Temperature, Heat, and the First Law of Thermodynamics

Thermodynamics
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Some temperatures on the Kelvin scale. Temperature 7 = 0 corresponds to 10°  and cannot be plotted on this logarithmic scale.

Zeroth law of thermodynamics

(a) () {c)

a) Body T (a thermoscope) and body A are in thermal equilibrium. (Body S is a thermally insulating screen.) (b) Body T and body B
are also in thermal equilibrium, at the same reading of the thermoscope. (¢) If (a) and (b) are true, the zeroth law of thermodynamics

states that body A and body B are also in thermal equilibrium.

If A, B are each in thermal equilibrium with C at T, then they are in thermal equilibrium with each other.



Measuring temperature
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The Constant-Volume Gas Thermometer
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A constant-volume gas thermometer, its bulb immersed in a liquid whose temperature 7 is to be measured.
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Thermal Expansion

T>T,
(k)

(a) A bimetal strip, consisting of a strip of brass and a strip of steel welded together, at temperature Ty. (b) The strip bends as shown

at temperatures above this reference temperature. Below the reference temperature the strip bends the other way. Many thermostats

operate on this principle, making and breaking an electrical contact as the temperature rises and falls.

AL = aLAT o = A % coefficients of linear expansion
AT

pf.

AL, = ol AT

AL, =al AT

AL =al AT

AV = (L, +AL )L, +AL (L +AL)-LLL,
=ALLL +ALLL +AL
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On a hot day in Las Vegas, an oil trucker loaded 37,000 L of diesel fuel. He encountered cold weather on the

way to Payson, Utah, where the temperature was 23.0 K lower than in Las Vegas, and where he delivered his

entire load. How many liters did he deliver? The coefficient of volume expansion for diesel fuel is 9.50 *

10*/C°, and the coefficient of linear expansion for his steel truck tank is 11 % 10°/C".

SOLUTION:

The Key Idea here is that the volume of the diesel fuel depends directly on the temperature. Thus, because the

temperature decreased, the volume of the fuel did also. From Eq. 19-10 , the volume change is
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Thus, the amount delivered was



Temperature and Heat

Environment T Environment Iy Environment T
System (@) System () System (c)
3 ) E
Q Q
Io=T: 0= =T 0=0 o<ty Q=0

If the temperature of a system exceeds that of its environment as in (a), heat Q is lost by the system to the environment until thermal
equilibrium (b) is established. (¢) If the temperature of the system is below that of the environment, heat is absorbed by the system
until thermal equilibrium is established.

heat is a form of energy
1 cal = 3.969 x 10~ Btu = 4.186J
heat for 1 Ib water 1°F increase in temperature = 1 Btu

Heat capacity (C)

Q=C(Tf _TI)

com (mass) (/)

define C=cm

molar specific heat

0= cmlr, -1, (%g.g) > ol K

C, : specific heat at constant volume
C, * specific heat at constant pressure
for an ideal gas C,=C, - Nk

When heat is absorbed, f

(1) temperature : vibration or translation more violently

(2) phase transitions : define L as heat of transformation
Q=Lm

For example, heat of vaporization L, of water (liquid <> gas)
L, =539call g =40.7KJ/mol = 2256 KJ [ kg

heat of fusion Lg (liquid <> solid)

L, =79.5cal/ g =6.01KJ/mol =333KJ/kg



A copper slug whose mass m.is 75 g is heated in a laboratory oven to a temperature 7°of 312°C. The slug is
then dropped into a glass beaker containing a mass = 220 g of water. The heat capacity Cs of the beaker is
45 cal/K. The initial temperature 7; of the water and the beaker is 12°C. Assuming that the slug, beaker, and
water are an isolated system and the water does not vaporize, find the final temperature 77of the system at
thermal equilibrium.

