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How does the classical world 
emerge from the underlying rules of 

quantum mechanics?
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Quantum-Classical Crossover:

Can we push the boundary higher?
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Quantum-Classical Crossover:

Can we push the boundary higher?

- In principle yes!  One of the goals in nanomechanics:
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Schrödinger’s Cat (1935):

- Death of cat entangled with the quantum mechanical decay of 
radioactive atoms.

- If atom has 50% chance of decay then state of cat is:
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 - When Schrödinger looks he is making a measurement.



| i cat = | i

 - Is the cat simultaneous dead and alive before I measure?

 - When Schrödinger looks he is making a measurement.



 - Absolutely not!  The Environment is always making measurements.

Gas molecules

Photons

 - Many different environments, all too complicated to keep track of the dynamics.

 - Interaction with the environment leads to 
classicality, (loss of entanglement, 
superpositions, coherence,...)

 - Can make quantum objects behave classical.
IBM, 2013.

 - Larger objects -> more environ. interactions.
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Quantum Effects in Massive Objects:

 - Must minimize the coupling to the environment.
 - Low temperatures.
 - In vacuum.

 - Want quantum dynamics that are clearly distinguishable from classical motion.

 - Want massive object, but simple to model theoretically.

Mechanical Oscillator

Nonlinear Interaction
+

 - Can not get rid of all environment effects.  Gravity may be ultimate environment!

 - Must find balance between quantum dynamics and environmental effects.
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Optomechanics:

- Interaction between mechanical oscillator and optical 
cavity via radiation pressure generated by a laser.

- Retardation effects give rise to nonlinear 
interaction.

- Changing the laser frequency with 
respect to the optical cavity resonance 
frequency leads to cooling or heating of 
the resonator.

- Same dynamics in many quantum 
optics related fields.

Laser detuning �
0 !m�!m

Red detuned Blue detuned

Take               from 
oscillator

~!m
Give               to 
oscillator

~!m

Comet “tail” due to radiation pressure 
of light.
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Same physics over 20 orders of 
magnitude!



- Ground state cooling of mechanical oscillators.

Applications of Optomechanics:

- Quantum limits on continuous measurements.

- Sensitive force, mass, and position detection.

- Nonclassical states of light and matter.

- Entangled states of light and matter.

- Quantum information processing and storage.

In general,

Optomechanical Interaction Nonclassical mechanical states

- Want to find simple analogue quantum system that leads to nonclassical 
oscillator states?
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Micromaser (single-atom laser):

Gleyzes, Nature (2007)

- Interaction between a stream of excited two-level 
atoms and an optical cavity.

- Only a single atom in the cavity at a given time.

- When cavity has a large quality factor, many interactions             Real quantum 
laser.

- Crucial parameter is the “maser pump parameter”: ✓ =
p
N

ex

gt
int

/2

- Varying pump parameter gives oscillations in cavity photon number that can 
be interpreted as phase transitions: “Thumbprint of the micromaser.”

- Steady states of cavity are sub-Poissonian, i.e. nonclassical oscillator states.

- Amount of time atom spends in cavity called 
interaction time        .

atom-cavity coupling
# of atoms passing
in cavity lifetime.



Sub-Poissonian States:

Oscillator Fano Factor: F = h(�N̂b)
2i/hN̂bi

F= 1

Fock (quantum) state |3i

Number state
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Coherent (classical) state |↵ =
p
3i

Number state
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distribution

- Poisson: Variance equal to average. - Variance vanishes
F= 0

- Sub-Poissonian states are quantum oscillator states with F<1.

- Strongly sub-Poissonian states characterized by negative Wigner functions.



- A quantum phase space (pseudo)probability density distribution.

Wigner Functions:

Coherent state |↵ =
p
3i Fock (quantum) state |3i

- Can possess (nonclassical) regions where distribution is negative.

- Not a true probability distribution due to                       .

- Negativity of Wigner function can be used as measure of nonclassicality.

Positive Wigner func. Negative Wigner func.Positive Wigner func.
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â+ â+

�

b̂,!m,�m

x
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Optomechanical Setup:

- Consider a single-mode, driven 
optomechanical system

- Coupling constant      measures oscillator displacement due to a single cavity 
photon in units of the zero-point amplitude:

g0

- Laser-cavity detuning given by                                      .� = (!p � !c) /!m

- All constants measured in units of the resonator frequency.

Key Idea: Consider high-Q resonator,                        , and low-Q cavity, with damping 
rate    , driven by weak laser.

