Exploring the Quantum-Classical Transition Using Optomechanical Systems

Paul Nation Korea University

National Taiwan University December 17, 2013

Phys. Rev. A 88, 053828 (2013)

How does the classical world emerge from the underlying rules of quantum mechanics?

Quantum-Classical Crossover:

Quantum-Classical Crossover:

Quantum-Classical Crossover:

- In principle yes! One of the goals in nanomechanics:

O'Connell, Nature (2010)

Mavalvala, MIT

Etaki, Nature Phys. (2008)

Schrödinger's Cat (1935):

- Death of cat entangled with the quantum mechanical decay of radioactive atoms.

- If atom has 50% chance of decay then state of cat is:

$$\left|\psi\right\rangle_{\rm cat} = \frac{1}{\sqrt{2}} \left|\widetilde{\wp}\right\rangle + \frac{1}{\sqrt{2}} \left|\widetilde{\wp}\right\rangle$$

- When Schrödinger looks he is making a **measurement**.

- When Schrödinger looks he is making a **measurement**.

- Is the cat simultaneous dead and alive before I measure?

- Absolutely not! The **Environment** is always making measurements.

- Many different environments, all too complicated to keep track of the dynamics.

- Interaction with the environment leads to classicality, (loss of entanglement, superpositions, coherence,...)

- Larger objects -> more environ. interactions.

- Can make quantum objects behave classical.

- Absolutely not! The **Environment** is always making measurements.

- Many different environments, all too complicated to keep track of the dynamics.

- Interaction with the environment leads to classicality, (loss of entanglement, superpositions, coherence,...)

- Larger objects -> more environ. interactions.

- Can make quantum objects behave classical.

IBM, 2013.

- Can not get rid of all environment effects. Gravity may be ultimate environment!
- Must find balance between quantum dynamics and environmental effects.

Quantum Effects in Massive Objects:

- Must minimize the coupling to the environment.
 - Low temperatures.
 - In vacuum.
- Want quantum dynamics that are clearly distinguishable from classical motion.
- Want massive object, but simple to model theoretically.

Optomechanics:

Comet "tail" due to radiation pressure of light.

- Interaction between mechanical oscillator and optical cavity via radiation pressure generated by a laser.

- Retardation effects give rise to nonlinear interaction.

- Changing the laser frequency with respect to the optical cavity resonance frequency leads to cooling or heating of the resonator.

- Same dynamics in many quantum optics related fields.

Macroscopic Mirrors

Microscopic Mirrors

Suspended Pillars

Trampoline Resonators

Membranes

Microtoroids

Double-disk Resonators

Near-field Resonators

Freestanding Waveguide

Photonic Nanobeam

Optical Resonators

"Zipper" Cavity

Superconducting Circuits

Cavity Nanorods

Photonic Crystals

Cold Atom Cavities

Macroscopic Mirrors

Microscopic Mirrors

Suspended Pillars

Trampoline Resonators

Membranes

Microtoroids

Double-disk Resonators

Near-field Resonators

Freestanding Waveguide

Photonic Nanobeam

Optical Resonators

"Zipper" Cavity

Superconducting Circuits

Photonic Crystals

Cold Atom Cavities

Cavity Nanorods

Macroscopic Mirrors

Microscopic Mirrors

Suspended Pillars

Cavity Nanorods

Trampoline Resonators

Cold Atom Cavities

Photonic Nanobeam

"Zipper" Cavity

Applications of Optomechanics:

- Ground state cooling of mechanical oscillators.
- Quantum limits on continuous measurements.
- Sensitive force, mass, and position detection.
- Nonclassical states of light and matter.
- Entangled states of light and matter.
- Quantum information processing and storage.

In general,

Optomechanical Interaction

Nonclassical mechanical states

- Want to find simple analogue quantum system that leads to nonclassical oscillator states?

Micromaser (single-atom laser):

- Interaction between a stream of excited two-level atoms and an optical cavity.

- Only a single atom in the cavity at a given time.

- Amount of time atom spends in cavity called interaction time $t_{\rm int}$.

Gleyzes, Nature (2007)

- When cavity has a large quality factor, many interactions Real quantum laser.

