The hidden dimensions of the Universe

I. Antoniadis

CERN

Joint Physics Colloquia, Taipei, 19 November 2013

Experimental tools: Particle colliders at very high energies \Rightarrow

physical laws of nature at very short distances

- LEP2 (CERN): electron positron collisions at 200 GeV \rightarrow 10^{-15} cm
- TEVATRON (USA): protons antiprotons at 2 TeV ightarrow 10⁻¹⁶ cm
- LHC (CERN): proton proton collisions at 14 TeV * ightarrow 10⁻¹⁷ cm

Th description: simple mathematical theories with predictive power encoding the symmetries of physical phenomena

* for the moment 8 TeV

Le travail d'un physicien c'est de trouver les secrets de la Nature. *Chloé*

www.cern.ch/dessine-moi-un-physicien

superconducting magnets at 1.9° K \Rightarrow accelerate protons at 0.999999999 orbit LHC ring 11000 times/sec \Rightarrow several thousand billion protons

Un physicien veut explorer les secrets de la Nature. Lous terre, il y a le LHC, un grand tunnel où les atomes font des collisions. *Isabel*

A billion *p*-*p* collisions per second

each collision has over a thousand particles produced

The LHC is the world's most powerful microscope ...

... and also a telescope

Evolution of the Universe

Only particle physics can tell us what happened here

13.8 Billion Years

10²⁸ cm

I. Antoniadis (CERN)

Today

Evolution of the Universe

Standard Model of **electroweak** + **strong** forces

- Quantum Field Theory Quantum Mechanics + Special Relativity
- Principle: gauge invariance $U(1) \times SU(2) \times SU(3)$

Very accurate description of physics at present energies 17 parameters

• mediators of gauge interactions (vectors): photon, W^{\pm} , Z + 8 gluons

2 matter (fermions): (leptons + quarks) \times 3

electron, positron, neutrino (up, down) 3 colors

Higgs sector: new scalar(s) particle(s):

- break the EW symmetry $U(1) imes SU(2) o U(1)_{\gamma}$ at $M_W \sim 100$ GeV
- generate mass for all elementary particles Brout-Englert Higgs 1964

Its discovery was one of the main goals of LHC

Number of events = Cross section \times Luminosity

Higgs boson discovery at the LHC

 $m_H = 125.9 \pm 0.4$ GeV (average of Particle Data Group 2013)

Couplings of the new boson vs SM Higgs

- ullet Agreement with Standard Model Higgs expectation at 1.5 σ
- Most compatible with scalar 0⁺ hypothesis
- Measurement of its properties and decay rates currently under way

François Englert

Peter Higgs

Nobel Prize of Physics 2013

Experimental indications:

- Neutrino masses
- Unification of gauge couplings ?
- Dark matter [23]

Two main theory reasons:

- Include gravity Quantum Mechanics + General Relativity ? [25]
- Mass hierarchy: $M_W/M_{\rm Planck}\simeq 10^{-17}$ [26]

Gauge coupling unification

Energy evolution of gauge couplings $\alpha_i = g_i^2/4\pi \Rightarrow$

low energy data \rightarrow extrapolation at high energies:

Observable Universe

- Ordinary baryonic matter: only a tiny fraction
- Non-luminous (dark) matter: 25%

Natural explanation: new stable Weakly Interacting Massive Particle [21]

Classic Dark Matter Signature

Newton's law

$$m \bullet \longleftarrow r \longrightarrow \bullet m$$
 $F_{\text{grav}} = G_N \frac{m^2}{r^2}$ $G_N^{-1/2} = M_{\text{Planck}} = 10^{19} \text{ GeV}$
Compare with electric force: $F_{\text{el}} = \frac{e^2}{r^2} \Rightarrow$

effective dimensionless coupling $G_N m^2$ or in general $G_N E^2$ at energies E

$$E = m_{
m proton} \Rightarrow \frac{F_{
m grav}}{F_{
m el}} = \frac{G_N m_{
m proton}^2}{e^2} \simeq 10^{-40} \Rightarrow$$
 Gravity is very weak !

At what energy gravitation becomes comparable to the other interactions?