Single-photon interaction!

�m = Q�1
m

hN̂ai ⇡ h(�N̂a)
2i ⌧ 1

xzp =
p
~/2m!m

Cavity HO Mech. HO Radiation pressure coupling Pumping of cavity
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Semiclassical Dynamics:
- Input-output theory gives Langevin equations of motion for Hamiltonian operators 
(                    ).

- Classical nonlinear effects can be studied in the steady state regime.

- Steady state cavity energy       given by:N̄a

E2 =
�
�2 + 2/4

�
N̄a � 2�KN̄2

a +K2N̄3
a K = � 2g20⇣

1 + �2
m
4

⌘ (Kerr constant)

“Spring-softening” 

;

!!c

- The renormalized cavity frequency can be 
defined by the detuning value at which        is 
maximized.

N̄a

⌧ = !mt



- The semiclassical limit-cycle dynamics of both the cavity and oscillator found by 
assuming oscillator undergoes sinusoidal motion (Marquardt et al. PRL 2006):

x(⌧) = x̄+A cos(⌧)

Static displacement Oscillation amplitude

- Plug into Langevin equation for cavity amplitude            and use Fourier series 
solution:

ā(⌧) = ei'(⌧)
1X

n=�1
↵ne

in⌧

ā(⌧)

↵n = �iE

Jn(g0A)

i (n��+ g0x̄) + /2

- Time-averaged response                                        peaked at discrete values:h|ā|2i =
X

n

|↵n|2

� = n+ g0x̄ n labels oscillator sidebands, i.e.          n!m

- Lineshape is Lorentzian, but peak is shifted depending on      .

Shift due to Kerr nonlinearity (as we will see)

g0



- Displacement      and amplitude      are found by self-consistently solving time 
averaged force balance:

and power balance equations:

x̄ = �2g0
X

n

|↵n|2

�mA = �4g0Im
X

n

↵⇤
n+1↵n

A
x̄

g0x̄ / K

- In general, there are multiple solutions to these equations; multiple oscillator 
limit-cycles exist for a given set of parameters.



Quantum Dynamics:
- Here we are interested in the single-photon strong-coupling regime: g20/!m & 1

- Discreteness of cavity photons becomes important.
- Radiation pressure of single-photon displaces resonator by more than its 
zero-point linewidth.

- Will use Master equation for full quantum dynamics to find steady state of system

Lcav =


2

�
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- Oscillator bath characterized by avg. excitation number:

n̄th = [exp(~!m/kBT )� 1]

�1
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“Nonclassical ratio”

- To quantify the amount of “quantumness” in our oscillator states, we will take 
the ratio of the sum of negative Wigner densities over the positive density 
elements.

- For the states considered here, this ratio is 
nearly linear, a good benchmark for comparison.

- Note: You can not just count the number of 
negative and positive elements.
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- Winger functions consist of 
rings, one for each stable 
limit-cycle.

- Circular symmetry from no phase ref. density matrix is diagonal. 

- Each limit-cycle is sub-Poissonian.

- Stronger the coupling      , and/or more phonons implies more limit-cycles 
exist.

a b c

d hgfe

a b c

d hgfe

- Strongest quantum features.

- Multiple limit-cycles means 
large variance



- To understand the onset, and decay, of the nonclassical oscillator properties, 
we fix the detuning                and sweep the coupling strength� = 0 0  g0/  3

- The interplay between limit-cycles is measured by using the number state 
corresponding to the maximum probability amplitude in the density matrix as an 
order parameter.

a b

Cavity quantum electrodynamics 1339

Figure 5. The pump curve of the one-atom maser as obtained from equation (4.3). In both the
plots, the temperature is set at 0.5 K, which corresponds to nth = 0.1 thermal photons. Top: the
normalized photon number as a function of the interaction time (bottom axis), for a pump rate
Nex = 40. Bottom: the normalized photon number as a function of the pump rate Nex (bottom
axis), for an interaction time tint = 30 µs. The top axis of both plots shows the equivalent value
of the pump parameter, !, for these conditions (see text). The thresholds of maser action (Rth)
and quantum field statistics (Qth) are indicated. Note that the micromaser exhibits thresholdless
behaviour for the parameters of the bottom plot.

- Normalized coupling strength             corresponds to the micromaser pump 
parameter,                        . Also proportional to resonator Q-factor.

g0/
⌧int = 1/

Optomechanical analogueMicromaser



- Why do the quantum features of the states disappear at higher couplings?

