Temperature, Heat, and the First Law of Thermodynamics

Thermodynamics

Some temperatures on the Kelvin scale. Temperature $T=0$ corresponds to 10^{∞} and cannot be plotted on this logarithmic scale.

Zeroth law of thermodynamics

a) Body T (a thermoscope) and body A are in thermal equilibrium. (Body S is a thermally insulating screen.) (b) Body T and body B are also in thermal equilibrium, at the same reading of the thermoscope. (c) If (a) and (b) are true, the zeroth law of thermodynamics states that body A and body B are also in thermal equilibrium.

If A, B are each in thermal equilibrium with C at T , then they are in thermal equilibrium with each other.

Measuring temperature

phase diagram of water

The Constant-Volume Gas Thermometer

A constant-volume gas thermometer, its bulb immersed in a liquid whose temperature T is to be measured.
$T=273.16\left(\lim _{m \rightarrow 0} \frac{P}{P_{3}}\right)$

The Celsius and Fahrenheit Scales

$T_{C}=T-273.15$
$T_{F}=\frac{9}{5} T_{C}+32$

Thermal Expansion

(a)

$T>T_{0}$
(b)
(a) A bimetal strip, consisting of a strip of brass and a strip of steel welded together, at temperature T_{0}. (b) The strip bends as shown at temperatures above this reference temperature. Below the reference temperature the strip bends the other way. Many thermostats operate on this principle, making and breaking an electrical contact as the temperature rises and falls.

$$
\Delta L=\alpha L \Delta T \quad \alpha=\frac{\Delta L / L}{\Delta T} \quad \text { coefficients of linear expansion }
$$

$$
\Delta V=\beta V \Delta T \quad \beta=32
$$

pf.
$\Delta L_{x}=\alpha L_{x} \Delta T$
$\Delta L_{y}=\alpha L_{y} \Delta T$
$\Delta L_{z}=\alpha L_{z} \Delta T$
$\Delta V=\left(L_{x}+\Delta L_{x}\right)\left(L_{y}+\Delta L_{y}\right)\left(L_{z}+\Delta L_{z}\right)-L_{x} L_{y} L_{z}$
$\cong \Delta L_{x} L_{y} L_{z}+\Delta L_{y} L_{x} L_{z}+\Delta L_{z} L_{x} L_{y}$
$=\alpha\left(\Delta L_{x} L_{y} L_{z}\right) \Delta T+\alpha\left(\Delta L_{x} L_{y} L_{z}\right) \Delta T+\alpha\left(\Delta L_{x} L_{y} L_{z}\right) \Delta T$
$=(3 \alpha) V \Delta T \equiv \beta V \Delta T \quad \beta=3 \alpha$

On a hot day in Las Vegas, an oil trucker loaded 37,000 L of diesel fuel. He encountered cold weather on the way to Payson, Utah, where the temperature was 23.0 K lower than in Las Vegas, and where he delivered his entire load. How many liters did he deliver? The coefficient of volume expansion for diesel fuel is $9.50 \times$ $10^{-4} / \mathrm{C}^{\circ}$, and the coefficient of linear expansion for his steel truck tank is $11 \times 10^{-6} / \mathrm{C}^{\circ}$.

SOLUTION:

The Key Idea here is that the volume of the diesel fuel depends directly on the temperature. Thus, because the temperature decreased, the volume of the fuel did also. From Eq. 19-10, the volume change is

$$
\begin{aligned}
\Delta V & =V \beta \Delta T \\
& =(37,000 \mathrm{~L})\left(9.50 \times 10^{-4} / \mathrm{C}^{\circ}\right)(-23.0 \mathrm{~K})=-808 \mathrm{~L} .
\end{aligned}
$$

Thus, the amount delivered was

$$
\begin{aligned}
V_{\text {del }} & =V+\Delta V=37,000 \mathrm{~L}-808 \mathrm{~L} \\
& =36,190 \mathrm{~L} .
\end{aligned}
$$

Temperature and Heat

If the temperature of a system exceeds that of its environment as in (a), heat Q is lost by the system to the environment until thermal equilibrium (b) is established. (c) If the temperature of the system is below that of the environment, heat is absorbed by the system until thermal equilibrium is established.
heat is a form of energy
$1 \mathrm{cal}=3.969 \times 10^{-3} \mathrm{Btu}=4.186 \mathrm{~J}$
heat for 1 lb water $1^{\circ} \mathrm{F}$ increase in temperature $=1 \mathrm{Btu}$

Heat capacity (C)

$Q=C\left(T_{f}-T_{i}\right)$
$c \propto m \quad($ mass $)$
define $\mathrm{C}=\mathrm{cm}$
molar specific heat
$Q=\operatorname{cm}\left(T_{f}-T_{i}\right) \quad(\mathrm{J} / \mathrm{kg} \cdot \mathrm{K}) \rightarrow \mathrm{J} / \mathrm{mol} \cdot \mathrm{K}$
C_{v} : specific heat at constant volume
C_{p} : specific heat at constant pressure
for an ideal gas $C_{p}=C_{v}-N k$