 $M_{
m Planck}\simeq 10^{19}~{
m GeV}
ightarrow {
m Planck}$ length: $10^{-33}~{
m cm}$

 10^{15} \times the LHC energy! $_{\rm [21]}$

- Higgs mass: very sensitive to high energy physics
- quantum corrections: $\delta m_H \sim \text{scale } \Lambda$ of new physics/massive particles stability requires adjustment of parameters at very high accuracy to keep the physical mass $(m_H^{tree})^2 + \delta m_H^2$ at the weak scale $\Lambda = M_{GUT}$ or $M_P \Rightarrow$ fine tuning at 28-32 decimal places !
- Why gravity is so weak compared to the other interactions? [32]

every particle has a superpartner with spin differ by 1/2 cancel large quantum corrections to the Higgs mass

 \Rightarrow superpartner mass splittings must be not far from M_W

Advantages:

- natural elementary scalars
- gauge coupling unification [22]
- LSP: natural dark matter candidate
- prediction of light Higgs
- rich spectrum of new particles within LHC reach

Problems of supersymmetry

- too many parameters: soft breaking terms supersymmetry breaking mechanism: unknown
- Standard Model global symmetries are not automatic conditions on soft terms for suppression of flavor changing processes
- no satisfactory model of supersymmetric grand unification
- higgsino mass problem:

supersymmetric mass parameter but of the order of the soft terms

MSSM : already a % - ‰ fine-tuning

'little' hierarchy problem

String theory: Quantum Mechanics + General Relativity

point particle \rightarrow extended objects

•
$$\rightarrow$$
 \int particles \equiv string vibrations

- quantum gravity
- framework of unification of all interactions
- "ultimate" theory: ultraviolet finite

 \cdot no free parameters

mass scale (tension): $M_{\rm string} \leftrightarrow {
m size}$: $I_{\rm string}$

rigid string : known particles (massless)

vibrations : infinity of massive particles

At what energies strings may be observed?

• Are there low energy string predictions testable at LHC ?

Very different answers depending mainly on the value of the string scale Before 1994: $M_{\rm string}$ near $M_{\rm Planck}$ at $\sim 10^{18}$ GeV $l_{\rm string} \simeq 10^{-32}$ cm

After 1994: $M_{ m string}$ is an arbitrary parameter

High string scale: natural for supersymmetry and unification

but no stringy test at LHC

Interesting possibility: $M_{
m string} \sim M_W \Rightarrow$ nullify the hierarchy problem

low UV cutoff $\Lambda \simeq M_{
m string}$ [26]

I.A.-Arkani Hamed-Dimopoulos-Dvali '98

Consistency of string theory \Rightarrow 9 spatial dimensions !

 \Rightarrow six new dimensions of space

matter and gauge forces may be localized in less than 9 dimensions

 \Rightarrow our universe on a extended membrane ? [37]

p-brane: extended in *p* spatial dimensions

p = 0: particle, p = 1: string, p = 2: membrane,...

Extra dimensions

how they escape observation?

finite size R

energy cost to send a signal: $E > R^{-1} \leftarrow$ compactification scale

experimental limits on their size

light signal $\Rightarrow E \gtrsim 1 \text{ TeV}$ $R \lesssim 10^{-16} \text{ cm}$

how to detect their existence?

motion in the internal space \Rightarrow mass spectrum in 3d

Kaluza and Klein 1920

How many dimensions ?

example: - one internal circular dimension

- light signal

plane waves e^{ipy} periodic under $y \rightarrow y + 2\pi R$

 \Rightarrow quantization of internal momenta: $p = \frac{k}{R}$; k = 0, 1, 2, ...

 \Rightarrow 3d: tower of Kaluza Klein particles with masses $M_k = k/R$

$$p_0^2 - \vec{p}^2 - p_5^2 = 0 \implies p_0^2 - \vec{p}^2 = p_5^2 = \frac{k^2}{R^2}$$

 $E >> R^{-1}$: emission of many massive photons

 \Leftrightarrow propagation in the internal space [33]

Our universe on a membrane

Two types of new dimensions:

- longitudinal: along the membrane
- transverse: "hidden" dimensions only gravitational signal $\Rightarrow R_{\perp} \lesssim 1 \text{ mm}$!

Adelberger et al. '06

 ${\it R}_{\perp} \lesssim$ 45 $\mu{\rm m}$ at 95% CL

• dark-energy length scale pprox 85 μ m [52]

Extra large \perp dimensions can explain the apparent weakness of gravity

total force = observed force \times volume \bot

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad n \text{ dimensions of size } R_{\perp}$$

$$G_N^* = G_N \times V_{\perp} \qquad n \text{ dimensions of size } R_{\perp}$$

$$G_N^* = M_*^{-(2+n)} : (4+n)\text{-dim gravitational constant} \qquad \Rightarrow V_{\perp} = R_{\perp}^n$$

total force $\simeq \mathcal{O}(1)$ at 1 TeV $\Rightarrow M_* \simeq 1$ TeV

 $n = 1 : R_{\perp} \simeq 10^8 \text{ km}$ excluded $n = 2 : R_{\perp} \simeq 0.1 \text{ mm} \quad (10^{-12} \text{ GeV})$ possible $n = 6 : R_{\perp} \simeq 10^{-13} \text{ mm} \quad (10^{-2} \text{ GeV})$