- Each limit-cycle is sub-
Poissonian in the regime where 
the nonclassical ratio is 
nonzero.

- The merger of limit-cycles, 
beginning  at                          reduces 
the quantum features in the 
mechanical states.

The overall resonator distribution, which is super-Poissonian, 
determines the nonclassical properties.

- In general, more phonons in resonator gives overlapping limit-cycles.

Smaller quantum signatures at mechanical sidebands.



Summary:

- Nonclassical states of a mechanical resonator can be generated in an analogue of 
the micromaser, if the cavity is sufficiently damped so as to have at most one 
photon at any given time.

- This system has sub-Poissonian limit-cycles, nonclassical mechanical Wigner 
functions, and phonon oscillations that are also features of a micromaser.

- This is the first micromaser analogue that does not have any atom-like subsystem, 
only harmonic oscillators!

- Helps to understand the generation of quantum states in macroscopic mechanical 
systems.

- Allows for exploring the quantum-classical transition across multiple mass scales.

First single-atom laser with no atom!

But can we build it?
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System N !m


g0



g0

!m

g

2
0

!m

Superconducting LC oscillator [4] 1e11 60 3e�3 4e�5 1e�7

Si optomechanical crystal [5] 6e9 7 2e�3 2.5e�4 5e�7

Cold atomic gas [8] 4e4 0.06 22 340 7,500

cCPT-mechanical resonator 5e9 10 12 1.2 14

Table 1. The sideband ratio !m/, the granularity parameter g0/, the backaction
parameter g0/!m and the combined quantum nonlinearity parameter g20/!m, for
certain demonstrated opto- and electromechanical systems, where N is the estimated
number of atoms making up the mechanical resonator. Also shown for comparison are
the estimated parameters of the cCPT-mechanical resonator scheme discussed in the
present work.

is greater than one, then we are in the single-photon strong-coupling regime [14, 15]. In

Table 1 we show a range of values for these parameters that have been realized in recent

optomechanics experiments.

In the present work, we describe an optomechanical scheme involving a Cooper

pair transistor (CPT) that is embedded in a superconducting microwave cavity, where a

mechanically compliant, biased gate electrode couples mechanical motion to the cavity

via the CPT. The basic scheme for the cavity-CPT-mechanical resonator (cCPT-MR)

system is given in Figs. 1 and 2. In particular, we will show that the cCPT-MR

device is capable of attaining the ultra-strong coupling regime, with relevant achievable

parameters given in Table 1. Note that reference [16] discusses a very similar scheme.

This paper is organised as follows. In section 2 we describe the cCPT-MR device

and give a phenomenological derivation of the e↵ective optomechanical coupling strength

g0 of the device. Next in section 3 we give a more systematic derivation of the

optomechanical Hamiltonian (1), starting with a circuit model of the cCPT-MR device.

Finally, in section 4, we conclude with a discussion of our results and future work. The

appendix contains the derivation of the circuit model.

2. The cCPT-MR Device

Referring to Figs. 1 and 2, the cCPT comprises two discrete components. One,

the Cooper pair transistor (CPT), consists of a small superconducting island in the

Coulomb blockade regime that is coupled via two Josephson junctions to macroscopic

superconducting leads. The CPT has been extensively studied [17–21], and its properties

are now well understood. The second component of the cCPT is a shorted quarter-

wave, superconducting high-Q microwave cavity, which is flux biased to allow control

over the total dc cCPT phase. The microwave cavity is based on the circuit QED

architecture [22, 23] that has led to significant advances in the coherence and control of

quantum superconducting circuits. The cCPT is created by embedding the CPT at the

open end of the center conductor (a voltage antinode), so that it connects the central

A cCPT optomechanical scheme for accessing the ultra strong coupling regime 4
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Figure 1. (a) Schematic illustration of a shorted �/4, microwave resonator coupled to
a feedline. (b) Detail of the CPT location and the method of coupling to a mechanical
resonator. (c) Simplified circuit diagram of the device.

conductor of the cavity to the ground plane.