Solution:

energy conserved for the system of water + beaker + copper slug

water © Q =m.c, (Tf -T,)
Qb =Cb(Tf _Ti)
Qc :mccc(Tf _T)

0,+0,+0.=0
m,c, (T, -T,)+C,(T, -T,)+mc (T, -T)=0

_me T +mcT,+CT, 53328
m,c, +C, +m.c, 271.9

T =19.6°C

s

Heat and Work

~ Insulation

initial state i
Vi, Pi, Ti

final state f

Vi, P, Ty
F=P:-A
r
Thermal reservoir e e let W < F piston move

A gas is confined to a cylinder with a movable piston. Heat Q can be added to, or withdrawn from, the gas by regulating the

temperature T of the adjustable thermal reservoir. Work W can be done by the gas by raising or lowering the piston.



Work done by the gas

dW = F -ds = PAds = pdv
W=fdw=rpdv

2 i s 5 1
7 = ! 3
% N, Process % * a @
= 18 & A
: o W=0
| b/ | f | of
S L : : t W=0
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5 gl
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i i d: s net
W< |
i Volume ] Volume
(e) ()

(a) The shaded area represents the work W done by a system as it goes from an initial state i to a final state f. Work W is positive
because the system's volume increases. (b) W is still positive, but now greater. (c) W is still positive, but now smaller. (d) W can be
even smaller (path icdf) or larger (path ighf). (e) Here the system goes from state f to state 7, as the gas is compressed to less volume
by an external force. The work W done by the system is now negative. (f) The net work W, done by the system during a complete

cycle is represented by the shaded area.

The First Law of Thermodynamics

Q-W is the same for all processes if initial state and final state are not changed. It is independent of path.

Q-W is the intrinsic property of the system, we call it internal energy
AEintzEf_EizQ_W I
For an infinitesimal change dE =dQ —dW

f
» Volume




(1) Adiabatic processes

no heat transferred Q = ()

AE,  =-W

nt

If mg < pA, gas expand, W >0
AEin <0

If mg > pA, gas compressed, W <0
AEin >0

£ Insulation

An adiabatic expansion can be carried out by slowly removing lead shot from the top of the piston. Adding lead shot reverses the

process at any stage.
(2) Constant-volume processes
W=0 Q>0 AEw >0
AEx=Q Q<0 AEin <0
(3) Cyclical processes
AEwx=0

Q=W

(4) Free expansions.
Stopcock

" Insulation

The initial stage of a free-expansion process. After the stopcock is opened, the gas fills both chambers and eventually reaches an

equilibrium state.



Let 1.00 kg of liquid water at 100°C be converted to steam at 100°C by boiling at standard atmospheric
pressure (which is 1.00 atm or 1.01 * 10’ Pa) in the arrangement of Fig. 19-17 . The volume of that water
changes from an initial value of 1.00 *10° m’ as a liquid to 1.671 m’ as steam.

— Insulation

Control knob

Water boiling at constant pressure. Energy is transferred from the thermal reservoir as heat until the liquid water has changed

completely into steam. Work is done by the expanding gas as it lifts the loaded piston.

(@) W={'pdv=pv,-V)

=1.01 x10° x (1671 - 107)
169 x10°]

(b) Q=L,m=2260kJ/ kg - 1kg=2260kJ

(c) AE = Q — W = 2090 (kJ)



Heat Transfer Mechanisms

conduction, convection, and radiation

|‘£_|

TH }TC
large vibrations small vibrations
O O O O
<+—> <+ >

Thermal conduction. Energy is transferred as heat from a reservoir at temperature T} to a cooler reservoir at temperature 7 through

a conducting slab of thickness L and thermal conductivity k.

t T L\A

thermal VT

H=Q=KA(TH_TC)

conductivity

Thermal resistance to conduction



Conduction through a composite slab

L L

Iy

Heat is transferred at a steady rate through a composite slab made up of two different materials with different thicknesses and

different thermal conductivities. The steady-state temperature at the interface of the two materials is Tx.

kZA(TH _Tx ) — klA(TX _Tc)