When heat is absorbed,
(1) temperature : vibration or translation more violently
(2) phase transitions : define L as heat of transformation

$$
\mathrm{Q}=\mathrm{Lm}
$$

For example, heat of vaporization L_{v} of water (liquid \leftrightarrow gas)
$L_{V}=539 \mathrm{cal} / \mathrm{g}=40.7 \mathrm{KJ} / \mathrm{mol}=2256 \mathrm{KJ} / \mathrm{kg}$
heat of fusion L_{F} (liquid \leftrightarrow solid)
$L_{F}=79.5 \mathrm{cal} / \mathrm{g}=6.01 \mathrm{KJ} / \mathrm{mol}=333 \mathrm{KJ} / \mathrm{kg}$

A copper slug whose mass m_{c} is 75 g is heated in a laboratory oven to a temperature T of $312^{\circ} \mathrm{C}$. The slug is then dropped into a glass beaker containing a mass $m_{w}=220 \mathrm{~g}$ of water. The heat capacity C_{b} of the beaker is $45 \mathrm{cal} / \mathrm{K}$. The initial temperature T_{i} of the water and the beaker is $12^{\circ} \mathrm{C}$. Assuming that the slug, beaker, and water are an isolated system and the water does not vaporize, find the final temperature T_{f} of the system at thermal equilibrium.

Solution:

energy conserved for the system of water + beaker + copper slug

$$
\begin{array}{ll}
\text { water }: & Q_{w}=m_{w} c_{w}\left(T_{f}-T_{i}\right) \\
& Q_{b}=C_{b}\left(T_{f}-T_{i}\right) \\
& Q_{c}=m_{c} c_{c}\left(T_{f}-T\right) \\
& Q_{w}+Q_{b}+Q_{c}=0 \\
& m_{w} c_{w}\left(T_{f}-T_{i}\right)+C_{b}\left(T_{f}-T_{i}\right)+m_{c} c_{c}\left(T_{f}-T\right)=0 \\
& T_{f}=\frac{m_{c} c_{c} T+m_{w} c_{w} T_{i}+C_{b} T_{i}}{m_{w} c_{w}+C_{b}+m_{c} c_{c}}=\frac{5332.8}{271.9} \cong 19.6^{0} \mathrm{C}
\end{array}
$$

Heat and Work

A gas is confined to a cylinder with a movable piston. Heat Q can be added to, or withdrawn from, the gas by regulating the temperature T of the adjustable thermal reservoir. Work W can be done by the gas by raising or lowering the piston.

Work done by the gas

(a) The shaded area represents the work W done by a system as it goes from an initial state i to a final state f. Work W is positive because the system's volume increases. (b) W is still positive, but now greater. (c) W is still positive, but now smaller. (d) W can be even smaller (path $i c d f$) or larger (path ighf). (e) Here the system goes from state f to state i, as the gas is compressed to less volume by an external force. The work W done $b y$ the system is now negative. (f) The net work $W_{\text {net }}$ done by the system during a complete cycle is represented by the shaded area.

The First Law of Thermodynamics

Q-W is the same for all processes if initial state and final state are not changed. It is independent of path. Q-W is the intrinsic property of the system, we call it internal energy

$$
\Delta E_{\mathrm{int}}=E_{f}-E_{i}=Q-W
$$

For an infinitesimal change $d E=d Q-d W$

(1) Adiabatic processes
no heat transferred $\mathrm{Q}=0$
$\Delta E_{\text {int }}=-W$

If $\mathrm{mg}<\mathrm{pA}$, gas expand, $\mathrm{W}>0$
$\Delta \mathrm{E}_{\text {int }}<0$

If $\mathrm{mg}>\mathrm{pA}$, gas compressed, $\mathrm{W}<0$
$\Delta \mathrm{E}_{\text {int }}>0$

An adiabatic expansion can be carried out by slowly removing lead shot from the top of the piston. Adding lead shot reverses the process at any stage.
(2) Constant-volume processes

$$
\mathrm{W}=0 \quad \mathrm{Q}>0 \quad \Delta \mathrm{E}_{\text {int }}>0
$$

$$
\Delta \mathrm{E}_{\text {int }}=\mathrm{Q} \quad \mathrm{Q}<0 \quad \Delta \mathrm{E}_{\text {int }}<0
$$

(3) Cyclical processes

$$
\Delta \mathrm{E}_{\text {int }}=0
$$

$$
\mathrm{Q}=\mathrm{W}
$$

(4) Free expansions.

The initial stage of a free-expansion process. After the stopcock is opened, the gas fills both chambers and eventually reaches an equilibrium state.