String theory realization: D-brane world

- gravity: closed strings propagating in 10 dims
- gauge interactions: open strings with their ends attached on D-branes

Dimensions of finite size: n transverse 6 - n parallel

calculability $\Rightarrow R_{\parallel} \simeq I_{\rm string}$; R_{\perp} arbitrary

 $G_N^* = g_s^2 l_s^{2+n}$ g_s : string coupling (\simeq gauge coupling for D-branes)

 $M_s \sim 1~{
m TeV} \Rightarrow R_{\perp}^n = 10^{32}\,l_s^n$

• distances $> R_{\perp}$: gravity 3d but for $< R_{\perp}$: gravity (3+n)d [42]

 \bullet strong gravity at $10^{-16}~\text{cm}\leftrightarrow 10^3~\text{GeV}$

 $10^{30} \times$ stronger than thought previously! [43]

Braneworld

2 types of compact extra dimensions:

• parallel (d_{\parallel}): $\lesssim 10^{-16}$ cm (TeV) [45] • transverse (\perp): $\lesssim 0.1$ mm (meV) [51]

Gravity modification at submillimeter distances

Newton's law: force decreases with area

3d: force $\sim 1/r^2$ (3+*n*)d: force $\sim 1/r^{2+n}$

observable for n = 2: $1/r^4$ with r << .1 mm [40]

Gravitational radiation in the bulk \Rightarrow missing energy

present LHC bounds: $M_*\gtrsim 3-5$ TeV

Collider bounds on R_{\perp} in mm				
	<i>n</i> = 2	<i>n</i> = 4	<i>n</i> = 6	
LEP 2	$4.8 imes10^{-1}$	$1.9 imes10^{-8}$	6.8×10^{-11}	
Tevatron	$5.5 imes10^{-1}$	$1.4 imes10^{-8}$	4.1×10^{-11}	
LHC	$4.5 imes 10^{-3}$	$5.6 imes10^{-10}$	$2.7 imes 10^{-12}$	

String-size black hole energy threshold : $M_{\rm BH} \simeq M_s/g_s^2$

Horowitz-Polchinski '96, Meade-Randall '07

weakly coupled theory \Rightarrow strong gravity effects occur much above M_s , M_* $g_s \sim 0.1$ (gauge coupling) $\Rightarrow M_{\rm BH} \sim 100 M_s$

Comparison with Regge excitations : $M_j = M_s \sqrt{j} \Rightarrow$

production of $j\sim 1/g_s^4\sim 10^4$ string states before reach $M_{
m BH}$

Other accelerator signatures

• Large TeV dimensions seen by SM gauge interactions

 \Rightarrow KK resonances of SM gauge bosons [41] I.A. '90

$$M_n^2 = M_0^2 + \frac{k^2}{R^2}$$
; $k = \pm 1, \pm 2, \dots$

• string physics and possible strong gravity effects

Massive string vibrations \Rightarrow e.g. resonances in dijet distribution [49]

$$M_j^2 = M_0^2 + M_s^2 j$$
; maximal spin: $j + 1$

higher spin excitations of quarks and gluons with strong interactions Anchordoqui-Goldberg-Lüst-Nawata-Taylor-Stieberger '08

• extra U(1)'s and anomaly induced terms [50]

masses suppressed by a loop factor from M_s

Localized fermions (on brane intersections)

 \Rightarrow single production of KK modes

I.A.-Benakli '94

- strong bounds indirect effects: $R^{-1} \gtrsim 4 \,\mathrm{TeV}$
- new resonances [48]

Otherwise KK momentum conservation

 \Rightarrow pair production of KK modes (universal dims)

- weak bounds $R^{-1} \gtrsim 500 \text{ GeV}$
- no resonances
- $\bullet \text{ lightest KK stable} \Rightarrow \mathsf{dark matter candidate}$

Servant-Tait '02

Standard Model on D-branes I.A.-Kiritsis-Rizos-Tomaras '02

Universal deviation from Standard Model in jet distribution

 $M_s = 2 \text{ TeV}$ Width = 15-150 GeV

Anchordoqui-Goldberg-Lüst-Nawata-Taylor-Stieberger '08 [45]

present LHC limits (2010 data): $M_s \gtrsim 5$ TeV

Extra U(1)'s and anomaly induced terms

masses suppressed by a loop factor

usually associated to known global symmetries of the SM

(anomalous or not) such as (combinations of)

