD: < 280 Hz
- Inner Water Cherenkov: < 160 Hz
- Outer Water Cherenkov: < 200 Hz

Energy Calibration

Daya Bay Selecting Antineutrino (IBD) Candidates

Use Prompt + Delayed correlated signal to select antineutrino candidates.

Selection:

- -Prompt: 0.7 MeV < E_p < 12 MeV
- -Delayed: 6.0 MeV $< \dot{E}_{d} < 12$ MeV
- -Capture time: 1 μ s < Δ t < 200 μ s
- -Reject Flashers

- Muon Veto:

Pool Muon: Reject 0.6ms

AD Muon (>20 MeV): Reject 1ms

AD Shower Muon (>2.5GeV): Reject 1s

- Multiplicity:

No other signal > 0.7 MeV in -200 µs to 200 µs of IBD.

Prompt/Delayed Energy

Neutron Capture Time

Consistent capture time measured in all detectors

between detectors.

15

Analyzed Data Sets

Two detector comparison [1202.6181]

- 90 days of data, Daya Bay near only
- NIM A 685 (2012), 78-97

First oscillation analysis [1203:1669]

- 55 days of data, 6 ADs near+far
- PRL 108 (2012), 171803

Improved oscillation analysis [1210.6327]

- 139 days of data, 6 ADs near+far
- CP C 37 (2013), 011001

Spectral Analysis

- 217 days complete 6 AD period
- 55% more statistics than CPC result

PRL 112,061801 (2014)

Initial Results

Based on 55 days of data with 6 ADs, discovered disappearance of reactor \overline{v}_{e} at short baseline in March 2012. [PRL 108, 171803]

Obtained the most precise value of θ_{13} in Jun. 2012:

 $\sin^2 2\theta_{13} = 0.089 \pm 0.010 \pm 0.005$ [CPC 37, 011001]

	Near Halls			Far Hall			
	AD 1	AD 2	AD 3	AD 4	AD 5	AD 6	
IBD candidates	101290	102519	92912	13964	13894	13731	
DAQ live time (days)	191.001		189.645		189.779	189.779	
Efficiency $\epsilon_{\mu} \cdot \epsilon_{m}$	0.7957	0.7927	0.8282	0.9577	0.9568	0.9566	
Accidentals (per day)*	9.54±0.03	9.36±0.03	7.44 ± 0.02	2.96 ± 0.01	2.92 ± 0.01	2.87 ± 0.01	
Fast-neutron (per day)*	0.92 ± 0.46		0.62 ± 0.31		0.04 ± 0.02	± 0.02	
⁹ Li/ ⁸ He (per day)*	2.40:	±0.86	1.2 ± 0.63		0.22±0.06		
Am-C corr. (per day)*			$0.26 \pm$	0.12			
¹³ C ¹⁶ O backgr. (per day)*	0.08 ± 0.04	$0.07 {\pm} 0.04$	0.05 ± 0.03	0.04±0.02	0.04±0.02	$0.04 {\pm} 0.02$	
IBD rate (per day)*	$653.30 {\pm} 2.31$	664.15 ± 2.33	$581.97 {\pm} 2.07$	$73.31 {\pm} 0.66$	73.03 ± 0.66	72.20 ± 0.66	

*Background and IBD rates were corrected for the efficiency of the muon veto and multiplicity cuts ε_μ · ε_m

Collected more than 300k antineutrino interactions

- Consistent rates for side-by-side detectors
- Uncertainties still dominated by statistics

Rate-Only Oscillation Results

 $\sin^2 2\theta_{13} = 0.089 \pm 0.009$

- Uncertainty reduced by statistics of complete 6 AD data period
- Standard approach: χ²/N_{DoF} = 0.48/4
- |Δm²_{ee}| constrained by MINOS result for |Δm²_{µµ}|
- Far vs. near relative measurement: absolute rate not constrained
- Consistent results from independent analyses, different reactor flux models

Prompt IBD Spectra

Now Compare "Near" and "Far"

Rate+Spectra Oscillation Results

	[10 01]	[10 01]	
From Daya Bay Δm^2_{ee}	$2.54\substack{+0.19 \\ -0.20}$	$-2.64\substack{+0.19\\-0.20}$	
From MINOS $\Delta m^2_{\mu\mu}$	$2.37\substack{+0.09 \\ -0.09}$	-2.41 ^{+0.11} A. Radov DPF2013	ic