Let 1.00 kg of liquid water at $100^{\circ} \mathrm{C}$ be converted to steam at $100^{\circ} \mathrm{C}$ by boiling at standard atmospheric pressure (which is 1.00 atm or $1.01 \times 10^{5} \mathrm{~Pa}$) in the arrangement of Fig. 19-17. The volume of that water changes from an initial value of $1.00 \times 10^{-3} \mathrm{~m}^{3}$ as a liquid to $1.671 \mathrm{~m}^{3}$ as steam.

Water boiling at constant pressure. Energy is transferred from the thermal reservoir as heat until the liquid water has changed completely into steam. Work is done by the expanding gas as it lifts the loaded piston.
(a) $W=\int_{i}^{f} p d v=p\left(V_{f}-V_{i}\right)$

$$
\begin{aligned}
& =1.01 \times 10^{5} \times\left(1.671-10^{-3}\right) \\
& =1.69 \times 10^{5} \mathrm{~J}
\end{aligned}
$$

(b) $\mathrm{Q}=\mathrm{L}_{\mathrm{v}} \mathrm{m}=2260 \mathrm{~kJ} / \mathrm{kg} \cdot 1 \mathrm{~kg}=2260 \mathrm{~kJ}$
(c) $\Delta \mathrm{E}=\mathrm{Q}-\mathrm{W}=2090(\mathrm{~kJ})$

Heat Transfer Mechanisms

conduction, convection, and radiation

Thermal conduction. Energy is transferred as heat from a reservoir at temperature T_{H} to a cooler reservoir at temperature T_{C} through a conducting slab of thickness L and thermal conductivity k.

$$
H=\frac{Q}{t}=K A \frac{\left(T_{H}-T_{C}\right)}{L}
$$

Thermal resistance to conduction

$$
\begin{aligned}
& R=\frac{L}{K} \\
& H=A \cdot \frac{T_{H}-T_{C}}{R}
\end{aligned}
$$

Conduction through a composite slab

Heat is transferred at a steady rate through a composite slab made up of two different materials with different thicknesses and different thermal conductivities. The steady-state temperature at the interface of the two materials is T_{X}.
$H=\frac{k_{2} A\left(T_{H}-T_{X}\right)}{L_{2}}=\frac{k_{1} A\left(T_{X}-T_{C}\right)}{L_{1}}$
$T_{X}=\frac{k_{1} L_{2} T_{C}+k_{2} L_{1} T_{H}}{k_{1} L_{2}+k_{2} L_{1}}$
$H=\frac{A\left(T_{H}-T_{C}\right)}{L_{1} / k_{1}+L_{2} / k_{2}}=\frac{A\left(T_{H}-T_{C}\right)}{R}=\frac{A\left(T_{H}-T_{C}\right)}{\sum R_{i}}$
$R=R_{1}+R_{2}$

Convection

tornado

Radiation

thermal radiation rate
$p_{r}=\sigma \varepsilon A t^{4}$

$$
\begin{aligned}
& \sigma=5.67 \times 10^{-8}\left(\mathrm{w} / \mathrm{m}^{2} \mathrm{~K}^{4}\right) \\
& \varepsilon: \text { emissivity }
\end{aligned}
$$

absorption from the environment

$$
\begin{aligned}
& p_{a}=\sigma \varepsilon A T_{e n v}^{4} \\
& P_{n}=P_{a}-P_{r}=\sigma \varepsilon A\left(T_{e n v}^{4}-T^{4}\right) \\
& \left.\varepsilon_{\text {black }}\right\rangle \varepsilon_{\text {white }} \\
& \text { if } \left.\quad T_{e n v}\right\rangle T \\
& \left.P_{n}^{b}\right\rangle P_{n}^{w}
\end{aligned}
$$

Figure below shows the cross section of a wall made of white pine of thickness L_{a} and brick of thickness $L_{d}(=$ $2.0 L_{a}$), sandwiching two layers of unknown material with identical thicknesses and thermal conductivities. The thermal conductivity of the pine is k_{a} and that of the brick is $k_{d}\left(=5.0 k_{a}\right)$. The face area A of the wall is unknown. Thermal conduction through the wall has reached the steady state; the only known interface temperatures are $T_{1}=25^{\circ} \mathrm{C}, T_{2}=20^{\circ} \mathrm{C}$, and $T_{5}=-10^{\circ} \mathrm{C}$. What is interface temperature T_{4} ?

(a)
$H_{a}=k_{a} A \frac{T_{1}-T_{2}}{L_{a}}$
$H_{d}=k_{a} A \frac{T_{4}-T_{5}}{L_{a}}$
$H_{a}=H_{d} \Rightarrow T_{4}=\frac{k_{a} L_{d}}{k_{d} L_{a}}\left(T_{1}-T_{2}\right)+T_{5}$

$$
\cong-8.0^{\circ} \mathrm{C}
$$

$$
\begin{aligned}
& k_{b} A \frac{T_{2}-T_{2}}{L_{b}}=k_{c} A \frac{T_{3}-T_{4}}{L_{c}} \\
& k_{b}=k_{c} \quad L_{b}=L_{c} \\
& T_{2}-T_{3}=T_{3}-T_{4} \\
& T_{3}=\frac{T_{2}+T_{4}}{2}=6^{\circ} \mathrm{C}
\end{aligned}
$$