- Steady states of cavity are sub-Poissonian, i.e. nonclassical oscillator states.
- Crucial parameter is the "maser pump parameter": $\theta = \sqrt{N_{\rm ex}}gt_{\rm int}/2$

ter": $\theta = \sqrt{N_{\rm ex}gt_{\rm int}/2}$ # of atoms passing in cavity lifetime.

- Varying pump parameter gives oscillations in cavity photon number that can be interpreted as phase transitions: "Thumbprint of the micromaser."

Sub-Poissonian States:

Oscillator Fano Factor: $F = \langle (\Delta \hat{N}_b)^2 \rangle / \langle \hat{N}_b \rangle$

- Sub-Poissonian states are quantum oscillator states with F<1.
- Strongly sub-Poissonian states characterized by negative **Wigner functions**.

Wigner Functions:

- A quantum phase space (pseudo)probability density distribution.
- Not a true probability distribution due to $[\hat{x}, \hat{p}] = i\hbar$.
- Can possess (nonclassical) regions where distribution is negative.

- Negativity of Wigner function can be used as measure of nonclassicality.

Optomechanical Setup:

- Consider a single-mode, driven optomechanical system

- All constants measured in units of the resonator frequency.
- Laser-cavity detuning given by $\Delta = \left(\omega_p \omega_c\right)/\omega_m$

- Coupling constant g_0 measures oscillator displacement due to a single cavity photon in units of the zero-point amplitude: $x_{zp} = \sqrt{\hbar/2m\omega_m}$

Key Idea: Consider high-Q resonator, $\Gamma_m = Q_m^{-1}$, and low-Q cavity, with damping rate κ , driven by weak laser.

 $\langle \hat{N}_a \rangle \approx \langle (\Delta \hat{N}_a)^2 \rangle \ll 1$ Single-photon interaction!

Semiclassical Dynamics:

- Input-output theory gives Langevin equations of motion for Hamiltonian operators ($au=\omega_m t$).

$$\frac{d\hat{a}}{d\tau} = i\Delta\hat{a} - ig_0\left(\hat{b} + \hat{b}^+\right)\hat{a} - \frac{\kappa}{2}\hat{a} - iE$$
$$\frac{d\hat{b}}{d\tau} = -i\hat{b} - ig_0\hat{a}^+\hat{a} - \frac{\Gamma_m}{2}\hat{b} - \sqrt{\Gamma}\hat{b}_{\rm in}$$

- Classical nonlinear effects can be studied in the <u>steady state</u> regime.

- Steady state cavity energy \bar{N}_a given by:

$$E^{2} = \left(\Delta^{2} + \kappa^{2}/4\right)\bar{N}_{a} - 2\Delta\mathcal{K}\bar{N}_{a}^{2} + \mathcal{K}^{2}\bar{N}_{a}^{3}; \quad \mathcal{K} = -\frac{2g_{0}^{2}}{\left(1 + \frac{\Gamma_{m}^{2}}{4}\right)} \quad \text{(Kerr constant)}$$

- The renormalized cavity frequency can be defined by the detuning value at which \bar{N}_a is maximized.

- The semiclassical limit-cycle dynamics of both the cavity and oscillator found by assuming oscillator undergoes sinusoidal motion (Marquardt et al. PRL 2006):

$$\begin{aligned} x(\tau) &= \bar{x} + A\cos(\tau) \\ \swarrow & \swarrow \end{aligned}$$
 Static displacement Oscillation amplitude

- Plug into Langevin equation for cavity amplitude $\bar{a}(\tau)$ and use Fourier series solution:

$$\bar{a}(\tau) = e^{i\varphi(\tau)} \sum_{n=-\infty}^{\infty} \alpha_n e^{in\tau} \quad \blacksquare \quad \alpha_n = -iE \frac{J_n(g_0 A)}{i(n - \Delta + g_0 \bar{x}) + \kappa/2}$$

- Time-averaged response $\overline{\langle |\bar{a}|^2 \rangle} = \sum_n |lpha_n|^2$ peaked at discrete values:

 $\Delta = n + g_0 \bar{x} \quad \text{n labels oscillator sidebands, i.e. } n \omega_m$

- Lineshape is Lorentzian, but peak is shifted depending on g_0 .