Global Comparison of θ_{13} Measurements

Sensitivity Projection

Sensitivity still dominated by statistics

- Statistics contribute 73% (65%) to total uncertainty in $\sin^2 2\theta_{13} (|\Delta m_{ee}^2|)$
- Major systematics:
 - θ₁₃: Reactor model, relative + absolute energy, and relative efficiencies
 - |Δm²_{ee}|: Relative energy model, relative efficiencies, and backgrounds
- Precision of mass splitting measurement closing in on results from μ flavor sector

Summary

The Daya Bay Experiment has reported the first direct measurement of the oscillation short-distance electron antineutrino oscillation frequency:

$$\Delta m_{ee}^2 = 2.59^{+0.19}_{-0.20} \times 10^{-3} \text{eV}^2$$

The measurement has also produced the most precise estimate of the mixing angle:

$$\sin^2(2\theta_{13}) = 0.090^{+0.008}_{-0.009}$$

Expect more from Daya Bay:

 Measurement of the absolute reactor flux, addressing the potential reactor anomaly

- Constraints on non-standard neutrino models
- Significantly increased precision (all 8 detectors, >2 years of operation)
- Flux model comparison
- Generic neutrino spectrum

Possible Sites

	Daya Bay	Huizhou	Lufeng	Yangjiang	Taishan
Status	Operating	Planned	Planned	Under Cons	Under Cons
Power	17.4 GW	17.4 GW	17.4 GW	17.4 GW	18.4 GW

Expected Signal

arXiv:1208.1551v1

Spectrum distorted due to oscillations I↔2 (ala KamLAND)

Discerning "Normal" from "Inverted" mass hierarchy will require good energy resolution.

• If CP violation is found in the neutrino sector:

• How can we exist?

Thank You

1956First observationof neutrinos1980s & 1990sReactor neutrino fluxmeasurements in U.S. and Europe

1995 Nobel Prize to Fred Reines at UC Irvine Discovery of reactor antineutrino oscillation

 $\begin{array}{c} \textbf{2006 and beyond} \\ \text{Precision measurement of } \theta_{13} \\ \text{Exploring feasibility of CP violation studies} \end{array}$

Neutrino Physics at Reactors

Past Experiments

Hanford Savannah River ILL, France Bugey, France Rovno, Russia Goesgen, Switzerland Krasnoyark, Russia Palo Verde Chooz, France Reactors in Japan

The Daya Bay Strategy

Relative measurement with 8 functionally identical detectors

• Absolute reactor flux single largest uncertainty in previous measurements Cancels in near/far ratio: $\frac{N_{\rm f}}{N_{\rm n}} = \left(\frac{N_{
m p,f}}{N_{
m n,p}}\right) \left(\frac{L_{\rm n}}{L_{\rm f}}\right)^2 \left(\frac{\epsilon_{\rm f}}{\epsilon_{\rm n}}\right) \left(\frac{P_{\rm sur}(E,L_{\rm f})}{P_{\rm sur}(E,L_{\rm n})}\right)$

Baseline Optimization

- Detector locations optimized to known parameter space of |Δm²_{ee}|
- Far site maximizes term dependent on sin² 2θ₁₃

	Go strong, big and deep!			
	Reactor [GW _{th}]	Target [tons]	Depth [m.w.e]	
Double Chooz	8.6	16 (2 × 8)	300, 120 (far, near)	
RENO	16.5	32 (2 × 16)	450, 120	
Daya Bay	17.4	160 (8 × 20)	860, 250	
	Large Si	Large Signal		