The Kinetic Theory of Gases

1 mole is the number of atoms in a 12 g sample of carbon 12.
$\mathrm{N}_{\mathrm{a}}=6.02 \times 10^{23} \mathrm{~mol}^{-1} \quad:$ Avogadro's number
number of moles $n=\frac{N}{N_{a}}=\frac{M_{\text {sam }}}{m N_{A}}=\frac{M_{\text {same }}}{M_{m}}$
ideal gas eg. of state
$\mathrm{pV}=\mathrm{nRT}$ (experiment first) $\mathrm{R}=8.31 \mathrm{~J} /($ mole K$)$ gas constant

$W=\int p d v=\int \frac{n R T}{V} d v$
$=n R T \log \left(\frac{V_{f}}{V_{i}}\right) \quad$ (isothermal processes)
constant volume processes $\quad \mathrm{W}=0$
constant pressure process $W=\int p d v=p\left(V_{f}-V_{i}\right)=p \Delta V$

A cylinder contains 12 L of oxygen at $20^{\circ} \mathrm{C}$ and 15 atm . The temperature is raised to $35^{\circ} \mathrm{C}$, and the volume is reduced to 8.5 L . What is the final pressure of the gas in atmospheres? Assume that the gas is ideal.

Solution:
$\frac{p V}{T}=n R=$ const $\quad \frac{p_{i} V_{i}}{T_{i}}=\frac{p_{f} V_{f}}{T_{f}}$
$p_{f}=p_{i} \cdot \frac{V_{i}}{V_{f}} \cdot \frac{T_{f}}{T_{i}}=22 \mathrm{~atm}$

Pressure, Temperature, and RMS Speed

A cubical box of edge L, containing n moles of an ideal gas. A molecule of mass m and velocity $\overrightarrow{\boldsymbol{v}}_{\text {is about to collide with the }}$ shaded wall of area L^{2}. A normal to that wall is shown.

$$
\begin{aligned}
& \Delta p_{x}=-m v_{x}-m v_{x}=-2 m v_{x} \\
& \frac{\left[\left(\frac{N}{V}\right)\left(A \cdot v_{x} \Delta t\right) / 2\right] \cdot 2 m v_{x}}{\Delta t}=F \\
& \frac{F}{A}=p=\frac{N m v_{x}^{2}}{V}=\frac{n M v_{x}^{2}}{V} \\
& p=\frac{n M}{V}\left(v_{x 1}^{2}+\ldots . .+v_{x N}^{2}\right) / N \\
& =\frac{n M}{V} v_{x}^{2}=\frac{n M}{3 V} v^{2}=\frac{n M^{2}}{3 V_{r m s}} \\
& p V=\frac{n M}{3} v_{r m s}^{2}=n R T \\
& \frac{M}{3} v_{r m s}^{2}=R T \quad v_{r m s}^{2}=\sqrt{\frac{3 R T}{M}}
\end{aligned}
$$

Gas
Hydrogen $\left(\mathrm{H}_{2}\right)$

$$
\text { at } \quad \mathrm{T}=300 \mathrm{~K}
$$

Helium (He)
Water vapor $\left(\mathrm{H}_{2} \mathrm{O}\right)$ 645

Carbon dioxide $\left(\mathrm{CO}_{2}\right)$ 412

Translational Kinetic Energy

$$
\begin{aligned}
& \bar{K}=\frac{1}{2} m v_{2}= \\
& \frac{1}{2} m \bar{v}_{2}=\frac{1}{2} m v_{r m s}^{2} \\
& \bar{K}=\frac{3}{2} k T \quad k=\frac{R}{N_{A}}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K} \\
&(\text { Boltzmann constant })
\end{aligned}
$$

Mean free path

A molecule traveling through a gas, colliding with other gas molecules in its path. Although the other molecules are shown as stationary, they are also moving in a similar fashion.
$<l>=\lambda$: mean free path

$$
\lambda \propto \frac{1}{(N / V)} \quad \lambda \propto \frac{1}{\left(\tau d^{2}\right)} \quad d: \text { molecular size }
$$

(a) A collision occurs when the centers of two molecules come within a distance d of each other, d being the molecular diameter. (b) An equivalent but more convenient representation is to think of the moving molecule as having a radius d and all other molecules as being points. The condition for a collision is unchanged.

