X. Special Relativity
1. Postulates of relativity
	
	1. The Relativity Postulate: The laws of physics are the same for observers in all inertial reference frames. No frame is preferred.
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	2. The Speed of Light Postulate: The speed of light in vacuum has the same value c in all directions and in all inertial reference frames.


2. Galilean transformation

The following Figure shows inertial reference frame S´ moving with speed v relative to frame S, in the common positive direction of their horizontal axes (marked x and x´). An observer in S reports spacetime coordinates x, y, z, t for an event, and an observer in S´ reports x´, y´, z´, t´ for the same event. The coordinates in different reference frames are related by the Galilean transformation equations: 
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	(38-19) 


3. The relativity of time

The time interval between two events depends on which frame the measurement is done.
The following graph shows the basics of an experiment Sally conducts while she and her equipment ride in a train moving with constant velocity [image: image4.png]


relative to a station. A pulse of light leaves a light source B (event 1), travels vertically upward, is reflected vertically downward by a mirror, and then is detected back at the source (event 2). Sally measures a certain time interval Dt0 between the two events, related to the distance D from source to mirror by 
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	(38-3) 


The two events occur at the same location in Sally's reference frame, and she needs only one clock C at that location to measure the time interval. Clock C is shown twice in Fig. 38-5a , at the beginning and end of the interval. 
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	Fig. 38-5  (a) Sally, on the train, measures the time interval t0 between events 1 and 2 using a single clock C on the train. That clock is shown twice: first for event 1 and then for event 2. (b) Sam, watching from the station as the events occur, requires two synchronized clocks, C1 at event 1 and C2 at event 2, to measure the time interval between the two events; his measured time interval is t.


Consider now how these same two events are measured by Sam, who is standing on the station platform as the train passes. Because the equipment moves with the train during the travel time of the light, Sam sees the path of the light as shown in Fig. 38-5b . For him, the two events occur at different places in his reference frame. The time interval measured by Sam between the two events is 
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	(38-5) 


From Eq. 38-3 , we can write this as 
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If we eliminate L between Eqs. 38-4 and 38-6 and solve for Dt, we find 
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Equation 38-7 tells us how Sam's measured interval Dt between the events compares with Sally's interval Dt0. Because v must be less than c
4. Lorentz Transformation
The correct transformation equations, which remain valid for all speeds up to the speed of light, can be derived from the postulates of relativity. The results, called the Lorentz transformation, are 
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5. Consequences
Time Dilation 

Suppose now that two events occur at the same place in S´ (so Δx´ = 0) but at different times (so Δt´ [image: image12.png]


0). Equation 38-22 then reduces to 
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	(38-23) 


This confirms time dilation. Because the two events occur at the same place in S´, the time interval Δt´ between them can be measured with a single clock, located at that place. Under these conditions, the measured interval is a proper time interval, and we can label it Δt0. Thus, Eq. 38-23 becomes 
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which is exactly Eq. 38-9 , the time dilation equation.

Length Contraction 

Consider Eq. 1´ of Table 38-2 , 
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	(38-24) 


If a rod lies parallel to the x and x´ axes of Fig. 38-9 and is at rest in reference frame S´, an observer in S´ can measure its length at leisure. One way to do so is by subtracting the coordinates of the end points of the rod. The value of Δx´ that is obtained will be the proper length L0 of the rod.

Suppose the rod is moving in frame S. This means that Δx can be identified as the length L of the rod in frame S only if the coordinates of the rod's end points are measured simultaneously—that is, if Δt = 0. If we put Δx´ = L0, Δx = L, and Δt = 0 in Eq. 38-24 , we find 
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	(38-25) 


which is exactly Eq. 38-13 , the length contraction equation.

Velocity addition
Suppose that the particle, moving with constant velocity parallel to the x and x´ axes in Fig. 38-11 , sends out two signals as it moves. Each observer measures the space interval and the time interval between these two events. These four measurements are related by Eqs. 1 and 2 of Table 38-2 , 
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and 
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If we divide the first of these equations by the second, we find 
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Dividing the numerator and denominator of the right side by Δt´, we find 
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However, in the differential limit, Δx/Δt is u, the velocity of the particle as measured in S, and Δx´/Δt´ is u´, the velocity of the particle as measured in S´. Then we have, finally, 
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	(38-28) 


as the relativistic velocity transformation equation. This equation reduces to the classical, or Galilean, velocity transformation equation, 
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6. Momentum and Energy
We find that if we continue to define the momentum [image: image24.png]


of a particle as m[image: image25.png]


, the product of its mass and its velocity, total momentum is not conserved for the observers in different inertial frames. We have two choices: (1) Give up the law of conservation of momentum or (2) see if we can redefine the momentum of a particle in some new way so that the law of conservation of momentum still holds. The correct choice is the second one.

Consider a particle moving with constant speed v in the positive x direction. Classically, its momentum has magnitude 
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	(38-37) 


in which Δx is the distance it travels in time Δt. To find a relativistic expression for momentum, we start with the new definition 
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Here, as before, Δx is the distance traveled by a moving particle as viewed by an observer watching that particle. However, Δt0 is the time required to travel that distance, measured not by the observer watching the moving particle but by an observer moving with the particle. The particle is at rest with respect to this second observer, with the result that the time this observer measures is a proper time.

Using the time dilation formula (Eq. 38-9 ), we can then write 
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However, since Δx/Δt is just the particle velocity v, 
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	(38-38) 


Note that this differs from the classical definition of Eq. 38-37 only by the Lorentz factor g. However, that difference is important: Unlike classical momentum, relativistic momentum approaches an infinite value as v approaches c.

We can generalize the definition of Eq. 38-38 to vector form as 
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This equation gives the correct definition of momentum for all physically possible speeds. For a speed much less than c, it reduces to the classical definition of momentum ([image: image31.png]


 = m[image: image32.png]


).
Likewise, the total energy E can also be written as 
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where g is the Lorentz factor for the object's motion.

