Lattice Study of **Energy-Momentum Tensor** with Gradient Flow: Thermodynamics, Correlations, and Stress

Masakiyo Kitazawa (Osaka U.) In Collaboration with: FlowQCD Collab.(R. Yanagihara, T. Iritani, Asakawa, Hatsuda, Suzuki) WHOT Collab.(Taniguchi, Kanaya, Ejiri, Suzuki, Umeda, Shirogane, ...)

Workshop of Recent Developments in QCD and QFT, Nov. 10, 2017, Taipei

Energy-Momentum Tensor One of the most fundamental quantities in physics

Energy-Momentum Tensor One of the most fundamental quantities in physics

$\mathcal{T}_{\mu u}$: nontrivial observable on the lattice

Definition of the operator is nontrivial because of the explicit breaking of Lorentz symmetry

ex:
$$T_{\mu\nu} = F_{\mu\rho}F_{\nu\rho} - \frac{1}{4}\delta_{\mu\nu}FF$$
$$F_{\mu\nu} =$$

2 Its measurement is extremely noisy due to high dimensionality and etc.

Thermodynamics

direct measurement of expectation values $\langle T_{00} \rangle, \langle T_{ii} \rangle$

Fluctuations and Correlations

viscosity, specific heat, ...

 $\eta = \int_0^\infty dt \langle T_{12}; T_{12} \rangle$ $c_V \sim \langle \delta T_{00}^2 \rangle$

Hadron Structure

- flux tube / hadrons
- stress distribution

Contents

- 1. Constructing EMT on the lattice
- 2. Thermodynamics
- 3. Correlation Function
- 4. Stress distribution in $q\overline{q}$ system
- 5. Summary

Fluctuations and Correlations viscosity, specific heat, ... $\eta = \int_0^\infty dt \langle T_{12}; T_{12} \rangle$ $c_V \sim \langle \delta T_{00}^2 \rangle$

(Yang-Mills) Gradient Flow

- diffusion equation in 4-dim space
- diffusion distance $d\sim\sqrt{8t}$
- "continuous" cooling/smearing

(Yang-Mills) Gradient Flow

- diffusion equation in 4-dim space
- diffusion distance $d \sim \sqrt{8t}$
- "continuous" cooling/smearing

(YM) Gradient Flow: Properties

• All (composite) operators are finite at t>0 Luscher, Weisz, 2011

All operators are renormalized at t>0 Safe $a \rightarrow 0$ limit

- Quite effective in reducing statistical error.
- Flowed field ≠ original field
 - Gradient flow is not an approximation method.
- Applications
 - scale setting
 - topological charge/susceptibility
 - Structure Func. / PDF

見小利則大事不成

Miss the wood for the trees 小利を見ればすなわち大事成らず

孔子 confucius (論語、子路13)

孔子 confucius (論語、子路13)

Gradient Flow for Fermions

$$\partial_t \psi(t, x) = D_\mu D_\mu \psi(t, x)$$
$$\partial_t \bar{\psi}(t, x) = \psi(t, x) \overleftarrow{D}_\mu \overleftarrow{D}_\mu$$
$$D_\mu = \partial_\mu + A_\mu(t, x)$$

Luscher, 2013 Makino, Suzuki, 2014 Taniguchi+ (WHOT) 2016

Not "gradient" flow but a "diffusion" equation.
 Flow for gauge field is independent of fermion field.