H =
L2 Ll
_ kL,T. +k, LT,
X kL, +k,L,
— A(TH _Tc) — A(TH _Tc) — A(TH _Tc)
L /k +L,/k, R DR,

R=R +R,
Convection

NN -
55




Radiation

thermal radiation rate

0'=5.67><10‘8(%2K4)

£ emissivity

p, = CEAt"

absorption from the environment

p, = O€AT,,

P, =P, -P =oeAlr; -T")
E prack V€ whire

iy T,)T

Pnb yP"

Figure below shows the cross section of a wall made of white pine of thickness L. and brick of thickness L« (=
2.0L), sandwiching two layers of unknown material with identical thicknesses and thermal conductivities. The
thermal conductivity of the pine is 4 and that of the brick is &+ (= 5.0%:). The face area A of the wall is
unknown. Thermal conduction through the wall has reached the steady state; the only known interface
temperatures are 7i= 25°C, 73 = 20°C, and 7% = -10°C. What is interface temperature 73?

(a) (b)

T -T
H, =k A——* T,-T T,-T

2 kbA 2L 2 _ k A 3L 4

T, -T. b c

H,=kA=— k,=k, L,=1L,
e T,-T,=T,-T,

H,=H,=T, =E(Tl—Tz)+Ts ro- T, 4T, oo

=-8.0°C



The Kinetic Theory of Gases

1 mole is the number of atoms in a 12 g sample of carbon 12.

N, =6.02 x 102 mol?  : Avogadro’s number

N M M

— —_ sam same
number of moles n=—=

N, mN, M\

molar mass

ideal gas eg. of state

pV =nRT (experiment first) R =831 J “(moleK) gasconstant

isotherm

T = const
t

> v
nRT
W=\ pdv=|——-dv
[pav=]=
, (isothermal processes )
= nRTlog(—fj

constant volume processes W =0

constant pressure process W = J pdv = p(Vf -V ) = pAV

A cylinder contains 12 L of oxygen at 20°C and 15 atm. The temperature is raised to 35°C, and the volume is
reduced to 8.5 L. What 1s the final pressure of the gas in atmospheres? Assume that the gas is ideal.

Solution:
V. Vv
PV _ nR = const P _Prly
T,
v. T
Pr=p; L. L =22 am



Pressure, Temperature, and RMS Speed
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A cubical box of edge L, containing n moles of an ideal gas. A molecule of mass m and velocity ¥ is about to collide with the

shaded wall of area L*. A normal to that wall is shown.

Ap, . =-mv —my =-2my,

Ki\/’j (A vaz)/z} 2mv,

=F
At
F Nmv? _ nMv’
A P \% \%
p :ﬂ(vj1 Fot V) )N
\%
_nM 2 nM , nM ?
V * 3V 3V rms
M
pV = n—vfms =nRT
3
Mor =RT v, =20
3 ) M
at T =300K 4300( mi h)
Gas Vims (M/S)
Hydrogen (H,) 1920
Helium (He) 1370
Water vapor (H,O) 645

Carbon dioxide (CO,) 412



Translational Kinetic Energy

I?:lmv2 :lm172 =—mv.
2
K=2kr k=L _138x107 J/K
2 N,
( Boltzmann constant )
Mean free path

A molecule traveling through a gas, colliding with other gas molecules in its path. Although the other molecules are shown as
stationary, they are also moving in a similar fashion.

<I>=)A ! mean free path

1 1

A = W A o< m d* molecular size

-

(ad

by




(a) A collision occurs when the centers of two molecules come within a distance d of each other, d being the molecular diameter.

(b) An equivalent but more convenient representation is to think of the moving molecule as having a radius d and all other
molecules as being points. The condition for a collision is unchanged.

In time Ar the moving molecule effectively sweeps out a cylinder of length v Az and radius d.

rem<d I collision

T mean collision time

(7Z'd2~v7.')~%=1

1
consider all others are at rest A =
2 iN )

1

\/Eﬂ'dz(]%)

in fact, all moleaules are moving A =

€X.