A Comment on the Mass Splitting

Short-baseline reactor experiments insensitive to mass hierarchy

Cannot discriminate 2 frequencies contributing to oscillation: Δm_{31}^2 , Δm_{32}^2 One effective oscillation frequency Δm_{ee}^2 is measured:

$$P_{\bar{\nu_e} \rightarrow \bar{\nu_e}} = 1 - \frac{\sin^2 2\theta_{13} \sin^2}{2\theta_{13} \sin^2} \Delta m_{ee}^2 \frac{L}{4E} - \frac{\sin^2 2\theta_{12} \cos^4 2\theta_{13} \sin^2}{2\theta_{13} \sin^2} \Delta m_{21}^2 \frac{L}{4E}$$

$$\rightarrow \sin^2(\Delta m_{ee}^2 \frac{L}{4E}) \equiv \cos^2 \theta_{12} \sin^2(\Delta m_{31}^2 \frac{L}{4E})$$

$$+ \sin^2 \theta_{12} \sin^2(\Delta m_{32}^2 \frac{L}{4E})$$

Result easily related to actual mass splitting

Normal hierarchy (+), inverted hierarchy (-):

$$|\Delta m_{ee}^2| \approx |\Delta m_{32}^2| \pm 5.21 \times 10^{-3} \text{eV}^2$$

Hierarchy discrimination requires ~ 2% precision on both Δm_{ee}^2 and $\Delta m_{\mu\mu}^2$

		Detector		
	Efficienc	y Correlated	Uncorrelated	
Target Protons Flasher cut Delayed energy cut Prompt energy cut Multiplicity cut Capture time cut Gd capture ratio Spill-in	99.98% 90.9% 99.88% 98.6% 83.8% 105.0%	0.47% 0.01% 0.6% 0.10% 0.02% 0.12% 0.8% 1.5%	0.03% 0.01% 0.12% 0.01% <0.01% <0.01% <0.1% 0.02%	Only uncorrelated uncertainties relevant to near/ far oscillation analysis Largest systematics smaller than far site
Combined	78.8%	1.9%	< 0.01% 0.2%	statistics (~ 1%)
Correlated Uncorrelated				
Energy/fission IBD/fission	0.2% 3%	Power Fission fraction Spent fuel	0.5% 0.6% 0.3%	Impact of uncorrelated reactor systematics reduced
Combined	3%	Combined	0.8%	measurement

The near future: CP

- One of the central motivations of neutrino oscillation physics
- Take a particle interaction say $(K_{L}^{0} \rightarrow \pi^{-} + e^{+} + v_{e})$
- Now change all the particles to anti-particles, and reflect the interaction in space (using a mirror) Get $(K_{L}^{0} \rightarrow \pi^{+} + e^{-} + \overline{v_{e}})$
- Now, is this new interaction just as probable as the first? If so CP conserved, if not CP is not conserved. In the above, decays that include the e⁺ are slightly more likely

How do I measure neutrino CP violation?

- Remember that there are not two types of neutrino, but three. So the oscillation
 picture gets (a lot) more complicated
- The probability equation is now:

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) &\simeq sin^{2}2\theta_{13}sin^{2}2\theta_{23}sin^{2}\left(\frac{1.27\Delta m_{31}^{2}L}{E}\right) \\ &\mp \alpha sin(2\theta_{13})sin\delta sin(2\theta_{12})sin(2\theta_{23})\left(\frac{1.27\Delta m_{31}^{2}L}{E}\right)sin^{2}\left(\frac{1.27\Delta m_{31}^{2}L}{E}\right) \\ &- \alpha sin(2\theta_{13})cos\delta sin(2\theta_{12})sin(2\theta_{23})\left(\frac{1.27\Delta m_{31}^{2}L}{E}\right)cos\left(\frac{1.27\Delta m_{31}^{2}L}{E}\right)sin\left(\frac{1.27\Delta m_{31}^{2}L}{E}\right) \\ &+ \alpha^{2}cos^{2}\theta_{23}sin^{2}2\theta_{12}\left(\frac{1.27\Delta m_{31}^{2}L}{E}\right)^{2} \end{split}$$

- where the \mp refers to neutrinos(-) or antineutrinos(+), and $\alpha = \Delta m_{12}^2 / \Delta m_{23}^2$ (~0.03)
- A complicated equation that suffers from parameter correlations and degeneracies. Can't separate the CP violation phase δ and oscillation angle θ_{13}

013 and Nuclear Astrophysics

neutrino oscillation effects on supernova light-element synthesis

understanding the origin of matter (vs antimatter)

Leptogenesis

Fukugita, Yanagida, 1986

 Out-of-equilibrium L-violating decays of heavy Majorana neutrinos leading to L asymmetry but leaving B unchanged.
 B_L-L_L is conserved.