- Displacement \bar{x} and amplitude A are found by self-consistently solving time averaged force balance:

$$\bar{x} = -2g_0 \sum_n |\alpha_n|^2 \quad \Longrightarrow \quad g_0 \bar{x} \propto \mathcal{K}$$

and power balance equations:

$$\Gamma_m A = -4g_0 \operatorname{Im} \sum_n \alpha_{n+1}^* \alpha_n$$

- In general, there are **multiple solutions to these equations**; multiple oscillator limit-cycles exist for a given set of parameters.

Quantum Dynamics:

- Here we are interested in the single-photon strong-coupling regime: $g_0^2/\kappa\omega_m\gtrsim 1$

- Discreteness of cavity photons becomes important.

- Radiation pressure of single-photon displaces resonator by more than its zero-point linewidth.

- Will use Master equation for full quantum dynamics to find steady state of system

$$\begin{aligned} \frac{d\hat{\rho}}{d\tau} &= \mathcal{L}\hat{\rho} = -i\left[\hat{H},\hat{\rho}\right] + \mathcal{L}_{cav}[\hat{\rho}] + \mathcal{L}_{mech}[\hat{\rho}] = 0\\ \mathcal{L}_{cav} &= \frac{\kappa}{2}\left(2\hat{a}\hat{\rho}\hat{a}^{+} - \hat{a}^{+}\hat{a}\hat{\rho} - \hat{\rho}\hat{a}^{+}\hat{a}\right)\\ \mathcal{L}_{mech} &= \frac{\Gamma_{m}}{2}\left(\bar{n}_{th} + 1\right)\left(2\hat{b}\hat{\rho}\hat{b}^{+} - \hat{b}^{+}\hat{b}\hat{\rho} - \hat{\rho}\hat{b}^{+}\hat{b}\right)\\ &+ \frac{\Gamma_{m}}{2}\bar{n}_{th}\left(2\hat{b}^{+}\hat{\rho}\hat{b} - \hat{b}\hat{b}^{+}\hat{\rho} - \hat{\rho}\hat{b}\hat{b}^{+}\right)\end{aligned}$$

- Oscillator bath characterized by avg. excitation number:

$$\bar{n}_{\rm th} = \left[\exp(\hbar\omega_m/k_{\rm B}T) - 1\right]^{-1}$$

- To quantify the amount of "quantumness" in our oscillator states, we will take the ratio of the sum of negative Wigner densities over the positive density elements.

$$\eta = \frac{\sum_{n} |w_{n}^{(-)}|}{\sum_{m} w_{m}^{(+)}} = \frac{\sum_{n} |w_{n}^{(-)}| dx dp}{1 + \sum_{n} |w_{n}^{(-)}| dx dp}$$

"Nonclassical ratio"

- For the states considered here, this ratio is nearly linear, a good benchmark for comparison.
- Note: You can not just count the number of negative and positive elements.

- Simulation parameters: $E = 0.1, \kappa = 0.3, Q_m = 10^4, \bar{n}_{\rm th} = 0$

- Simulation parameters: $E=0.1, \kappa=0.3, Q_m=10^4, \bar{n}_{\rm th}=0$

Mechanical sidebands

- Simulation parameters: $E=0.1, \kappa=0.3, Q_m=10^4, \bar{n}_{\mathrm{th}}=0$

- Simulation parameters: $E=0.1, \kappa=0.3, Q_m=10^4, \bar{n}_{\rm th}=0$

Detuning Δ

- Simulation parameters: $E=0.1, \kappa=0.3, Q_m=10^4, \bar{n}_{\rm th}=0$

J.U b 160 Mechanical sidebands 2.5 120 2.0 g_0/κ ŝ 80 Nonlinear 1.5 40 frequency-pulling 1.0 $1\omega_m$ $3\omega_m$ $2\omega_m$ 0 3.0 С Strongest on resonance 0.05 2.5 Increasing coupling leads <u>2.0</u> 0.03 🖕 g_0 to decrease in quantum 1.5 0.01 features. 1.0 0.00 3.0 2.90 d Strongest on nonclassical 2.5 1.74 states occur where Fano 2.0 0.58 or factor is **larger** than one! 1.5 -0.58 1.0 2 0 3 -1