(a) What is the mean free path 4 for oxygen molecules at temperature 7= 300 K and pressure p= 1.0 atm?
Assume that the molecular diameter is @ = 290 pm and the gas is ideal. (b) Assume the average speed of the
oxygen molecules 1s v =450 m/s. What 18 the average time #between successive collisions for any given
molecule? At what rate does the molecule collide; that 1s, what 1s the frequency £of its collisions?

(a)
d=29%x107"
_ nRT 1x8.31x300

= =2.5%x107m?
P Aam)x10°(Pa/ )
N  6x10* 25( )
2o P2 9o 4x10% |molecules
Vo 25107 Af
1
A= =1.1x107" (m)
2(N
N R X,)
(b)
A
T=—
1%

a1V 9, -1
7T = =4%x10"(s
1 (s7)



Boltzmann distribution

2.0
E
= ]
] /_
= N —_ q = fr
Elﬂ Vavs || | | p Area=P
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0
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a) The Maxwell speed distribution for oxygen molecules at 7 = 300 K. The three characteristic speeds are marked. (b) The curves
for 300 K and 80 K. Note that the molecules move more slowly at the lower temperature. Because these are probability distributions,

the area under each curve has a numerical value of unity.

M\ - My’
P(v) =dx| —— | viexp
27RT 2RT

2P(v) My? M My?
S =0:>exp(— )——vmaxexp - =0

2RT | 2RT 2RT

,  2RT [2RT
vmax = Vmax =
M M



Internal energy E;;

E,=nN, (K)=n-N, %kT = %nRT (monatomic ideal gas)

E = f nRT  f=# of degrees of freedom

int

€X.

H
{a) He (b) O, {c) CH4

Models of molecules as used in kinetic theory: (a) helium, a typical monatomic molecule; (b) oxygen, a typical diatomic molecule;
and (c) methane, a typical polyatomic molecule. The spheres represent atoms, and the lines between them represent bonds. Two

rotation axes are shown for the oxygen molecule.

f=3
f=3+2=5 (translation + rotation )

f=3+2+42=7 (translation + rotation + vibration )

- 1b
-4



Degrees of Freedom for Various Molecules

Degrees of Freedom Predicted Molar Specific Heats

Molecule  Example Translational Rotational Total (f) Cv(Eq.20-51) C,=Cv+R

Monatomic He 3 0 3

iR 2R
Diatomic (0)) 3 2 5 s o 7=
T ke
Polyatomic CH,4 3 3 6 3R 4R

CylR

Translation
0 | | | ‘ | | | | |
20 50 100 200 500 1000 2000 5000 10,000
Temperature {K)

A plot of Cy/R versus temperature for (diatomic) hydrogen gas. Because rotational and oscillatory motions begin at certain energies,
only translation is possible at very low temperatures. As the temperature increases, rotational motion can begin. At still higher

temperatures, oscillatory motion can begin.



Molar Specific Heats at constant volume
initial statei: p, T, V

L ag
final state f:p+Ap, T+AT, V
AQ =nC AT

AE = AQ — AW =nC,AT (AW =0)
1 AE,, 3
Thar T2
E.  =nCT
AE =nC AT

Pressure

T+ AT

Volume

Molar Specific Heat at Constant Pressure

AQ =nC,AT
AE = AQ — AW = AQ — pAV
= AQ — nRAT
= (nC, —nR)AT
nlc,-R)=nc, C,=C,+R=2R
H, c.=2r c,=2R
2

. 7

0, (rotation) C, ZER C, :ER

1 ~ constant volume process

2 ~ constant pressure process

3 ~ adiabatic process

Since final state property doesn’t depend on path, it
can always be obtained from path 1, AE;,; = nC,AT
and then by eg. of state pV=nRT



Adiabatic expansion of an ideal gas

C 5
7 = = ==
pV7 = const Y= %V =3

Pf:

dE =dQ — pdv
nC. dt— pdV

pV =nRT

pdV +Vdp = nRdT

% (pdV +Vdp)=—pdV

C
*—(pdV +Vdp) = —pdV
Cp_cv(p p)=—p

C,pdV +VC,dp=0

c, Yo

14 P
dp__Cpdv__dv
D c Vv Vv

Inp=—yInV + const
=InV~" + const

pV?” = const

pV =nRT

(gjvy = const

-1
TV'™" = const

free expansion

AO=0 AW=0 =AE=0

T, =T,

pV, = pfvf



Entropy and the Second Law of Thermodynamics

Entropy S measures the degree of disorder of a system which is a function of the state of system.