For our purposes, the CPT is well described by considering two charge states, |0i
and |1i, corresponding to zero and one excess Cooper pairs on the island. These charge

states are separated by an electrostatic energy di↵erence 2" = 4E
c

(1�n
g

) dependent on

gate charge n
g

, and are coupled to each other via the Josephson energy E
J

. Introducing

cavity photon annihilation and creation operators a and a†, the Hamiltonian of the

cCPT can be expressed as (see appendix):

HcCPT = ~!0a
†a+ "�

z

� E
J

�
x

cos
⇥
�0(a+ a†) + ⇡�ext/�0

⇤
, (2)

where �
x

and �
z

are the Pauli matrices, !0 is the cavity frequency, �ext is an external

flux bias, and �0 is the flux quantum. The first two terms in equation (2) describe the

cavity photons and the CPT charge. The third term describes the coupling between the

CPT charge states and the cavity photons. In a standard CPT, this term would read

E
J

�
x

cos'/2 where ', the total superconducting phase di↵erence between the source

and drain, can be treated as a classical variable [20, 21]. In the cCPT, however, quantum

fluctuations of the cavity photon field must be accounted for via the identification

'̂/2 = �0(a + a†), which is proportional to the electric field in the cavity at the

location of the CPT. The dimensionless parameter �0 =
p
Z0/RK

⇡ 0.04, where

R
K

= h/e2 = 25.8 k⌦ is the resistance quantum, describes the strength of the quantum

phase fluctuations of the cavity field, which can be important for large cavity photon

numbers [24, 25]. Experimental study [25, 26] indicates that equation (2) accurately

models the cCPT.

The above-described cCPT functions as a sensor by capacitively coupling the CPT

island to a system of interest, in our case a mechanical resonator (MR) consisting of

a doubly clamped beam (made for example of SiN and coated with Al [27, 28]) as in

figure 1(b). An important property of the CPT is that it acts as a charge-tunable

quantum inductor LCPT when biased on its supercurrent branch; LCPT is the kinetic

inductance associated with the CPT’s gate charge dependent supercurrent [18] [see

figure 3(a) and (b)]. When the CPT is embedded in a microwave cavity, LCPT appears

in parallel with the cavity’s e↵ective inductance L at resonance, as in figure 1(c),

and can therefore cause a dispersive shift of the cavity resonant frequency. When
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Figure A1. Simplified model of the cCPT-MR system, where the cavity center
conductor has length L, and the Josephson junctions are assumed to have equal
capacitances CJ and critical currents Ic. The cavity inductance and capacitance per
unit length are denoted Lc, Cc, respectively. The cavity is capacitively coupled to a
probe/transmission line.

while the junction condition at x = L is

2�+(t)� �
c

(L, t) = 2⇡n+ 2⇡�/�0, (A.5)

where n is an integer and � is the flux threading the superconducting loop formed out of

the center conductor, ground plane, and the CPT. In the following, we will approximate

the flux as � ⇡ �ext, i.e., assume that the induced flux in the loop due to the circulating

super current can be neglected. We also “freeze” out the MR motion, so that C
m

is fixed

and non-dynamical; the mechanical component is straightforwardly introduced once we

have obtained the cCPT Hamiltonian (2).

We now use equation (A.5) to eliminate �+ from the dynamical equations;

equations (A.2) and (A.1) become respectively

2C
J

�0

2⇡

d2��
dt2

+ 2I
c

cos [�
c

(L, t)/2 + ⇡�ext/�0] sin ��

+ C
g

dV
g

dt
+ C

m

dVMR

dt
= 0 (A.6)

and

�0
c

(L, t) +
C

J

2C
c

�00
c

(L, t) = � 2⇡L
c

I
c

�0

sin [�
c

(L, t)/2 + ⇡�ext/�0] cos ��

+
⇡L

c

�0

⇣
C

g

V̇
g

+ C
m

V̇MR

⌘
, (A.7)

where have set n = 0 since it does not a↵ect the observable dynamics and we have used

the cavity wave equation (A.3) to replace �̈
c

with �00
c

. Equation (A.7) is interpreted as

a (rather nontrivial) boundary condition on the cavity field �
c

(x, t) at the x = L end

that couples the cavity to the CPT.

We now formally solve the cCPT equations (A.3) and (A.6), subject to the boundary

conditions (A.4) and (A.7), using the approximate eigenfunction expansion method, with

equation (A.7) replaced by the following simpler boundary condition at x = L:

�0
c

(L, t) +
C

J

2C
c

�00
c

(L, t) ⇡ �0
c

(x, t)|
x=L+CJ/(2Cc) = 0, (A.8)

Cavity-Cooper Pair Transistor:
- Most difficult part is single-photon strong coupling:

- Motion of mechanical resonator modulates 
charging energy of electrons on the Cooper-
pair transistor island.

- Causes measurable frequency shift of cavity.
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