Home Work 6

- 1. How long does it take electrons to get from a car battery to the starting motor? Assume the current is 300 A and the electrons travel through a copper wire with cross-sectional area 0.21 cm² and length 0.85 m. The number of charge carriers per unit volume is 8.49×10^{28} m⁻³.
- 2. Figure 1 shows wire section 1 of diameter $D_1 = 4.00R$ and wire section 2 of diameter $D_2 = 2.00R$, connected by a tapered section. The wire is copper and carries a current. Assume that the current is uniformly distributed across any cross-sectional area through the wire's width. The electric potential change V along the length L = 2.00 m shown in section 2 is 10.0 mV. The number of charge carriers per unit volume is 8.49×10^{28} m⁻³. What is the drift speed of the conduction electrons in section 1?
- 3. Earth's lower atmosphere contains negative and positive ions that are produced by radioactive elements in the soil and cosmic rays from space. In a certain region, the atmospheric electric field strength is 120 V/m and the field is directed vertically down. This field causes singly charged positive ions, at a density of 620 cm⁻³, to drift downward and singly charged negative ions, at a density of 550 cm⁻³, to drift upward (Fig. 2). The measured conductivity of the air in that region is $2.70 \times 10^{-14} (\Omega \cdot m)^{-1}$. Calculate (a) the magnitude of the current density and (b) the ion drift speed, assumed to be the same for positive and negative ions.
- **4.** *Swimming during a storm.* Figure 3 shows a swimmer at distance D = 35.0 m from a lightning strike to the water, with current I = 78 kA. The water has resistivity $30Q \cdot m$, the width of the swimmer along a radial line from the strike is 0.70 m, and his resistance across that width is 4.00 k Ω . Assume that the current spreads through the water over a hemisphere centered on the strike point. What is the current through the swimmer?
- 5. In Fig. 4, current is set up through a truncated right circular cone of resistivity 731 $\Omega \cdot m$, left radius a = 2.00 mm, right radius b = 2.30 mm, and length L = 1.94 cm. Assume that the current density is uniform across any cross section taken perpendicular to the length. What is the resistance of the cone?