The experience tells us that the entropy S in creases for an irreversible process of a closed system o
law of thermodynamics AS > 0

Kelvin statement

The entropy of a system increases when it receives heat decreases when it loses heat. ASe<AQ

Clausius statement :

the higher the temperature of the system from which heat is transferred , the less entropy change occurs in that
system. AS o< 1/T

AS :A—Q or dS :d—Q
T T
dQ =dE +dW
=nC dT + pdV
T
J-d_Q:J-nCVd +J'nRTdV
T T vT

v

=nC. 1 di R1 Yy
S;-S; =nC,In—+nRIn—

i i

Engines

wire mesh
DR LR
Qu » o
/| g-piston
l trok ab B T
dw =pdv  Suoka Strok be

isothermal expansion

constant volume

e LT
Ik [T

constant volume

Strok cd dW = pdV

(Tc¢)isothermal ccomprssion



Pressure

Efficiency
w

e=—
Ou

W=0, -0 (since AE=0)

For a reversible process AS =0

i.e.

On _ 9 o, T

=0 _ =L =L 4
TH TL QH TH
e W 0,0 | 0

Q1—1 QH QH

=1-

For a irreversible process AS >()

0, 0 Q. T,
TnZe g Zey-c
TH TC QH TH
s—l—Q—C(l Te

Qy Ty




A Carnot Engine

We shall focus on a particular ideal engine called a Carnot engine after the French scientist and
engineer N. L. Sadi Carnot (pronounced “car-no”), who first proposed the engine's concept in 1824. This
ideal engine turns out to be the best (in principle) at using energy as heat to do useful work. Surprisingly,

Carnot was able to analyze the performance of this engine before the first law of thermodynamics and
the concept of entropy had been discovered.

_ T

On

-

- S
| =P W

oL l
[ L ]

The elements of an engine. The two black arrowheads on the central loop suggest the working substance operating in a cycle, as if

on a p-V plot. Energy IQyl is transferred as heat from the high-temperature reservoir at temperature 7y to the working substance.

Energy 10 | is transferred as heat from the working substance to the low-temperature reservoir at temperature 77. Work W is done by

the engine (actually by the working substance) on something in the environment.

3 AV
~ e
\W “
- o T
d ‘1QL "
i
0

Volume

A pressure—volume plot of the cycle followed by the working substance of the Carnot engine. The cycle consists of two isotherm

(ab and cd) and two adiabatic processes (bc and da). The shaded area enclosed by the cycle is equal to the work W per cycle done by

the Carnot engine.
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Entropy 5

The Carnot cycle plotted on a temperature—entropy diagram. During processes ab and cd the temperature remains constant. During

processes bc and da the entropy remains constant.

The Work:

To calculate the net work done by a Carnot engine during a cycle, let us apply Eq. 19-26, the first law of
thermodynamics (AEx = Q- W), to the working substance. That substance must return again and again to any
arbitrarily selected state in the cycle. Thus, if Xrepresents any state property of the working substance, such as
pressure, temperature, volume, internal energy, or entropy, we must have AX = 0 for every cycle. It follows
that AEx = 0 for a complete cycle of the working substance. Recalling that Qin Eq. 19-26 is the nef heat
transfer per cycle and Wis the nef work, we can write the first law of thermodynamics for the Carnot cycle as

W= |cul -l

Entropy Changes:

In a Carnot engine, there are fwo (and only two) reversible energy transfers as heat, and thus two changes in
the entropy of the working substance—one at temperature 7i and one at 77. The net entropy change per cycle
1s then

M:MH+ML=@+@_

H TL

Here ASH 1s positive because energy |Chl 18 added fo the working substance as heat (an increase in entropy) and
ASL 18 negative because energy |Qll 1s removed from the working substance as heat (a decrease in entropy).