Baryon and Lepton number, or PQ symmetry

- in general they become massive due to anomalies but global symmetries remain in perturbation
 - Baryon number \Rightarrow proton stability
 - Lepton number \Rightarrow protect small neutrino masses

Standard Model on D-branes

microgravity experiments

- change of Newton's law at short distances [38]
 detectable only in the case of two large extra dimensions
- new short range forces light scalars and gauge fields if SUSY in the bulk or broken by the compactification on the brane I.A.-Dimopoulos-Dvali '98, I.A.-Benakli-Maillard-Laugier '02 such as radion and lepton number volume suppressed mass: $(\text{TeV})^2/M_P \sim 10^{-4} \text{ eV} \rightarrow \text{mm}$ range can be experimentally tested for any number of extra dimensions
 - Light U(1) gauge bosons: no derivative couplings
 - \Rightarrow for the same mass much stronger than gravity: $\gtrsim~10^{6}$

Experimental limits on short distance forces

$$V(r) = -G \frac{m_1 m_2}{r} \left(1 + \alpha e^{-r/\lambda}\right)$$

Radion $\Rightarrow M_* \gtrsim 6$ TeV 95% CL Adelberger et al. '06

improved bounds in the range 5-15 $\mu {\rm m}$

Geraci-Smullin-Weld-Chiaverini-Kapitulnik '08

improved bounds from Casimir effect in the nm range Decca-Fischbach et al '07, '08

5: Colorado

4: Stanford

3: Lamoureaux

1: Mohideen et al.

Neutron scattering: bounds in the range $\sim 1 \mathrm{pm}$ - 1 nm

Nesvizhevsky-Pignol-Protasov '07

Conclusions

- Confirmation of the Higgs scalar discovery at the LHC : important milestone of the LHC research program
- LHC and Particle physics in a new era with possible new discoveries unveiling the fundamental laws of Nature
- Future plans to explore the 10-100 TeV energy frontier

The LHC timeline

LS1 Machine Consolidation

LS2 Machine upgrades for high Luminosity

- Collimation
- Cryogenics
- · Injector upgrade for high intensity (lower emittance)
- · Phase I for ATLAS : Pixel upgrade, FTK, and new small wheel

LS3 Machine upgrades for high Luminosity

- Upgrade interaction region
- · Crab cavities?
- Phase II: full replacement of tracker, new trigger scheme (add L0), readout electronics.

Europe's top priority should be the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with a view to collecting ten times more data than in the initial design, by around 2030.

Start of LHC 2009 Run 1, 7+8 TeV, ~25 fh⁻¹ int lumi 2013/14 Prepare LHC for LS1 design E & lumi Collect ~30 fb⁻¹ per year at 13/14 TeV 2018 Phase-1 upgrade 152 ultimate lumi Twice nominal lumi at 14 TeV, ~100 fb⁻¹ per year ~2022 Phase-2 upgrade LS3 to HL-LHC ~300 fb⁻¹ per year, run up to > 3 ab^{-1} collected ~2030

IHC timeline

Future accelerators

ILC project

The future of LHC

possible long-term strategy

possible long-term strategy

possible long-term strategy

possible long-term strategy TLEP (e^+e^- up to ~350 GeV c.m.) HE-LHC PSB PS (0.6 km) n) SPS (6.9 km) (pp, 33 TeV c.m.) LHC (26.7 km) **VHE-LHC** (pp, up to 100 TeV c.m.) same detectors! also: e[±] (120 GeV) – p (7 & 50 TeV) collisions

 \geq 50 years of e^+e^- , pp, ep/A physics at highest energies

VHE-LHC: location and size

- 100 TeV p-p collider
- CDR and cost review to be ready for next European Strategy Update
- The tunnel could also house a e⁺- e⁻ Higgs factory (TLEP)

	TLEP	
circumference	80 km	
Beam energy up to	370 GeV c.m.	
max no. of IPs	4	
Luminosity/IP at 350 GeV c.m.	1.3x10 ³⁴ cm ⁻² s ⁻¹	
Luminosity/IP at 240 GeV c.m.	4.8x10 ³⁴ cm ⁻² s ⁻¹	
Luminosity/IP at 160 GeV c.m.	1.6x10 ³⁵ cm ⁻² s ⁻¹	
Luminosity/IP at 90 GeV c.m.	5.6 10 ³⁵ cm ⁻² s ⁻¹	

A circumference of 100 km is being considered for cost-benefit reasons 20T magnet in 80 km / 16T magnet in 100 km \rightarrow 100 TeV