In time Δt the moving molecule effectively sweeps out a cylinder of length $v \Delta t$ and radius d.
$\mathrm{r}_{\mathrm{cm}}<\mathrm{d} \quad$: collision
τ : mean collision time
$\left(\pi d^{2} \cdot v \tau\right) \cdot \frac{N}{V}=1$
consider all others are at rest $\lambda=\frac{1}{\pi d^{2}(N / V)}$
in fact, all moleaules are moving $\lambda=\frac{1}{\sqrt{2} \pi d^{2}(N / V)}$
ex.
(a) What is the mean free path λ for oxygen molecules at temperature $T=300 \mathrm{~K}$ and pressure $p=1.0 \mathrm{~atm}$? Assume that the molecular diameter is $d=290 \mathrm{pm}$ and the gas is ideal. (b) Assume the average speed of the oxygen molecules is $V=450 \mathrm{~m} / \mathrm{s}$. What is the average time t between successive collisions for any given molecule? At what rate does the molecule collide; that is, what is the frequency f of its collisions?
(a)
$d=2.9 \times 10^{-10}$
$V=\frac{n R T}{p}=\frac{1 \times 8.31 \times 300}{1(\mathrm{~atm}) \times 10^{5}(\mathrm{~Pa} / \mathrm{atm}}=2.5 \times 10^{-2} \mathrm{~m}^{3}$
$\frac{N}{V}=\frac{6 \times 10^{23}}{2.5 \times 10^{-2}}=2.4 \times 10^{25}\left(\right.$ molecules $\left./ \mathrm{m}^{3}\right)$
$\lambda=\frac{1}{\sqrt{2} \pi d^{2}(\mathrm{~N} / \mathrm{V})}=1.1 \times 10^{-7}(\mathrm{~m})$
(b)
$\tau=\frac{\lambda}{v_{r m s}}$
$\tau^{-1}=\frac{v_{r m s}}{\lambda}=4 \times 10^{9}\left(s^{-1}\right)$

Boltzmann distribution

a) The Maxwell speed distribution for oxygen molecules at $T=300 \mathrm{~K}$. The three characteristic speeds are marked. (b) The curves for 300 K and 80 K . Note that the molecules move more slowly at the lower temperature. Because these are probability distributions, the area under each curve has a numerical value of unity.

$$
\begin{aligned}
& P(v)=4 \pi\left(\frac{M}{2 \pi R T}\right)^{3 / 2} v^{2} \exp \left(\frac{-M v^{2}}{2 R T}\right) \\
& \frac{2 P(v)}{2 v^{2}}=0 \Rightarrow \exp \left(-\frac{M v^{2}}{2 R T}\right)-\frac{M}{2 R T} v_{\max }^{2} \exp \left(-\frac{M v^{2}}{2 R T}\right)=0 \\
& v_{\max }^{2}=\frac{2 R T}{M} \quad v_{\max }=\sqrt{\frac{2 R T}{M}}
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle v^{2}\right\rangle=\int 4 \pi\left(\frac{M}{2 \pi R T}\right)^{\frac{3}{2}} v^{4} \exp \left(-\frac{M v^{2}}{2 R T}\right) d v \\
& =\left(\frac{M}{2 \pi R T}\right)^{\frac{3}{2}} \cdot 4 \pi \int v^{2} e^{-\alpha v^{2}} d v \\
& =\left(\frac{M}{2 \pi R T}\right)^{\frac{3}{2}} \cdot 4 \pi\left(\frac{d^{2}}{d \alpha^{2}} \int e^{-\varepsilon v^{2}} d v\right) \\
& =\left(\frac{M}{2 \pi R T}\right)^{\frac{3}{2}} \cdot 2 \pi \frac{d^{2}}{d \alpha^{2}} \cdot \sqrt{\frac{\pi}{\alpha}} \\
& =\left(\frac{M}{2 \pi R T}\right)^{\frac{3}{2}} \cdot 2 \pi \cdot\left(\frac{-1}{2}\right)\left(\frac{-3}{2}\right) \frac{\sqrt{\pi}}{\alpha^{\frac{5}{2}}} \\
& =\left(\frac{M}{2 \pi R T}\right)^{\frac{3}{2}} \cdot \frac{3}{2} \cdot\left(\sqrt{\frac{2 R T}{M}}\right)^{\frac{5}{2}}=\frac{3}{2} \cdot \frac{2 R T}{M}=\frac{3 R T}{M}
\end{aligned}
$$

Internal energy $\mathbf{E}_{\text {int }}$

$E_{\text {int }}=n \cdot N_{A} \cdot(K)=n \cdot N_{A} \cdot \frac{3}{2} k T=\frac{3}{2} n R T \quad$ (monatomic ideal gas)
$E_{\text {int }}=\frac{f}{2} n R T \quad \mathrm{f}=\#$ of degrees of freedom
ex.

