19 Electric Charge

1 static electricity applications: air fresheners, xerography, painting cars, smokestack pollution control, ...
2 conductors, insulators, semiconductors, superconductors
3 Coulomb's law: The force of attraction or repulsion between two point charges q_{1} and q_{2} is directly proportional to the product of their charges and inversely proportional to the square of the distance between them.

$$
F=K \cdot \frac{\left|q_{1}\right|\left|q_{2}\right|}{r^{2}}
$$

$K=\frac{1}{4 \pi \varepsilon_{0}}=8.99 \times 10^{9} \quad\left(N \cdot m^{2} / C^{2}\right)$

permittivity of vacuum

$$
\varepsilon_{0}=8.85 \times 10^{-12} \quad\left(C^{2} / N \cdot m^{2}\right)
$$

Principle of Superposition

$$
\stackrel{\rightharpoonup}{F}_{1, n e t}=\stackrel{\rightharpoonup}{F}_{12}+\stackrel{\rightharpoonup}{F}_{13}+\ldots .+\stackrel{\rightharpoonup}{F}_{1 n}
$$

electric potential
$V=K \cdot \frac{q_{1}}{r}$

Coulomb's law and the Principle of Superposition constitute the physical input for electrostatics.

For a conducting sphere of surface charge density ρ
$d V=K \cdot \frac{d q}{r^{\prime}} \quad d q=\rho \cdot r^{2} \sin \theta d \theta d \phi$
$V=\int d V=\iint \frac{K}{r^{\prime}} \rho r^{2} \sin \theta d \theta d \phi$
$=K \rho r^{2} \cdot 2 \pi \int \frac{\sin \theta d \theta}{r^{\prime}}$
$=2 \pi K \rho r^{2} \int \frac{1}{r^{\prime}} \cdot \frac{r^{\prime}}{R r} d r^{\prime}$
$=\frac{2 \pi k \rho r}{R} \int_{R-r}^{R+r} d r^{\prime}$
$=\frac{4 \pi K \rho r^{2}}{R}=\frac{K\left(4 \pi r^{2}\right) \cdot \rho}{R}=\frac{K q}{R}$

$$
\begin{aligned}
& \phi: 0 \rightarrow 2 \pi \\
& r^{\prime 2}=R^{2}+r^{2}-2 R r \cos \theta \\
& 2 r^{\prime} d r^{\prime}=2 R r \sin \theta d \theta \\
& \sin \theta d \theta=\frac{r^{\prime}}{R r} d r^{\prime} \\
& r^{\prime}: R-r \rightarrow R+r
\end{aligned}
$$

Charge is quantized

Millikan oil drop experiment

When the Electric field is on, and the oil drop is at rest.
$q E=m g$
When the Electric field is off, and the oil drop reaches its terminal velocity.
$m g=b v$
$q E=b v$
$q=\frac{b v}{E}=n e$
the elementary charge e can be obtained by the $\left\{\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots . \mathrm{n}_{\mathrm{m}}\right\}$

20 Electric Field

electric field
$\vec{E}=\vec{F} / q$

Electric Field Due to a Point Charge

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{F}=\frac{1}{4 \pi \varepsilon_{0}} \frac{|q|\left|q_{0}\right|}{r^{2}} \hat{r} \\
& \stackrel{\rightharpoonup}{E}=\frac{\stackrel{\rightharpoonup}{F}}{q_{0}}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q}{r^{2}} \hat{r}
\end{aligned}
$$

The Electric Field Due to an Electric Dipole
$E=E_{+}+E_{-}$
$=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r_{+}^{2}}-\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r_{-}^{2}}$
$=\frac{q}{4 \pi \varepsilon_{0}}\left[\frac{1}{z^{2}} \frac{1}{\left(1-\frac{d}{2 z}\right)^{2}}-\frac{1}{z^{2}\left(1+\frac{d}{2 z}\right)^{2}}\right]$
$r_{+}=z-\frac{d}{2}$
$r_{-}=z+\frac{d}{2}$
$z\rangle>d$
$\cong \frac{q}{4 \pi \varepsilon_{0} z^{2}}\left[1+\frac{2 d}{2 z}-\left(1-\frac{2 d}{2 z}\right)\right]$
$=\frac{q}{4 \pi \varepsilon_{0} z^{2}} \frac{2 d}{z}=\frac{1}{2 \pi \varepsilon_{0}} \cdot \frac{p}{z^{3}}$
for $\quad \theta \neq 0$
$E=\frac{1}{2 \pi \varepsilon_{0}} \cdot \frac{p}{r^{3}} \cdot f(\theta) \quad f(\theta)=1 \quad$ for $\theta=0$
dipole moment $p=q d$

The Electric Field Due to a Line of Charge

λ : the charge per unit length
$d s=R d \phi$
$d \stackrel{\rightharpoonup}{E}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{\lambda d s}{r^{2}}$
$=d \vec{E}_{z}+d \vec{E}_{\|}$
$d E_{z}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\lambda d s}{r^{2}} \cos \theta$
$d E_{\|}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\lambda d s}{r^{2}} \sin \theta \quad \int d E_{\|}=0$
$\stackrel{\rightharpoonup}{E}=\int d \stackrel{\rightharpoonup}{E}=\int d \stackrel{\rightharpoonup}{E}_{z}=\frac{\lambda R \cos \theta}{4 \pi \varepsilon_{0} r^{2}} \int d \phi$
$=\frac{\lambda R \cos \theta \cdot 2 \pi}{4 \pi \varepsilon_{0}\left(z^{2}+R^{2}\right)}=\frac{q \cos \theta}{4 \pi \varepsilon_{0}\left(z^{2}+R^{2}\right)}$
$=\frac{q z}{4 \pi \varepsilon_{0}\left(z^{2}+R^{2}\right)^{\frac{3}{2}}} \hat{z}$
for $\quad z\rangle>R$
$\vec{E}=\frac{q}{4 \pi \varepsilon_{0} z^{2}} \hat{z} \quad$ point charge
$z=0$
$\vec{E}=0$
net force $=0$