Because entropy is a state function, we must have AS = 0 for a complete cycle. Putting AS'=01n Eq. 21-7
requires that

Ol _ 21

Ty T



Note that, because 7t > 71, we must have |Chl > |QL; that 1s, more energy is extracted as heat from the

high-temperature reservoir than is delivered to the low-temperature reservoir.

We shall now use Egs. 21-6 and 21-8 to derive an expression for the efficiency of a Carnot engine.

Efficiency of a Carnot Engine

The purpose of any engine is to transform as much of the extracted energy Ch into work as possible. We
measure 1ts success in doing so by its thermal efficiency &, defined as the work the engine does per cycle
( “energy we get” ) divided by the energy it absorbs as heat per cycle ( “energy we pay for” ):

For a Carnot engine we can substitute for W from Eq. 21-6 to write Eq. 21-9 as

-kl e
|G 2 |
Using Eq. 21-8 we can write this as
o= 1 )!_L afFiriarnetr larmot anoie ot
= L T \\‘-FJ-LJ.‘-FJ.‘-F‘.J.‘-F ] el LN \.PI.J.EJ.J.J.\.P/'.
“H

perfect engine

On l _ L 72 J
1 l Oy
| = W x|
Qc l q W
( Tc ] i e




Ex.

An inventor claims to have constructed an engine that has an efficiency of 75% when operated between the
boiling and freezing points of water. Is this possible?

T,

(a) 831——C:1—L:27%
T, 100+ 273

(b) another check

change of entropy of high T reservoir

-0
AS, =—=*

H

change of entropy of low T reservoir

As =—Le
TC
0
821__C Qc:(l_g)QH
Oy
AS =AS, +AS. +AS,,
_ 9y (-¢£)o,
TH TC
for £=0.75 AS =-0.0018 Q.0  unphysical
Brownian Rachet
T T
paw L
ratchet
O




refrigerator

A

. Ta »
P

Qc Te
performance
w QH - Qc T, - TC
perfect refrigerator
€ Ty ) €
0 l Carnot
H refrigerator
Engine On T ] T 0
- - f,—X P pal - - y
7 - Perfect
W ’ refrigerator
e 7 -\_\_—-_,_.»' - -
Q L l QL T T Q
Tc
( i ) ( ]
(a) (b)

(a) Engine X drives a Carnot refrigerator. (b) If, as claimed, engine X is more efficient than a Carnot engine, then the combination

shown in (a) is equivalent to the perfect refrigerator shown here. This violates the second law of thermodynamics, so we conclude

that engine X cannot be more efficient than a Carnot engine.

AS = _Q + < =-0 11 (0 impossible
TC TH TC TH

K=2.5 fortypical airconditioner

K=5 for household refrigerator



A Statistical View of Entropy

consider for molecules in a container

configuration probability
4 at left —» 1 116
3 at left Cl=4 4,16
2 at left C,=6 6,16
1 at left 4 4,16
0 at left 1 116

# of microstates

N!
= n, +n, =N
n,'ng!
S=klnW
o
8]
8
%
Z
g
I _ﬁlt A -
0 50 100%:

stirling’s formula  InN!=NInN-N



€X.

When n moles of an ideal gas doubles its volume in a free expansion, the entropy increase from the

initial state 7 to the final state f'is Sy - S; = nR In 2. Derive this result with statistical mechanics.

|
W,:Lzl S. =0
N 10!
|
W, - N!
2 )2
kaanf

fonvan(2)

:k(NlnN—N—Nln%+Nj
= kN In 2
=nR In 2

AS =nR In 2