Models of molecules as used in kinetic theory: (a) helium, a typical monatomic molecule; (b) oxygen, a typical diatomic molecule; and (c) methane, a typical polyatomic molecule. The spheres represent atoms, and the lines between them represent bonds. Two rotation axes are shown for the oxygen molecule.

$$
\begin{aligned}
& \mathrm{f}=3 \\
& \mathrm{f}=3+2=5 \quad(\text { translation + rotation }) \\
& \mathrm{f}=3+2+2=7 \quad(\text { translation + rotation + vibration })
\end{aligned}
$$

Degrees of Freedom

| | Degrees of Freedom | | | | Predicted Molar Specific Heats | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Molecule | Example | Translational | Rotational | Total (f) | $C_{V}($ Eq. $\underline{20-51)})$ | $C_{p}=C_{V}+R$ |
| Monatomic | He | 3 | 0 | 3 | $\frac{3}{2} R$ | $\frac{5}{2} R$ |
| Diatomic | O_{2} | 3 | 2 | 5 | $\frac{5}{2} R$ | $\frac{7}{2} R$ |
| Polyatomic | CH_{4} | 3 | 3 | 6 | $3 R$ | $4 R$ |
| | | | | | | |

A plot of C_{V} / R versus temperature for (diatomic) hydrogen gas. Because rotational and oscillatory motions begin at certain energies, only translation is possible at very low temperatures. As the temperature increases, rotational motion can begin. At still higher temperatures, oscillatory motion can begin.

Molar Specific Heats at constant volume

initial state i : p, T, V
$\downarrow \Delta Q$
final state $\mathrm{f}: p+\Delta p, \quad T+\Delta T, \quad V$
$\Delta Q=n C_{v} \Delta T$
$\Delta E=\Delta Q-\Delta W=n C_{v} \Delta T \quad(\Delta W=0)$
$C_{v}=\frac{1}{n} \cdot \frac{\Delta E_{\text {int }}}{\Delta T}=\frac{3}{2} R$
$E_{\text {int }}=n C_{v} T$
$\Delta E=n C_{v} \Delta T$

1. constant volume process

2, constant pressure process
3, adiabatic process
Since final state property doesn't depend on path, it can always be obtained from path $1, \Delta \mathrm{E}_{\text {int }}=\mathrm{nC}_{\mathrm{v}} \Delta \mathrm{T}$ and then by eg. of state $\mathrm{pV}=\mathrm{nRT}$

Molar Specific Heat at Constant Pressure
$\Delta Q=n C_{p} \Delta T$
$\Delta E=\Delta Q-\Delta W=\Delta Q-p \Delta V$
$=\Delta Q-n R \Delta T$
$=\left(n C_{p}-n R\right) \Delta T$
$n\left(C_{p}-R\right)=n C_{v} \quad C_{p}=C_{v}+R=\frac{5}{2} R$
$H_{e} \quad C_{v}=\frac{3}{2} R \quad C_{p}=\frac{5}{2} R$
$O_{2}($ rotation $) \quad C_{v}=\frac{5}{2} R \quad C_{p}=\frac{7}{2} R$
(vibration) $\quad C_{v}=\frac{7}{2} R \quad C_{p}=\frac{9}{2} R$

Adiabatic expansion of an ideal gas
$p V^{\gamma}=$ const $\quad \gamma=C_{p} / C_{v}=\frac{5}{3}$
Pf :
$d E=d Q-p d v$
$n C_{v} d t-p d V$
$p V=n R T$
$p d V+V d p=n R d T$
$\frac{C_{v}}{R}(p d V+V d p)=-p d V$
$\frac{C_{v}}{C_{p}-C_{v}}(p d V+V d p)=-p d V$
$C_{p} p d V+V C_{v} d p=0$
$C_{p} \frac{d V}{V}+C_{v} \frac{d p}{p}=0$
$\frac{d p}{p}=-\frac{C_{p}}{C_{v}} \cdot \frac{d V}{V}=-\gamma \frac{d V}{V}$
$\ln p=-\gamma \ln V+$ const
$=\ln V^{-\gamma}+$ const
$p V^{\gamma}=$ const
$p V=n R T$
$\left(\frac{n R T}{V}\right) V^{\gamma}=$ const
$T V^{\gamma-1}=$ const
free expansion

$$
\begin{aligned}
& \Delta Q=0 \quad \Delta W=0 \quad \Rightarrow \Delta E=0 \\
& T_{f}=T_{i} \\
& p_{i} V_{i}=p_{f} V_{f}
\end{aligned}
$$

Entropy and the Second Law of Thermodynamics

Entropy S measures the degree of disorder of a system which is a function of the state of system.
The experience tells us that the entropy S in creases for an irreversible process of a closed system $2^{\text {nd }}$ law of thermodynamics $\Delta \mathrm{S} \geq 0$
Kelvin statement :
The entropy of a system increases when it receives heat decreases when it loses heat. $\Delta \mathrm{S} \propto \Delta \mathrm{Q}$
Clausius statement :
the higher the temperature of the system from which heat is transferred , the less entropy change occurs in that system. $\Delta \mathrm{S} \propto 1 / \mathrm{T}$

$$
\begin{aligned}
& \Delta S=\frac{\Delta Q}{T} \quad \text { or } \quad d S=\frac{d Q}{T} \\
d Q & =d E+d W \\
& =n C_{v} d T+p d V \\
& \int \frac{d Q}{T}=\int \frac{n C_{v} d T}{T}+\int \frac{n R T d V}{V T} \\
\mathrm{~S}_{\mathrm{f}}-\mathrm{S}_{\mathrm{i}} \quad & =n C_{v} \ln \frac{T_{f}}{T_{i}}+n R \ln \frac{V_{f}}{V_{i}}
\end{aligned}
$$