Detuning Δ

- Simulation parameters: $E=0.1, \kappa=0.3, Q_m=10^4, \bar{n}_{\rm th}=0$

J.U b 160 Mechanical sidebands 2.5 120 2.0 g_0/κ ŝ 80 Nonlinear 1.5 40 frequency-pulling 1.0 $1\omega_m$ $3\omega_m$ $2\omega_m$ 0 3.0 С Strongest on resonance 0.05 2.5 Increasing coupling leads <u>2.0</u> 0.03 🖕 g_0 to decrease in quantum 1.5 0.01 features. 1.0 0.00 3.0 2.90 d Strongest on nonclassical 2.5 1.74 states occur where Fano 2.0 0.58 0 factor is **larger** than one! 1.5 -0.58 1.0 What is going on? 2 0 3 -1

Detuning Δ

- Simulation parameters: $E=0.1, \kappa=0.3, Q_m=10^4, \bar{n}_{\rm th}=0$

J.U b 160 Mechanical sidebands 2.5 120 2.0 g_0/κ ŝ 80 Nonlinear 1.5 40 frequency-pulling 1.0 $1\omega_m$ $3\omega_m$ $2\omega_m$ 0 3.0 С Strongest on resonance 0.05 2.5 Increasing coupling leads <u>2.0</u> 0.03 🖕 g_0 to decrease in quantum 1.5 0.01 features. 1.0 0.00 3.0 2.90 d Strongest on nonclassical 2.5 1.74 states occur where Fano 2.0 0.58 0 factor is **larger** than one! 1.5 -0.58 1.0 What is going on?

0

Detuning Δ

-1

2

3

- Stronger the coupling g_0 , and/or more phonons implies more limit-cycles exist.

- Each limit-cycle is sub-Poissonian.
- Circular symmetry from no phase ref.

- To understand the onset, and decay, of the nonclassical oscillator properties, we fix the detuning $\Delta = 0$ and sweep the coupling strength $0 \le g_0/\kappa \le 3$

- The interplay between limit-cycles is measured by using the number state corresponding to the maximum probability amplitude in the density matrix as an order parameter.

- Normalized coupling strength g_0/κ corresponds to the micromaser pump parameter, $\tau_{\rm int}=1/\kappa$. Also proportional to resonator Q-factor.

- Why do the quantum features of the states disappear at higher couplings?

- Each limit-cycle is sub-Poissonian in the regime where the nonclassical ratio is nonzero.

- The merger of limit-cycles, beginning at $g_0/\kappa \simeq 1.3$ reduces the quantum features in the mechanical states.

The overall resonator distribution, which is super-Poissonian, determines the nonclassical properties.

- In general, more phonons in resonator gives overlapping limit-cycles.

Smaller quantum signatures at mechanical sidebands.

Summary:

- Nonclassical states of a mechanical resonator can be generated in an analogue of the micromaser, if the cavity is sufficiently damped so as to have at most one photon at any given time.

- This system has sub-Poissonian limit-cycles, nonclassical mechanical Wigner functions, and phonon oscillations that are also features of a micromaser.

- This is the first micromaser analogue that does not have any atom-like subsystem, only harmonic oscillators!

First single-atom laser with no atom!

- Helps to understand the generation of quantum states in macroscopic mechanical systems.

- Allows for exploring the quantum-classical transition across multiple mass scales.

But can we build it?

Cavity-Cooper Pair Transistor:

- Most difficult part is single-photon strong coupling: $g_0^2/\kappa\omega_m\geq 1$

System	N	$rac{\omega_m}{\kappa}$	$rac{g_0}{\kappa}$	$rac{g_0}{\omega_m}$	$rac{g_0^2}{\kappa\omega_m}$
Superconducting LC oscillator [4]	1e11	60	3e-3	4e-5	1e-7
Si optomechanical crystal [5]	6e9	7	2e-3	$2.5e{-4}$	5e-7
Cold atomic gas [8]	4e4	0.06	22	340	7,500
cCPT-mechanical resonator	5e9	10	12	1.2	14

- Motion of mechanical resonator modulates charging energy of electrons on the Cooperpair transistor island.

- Causes measurable frequency shift of cavity.

x

Thank You