Engines

Efficiency
$\varepsilon=\frac{W}{Q_{H}}$
$W=Q_{H}-Q_{C} \quad($ since $\Delta \mathrm{E}=0)$

For a reversible process $\Delta S=0 \quad=\left(\frac{Q_{H}}{T_{H}}+\frac{Q_{L}}{T_{L}}\right)$
i.e.
$\frac{Q_{H}}{T_{H}}=\frac{Q_{L}}{T_{L}} \quad \frac{Q_{L}}{Q_{H}}+\frac{T_{L}}{T_{H}}$
$\varepsilon=\frac{W}{Q_{H}}=\frac{Q_{H}-Q_{C}}{Q_{H}}=1-\frac{Q_{C}}{Q_{H}}=1-\frac{T_{C}}{T_{H}}$

For a irreversible process $\Delta \mathrm{S}>0$
$\frac{Q_{H}}{T_{H}}\left\langle\frac{Q_{C}}{T_{C}} \quad\right.$ or $\left.\quad \frac{Q_{C}}{Q_{H}}\right\rangle \frac{T_{C}}{T_{H}}$
$\varepsilon=1-\frac{Q_{C}}{Q_{H}}\left\langle 1-\frac{T_{C}}{T_{H}}\right.$
$\varepsilon \leq 1-\frac{T_{C}}{T_{H}}$

A Carnot Engine

We shall focus on a particular ideal engine called a Carnot engine after the French scientist and engineer N. L. Sadi Carnot (pronounced "car-no"), who first proposed the engine's concept in 1824. This ideal engine turns out to be the best (in principle) at using energy as heat to do useful work. Surprisingly, Carnot was able to analyze the performance of this engine before the first law of thermodynamics and the concept of entropy had been discovered.

The elements of an engine. The two black arrowheads on the central loop suggest the working substance operating in a cycle, as if on a $p-V$ plot. Energy $\left|Q_{\mathrm{H}}\right|$ is transferred as heat from the high-temperature reservoir at temperature T_{H} to the working substance.

Energy $\left|Q_{\mathrm{L}}\right|$ is transferred as heat from the working substance to the low-temperature reservoir at temperature T_{L}. Work W is done by the engine (actually by the working substance) on something in the environment.

A pressure-volume plot of the cycle followed by the working substance of the Carnot engine. The cycle consists of two isotherm ($a b$ and $c d$) and two adiabatic processes ($b c$ and $d a$). The shaded area enclosed by the cycle is equal to the work W per cycle done by the Carnot engine.

Entropy S
The Carnot cycle plotted on a temperature-entropy diagram. During processes $a b$ and $c d$ the temperature remains constant. During processes $b c$ and $d a$ the entropy remains constant.

The Work:

To calculate the net work done by a Carnot engine during a cycle, let us apply Eq. 19-26, the first law of thermodynamics ($\Delta E_{\mathrm{nt}}=Q-W$), to the working substance. That substance must return again and again to any arbitrarily selected state in the cycle. Thus, if X represents any state property of the working substance, such as pressure, temperature, volume, internal energy, or entropy, we must have $\Delta X=0$ for every cycle. It follows that $\Delta E_{\mathrm{nt}}=0$ for a complete cycle of the working substance. Recalling that Q in Eq. 19-26 is the net heat transfer per cycle and W is the net work, we can write the first law of thermodynamics for the Carnot cycle as

$$
W=\left|Q_{\text {H }}\right|-\left|Q_{\mathrm{I}}\right| .
$$

Entropy Changes:

In a Carnot engine, there are two (and only two) reversible energy transfers as heat, and thus two changes in the entropy of the working substance-one at temperature $T_{\text {H }}$ and one at $T_{\text {L }}$. The net entropy change per cycle is then

$$
\Delta S=\Delta S_{\mathrm{H}}+\Delta S_{\mathrm{L}}=\frac{\left|Q_{\mathrm{H}}\right|}{T_{\mathrm{H}}}+\frac{\left|Q_{\mathrm{L}}\right|}{T_{\mathrm{L}}} .
$$

Here ΔS_{H} is positive because energy $\left|Q_{\mathrm{H}}\right|$ is added to the working substance as heat (an increase in entropy) and ΔS_{L} is negative because energy $\left|Q_{\mathrm{L}}\right|$ is removed from the working substance as heat (a decrease in entropy). Because entropy is a state function, we must have $\Delta S=0$ for a complete cycle. Putting $\Delta S=0$ in Eq. 21-7 requires that

$$
\frac{\left|Q_{\mathrm{H}}\right|}{T_{\mathrm{H}}}=\frac{\left|Q_{\mathrm{L}}\right|}{T_{\mathrm{I}}} .
$$

Note that, because $T_{\mathrm{H}}>T_{\mathrm{L}}$, we must have $\left|Q_{\mathrm{H}}\right|>\left|Q_{\mathrm{L}}\right|$; that is, more energy is extracted as heat from the high-temperature reservoir than is delivered to the low-temperature reservoir.

We shall now use Eqs. 21-6 and 21-8 to derive an expression for the efficiency of a Carnot engine.

Efficiency of a Carnot Engine

The purpose of any engine is to transform as much of the extracted energy Q_{\sharp} into work as possible. We measure its success in doing so by its thermal efficiency ε, defined as the work the engine does per cycle ("energy we get") divided by the energy it absorbs as heat per cycle ("energy we pay for"):

$$
\varepsilon=\frac{\text { energy we get }}{\text { energy we pay for }}=\frac{|W|}{\left|Q_{\mathrm{H}}\right|} \text { (efficiency, any engine). }
$$

For a Carnot engine we can substitute for W from Eq. 21-6 to write Eq. 21-9 as

$$
\varepsilon=\frac{\left|Q_{\mathrm{H}}\right|-\left|Q_{\mathrm{L}}\right|}{\left|Q_{\mathrm{H}}\right|}=1-\frac{\left|Q_{\mathrm{L}}\right|}{\left|Q_{\mathrm{H}}\right|}
$$

Using Eq. 21-8 we can write this as

$$
\varepsilon=1-\frac{T_{\mathrm{L}}}{T_{\mathrm{H}}} \quad \text { (efficiency, Carnot engine). }
$$

perfect engine

Ex.

An inventor claims to have constructed an engine that has an efficiency of 75% when operated between the boiling and freezing points of water. Is this possible?
(a) $\varepsilon \leq 1-\frac{T_{C}}{T_{H}}=1-\frac{273}{100+273}=27 \%$
(b) another check
change of entropy of high T reservoir
$\Delta S_{H}=\frac{-Q_{H}}{T_{H}}$
change of entropy of low T reservoir

$$
\begin{aligned}
& \Delta S_{C}=\frac{-Q_{C}}{T_{C}} \\
& \varepsilon=1-\frac{Q_{C}}{Q_{H}} \quad Q_{C}=(1-\varepsilon) Q_{H} \\
& \Delta S=\Delta S_{H}+\Delta S_{C}+\Delta S_{W \cdot S} \\
& =-\frac{Q_{H}}{T_{H}}+\frac{(1-\varepsilon) Q_{H}}{T_{C}} \\
& \text { for } \quad \varepsilon=0.75 \quad \Delta S=-0.0018 \quad Q_{H}\langle 0 \quad \text { unphysical }
\end{aligned}
$$

Brownian Rachet

refrigerator

performance

$$
K=\frac{Q_{C}}{W}=\frac{Q_{C}}{Q_{H}-Q_{C}}=\frac{T_{C}}{T_{H}-T_{C}}
$$

perfect refrigerator

(a) Engine X drives a Carnot refrigerator. (b) If, as claimed, engine X is more efficient than a Carnot engine, then the combination shown in (a) is equivalent to the perfect refrigerator shown here. This violates the second law of thermodynamics, so we conclude that engine X cannot be more efficient than a Carnot engine.

$$
\Delta S=-\frac{Q}{T_{C}}+\frac{Q}{T_{H}}=-Q\left(\frac{1}{T_{C}}-\frac{1}{T_{H}}\right)<0 \quad \text { impossible }
$$

$\mathrm{K} \cong 2.5$ for typical airconditioner
$\mathrm{K} \cong 5$ for household refrigerator

A Statistical View of Entropy

L
R
consider for molecules in a container

	configuration	probability
4 at left \longrightarrow	1	$1 / 16$
3 at left	$C_{1}^{4}=4$	$4 / 16$
2 at left	$C_{2}^{4}=6$	$6 / 16$
1 at left	4	$4 / 16$
0 at left	1	$1 / 16$

\# of microstates

$$
W=\frac{N!}{n_{L}!n_{R}!} \quad n_{L}+n_{R}=N
$$

$S=k \ln W$

stirling's formula $\ln N!=N \ln N-N$
ex.
When n moles of an ideal gas doubles its volume in a free expansion, the entropy increase from the initial state i to the final state f is $S_{f}-S_{i}=n R \ln 2$. Derive this result with statistical mechanics.

$$
\begin{aligned}
& W_{i}=\frac{N!}{N!0!}=1 \quad S_{i}=0 \\
& W_{f}=\frac{N!}{\left(\frac{N}{2}\right)!\left(\frac{N}{2}\right)!} \\
& S_{f} k \ln W_{f} \\
& =k\left(\ln N!-2 \ln \left(\frac{N}{2}\right)!\right) \\
& =k\left(N \ln N-N-N \ln \frac{N}{2}+N\right) \\
& =k N \ln 2 \\
& =n R \ln 2
\end{aligned}
$$

$\Delta S=n R \ln 2$