Divergence in field renormalization of fermions.
 All observables becomes finite once Z(t) is determined.
 $\tilde{\psi}(t,x) = Z(t)\psi(t,x)$

Small Flow-time Expansion

original 4-dim theory

Luescher, Weisz, 2011 Suzuki, 2013

Constructing EMT

Suzuki, 2013 DelDebbio,Patella,Rago,2013

$$\tilde{\mathcal{O}}(t,x) \xrightarrow[t \to 0]{} \sum_{i} c_i(t) \mathcal{O}_i^R(x)$$

gauge-invariant dimension 4 operators

$$\begin{aligned} U_{\mu\nu}(t,x) &= G_{\mu\rho}(t,x)G_{\nu\rho}(t,x) - \frac{1}{4}\delta_{\mu\nu}G_{\mu\nu}(t,x)G_{\mu\nu}(t,x)\\ E(t,x) &= \frac{1}{4}\delta_{\mu\nu}G_{\mu\nu}(t,x)G_{\mu\nu}(t,x) \end{aligned}$$

Constructing EMT 2

$$U_{\mu\nu}(t,x) = \alpha_U(t) \left[T^R_{\mu\nu}(x) - \frac{1}{4} \delta_{\mu\nu} T^R_{\rho\rho}(x) \right] + \mathcal{O}(t)$$
$$E(t,x) = \langle E(t,x) \rangle + \alpha_E(t) T^R_{\rho\rho}(x) + \mathcal{O}(t)$$

Suzuki coeffs.
$$\begin{cases} \alpha_U(t) = g^2 \left[1 + 2b_0 s_1 g^2 + O(g^4) \right] \\ \alpha_E(t) = \frac{1}{2b_0} \left[1 + 2b_0 s_2 g^2 + O(g^4) \right] \\ s_1 = 0.03296 \dots \\ s_2 = 0.19783 \dots \end{cases}$$

Suzuki, 2013

Constructing EMT 2

$$U_{\mu\nu}(t,x) = \alpha_U(t) \left[T^R_{\mu\nu}(x) - \frac{1}{4} \delta_{\mu\nu} T^R_{\rho\rho}(x) \right] + \mathcal{O}(t)$$
$$E(t,x) = \langle E(t,x) \rangle + \alpha_E(t) T^R_{\rho\rho}(x) + \mathcal{O}(t)$$

$$\tilde{\mathcal{O}}(t,x)$$
 t

Suzuki coeffs.
$$\begin{cases} \alpha_U(t) = g^2 \left[1 + 2b_0 s_1 g^2 + O(g^4) \right] \\ \alpha_E(t) = \frac{1}{2b_0} \left[1 + 2b_0 s_2 g^2 + O(g^4) \right] \end{cases} \qquad g = g(1/\sqrt{8t}) \\ s_1 = 0.03296 \\ s_2 = 0.19783 \end{cases}$$

Remormalized EMT

$$T^R_{\mu\nu}(x) = \lim_{t \to 0} \left[\frac{1}{\alpha_U(t)} U_{\mu\nu}(t,x) + \frac{\delta_{\mu\nu}}{4\alpha_E(t)} E(t,x)_{\text{subt.}} \right]$$

Suzuki, 2013

EMT with Fermions

Makino, Suzuki, 2014

$$T_{\mu\nu}(t,x) = c_1(t)U_{\mu\nu}(t,x) + c_2(t)\delta_{\mu\nu} \left(E(t,x) - \langle E \rangle_0 \right) + c_3(t) \left(O_{3\mu\nu}(t,x) - 2O_{4\mu\nu}(t,x) - \text{VEV} \right) + c_4(t) \left(O_{4\mu\nu}(t,x) - \text{VEV} \right) + c_5(t) \left(O_{5\mu\nu}(t,x) - \text{VEV} \right)$$

$$T_{\mu\nu}(x) = \lim_{t \to 0} T_{\mu\nu}(t, x)$$

$$\begin{split} \tilde{\mathcal{O}}_{3\mu\nu}^{f}(t,x) &\equiv \varphi_{f}(t)\bar{\chi}_{f}(t,x)\left(\gamma_{\mu}\overleftarrow{D}_{\nu}+\gamma_{\nu}\overleftarrow{D}_{\mu}\right)\chi_{f}(t,x),\\ \tilde{\mathcal{O}}_{4\mu\nu}^{f}(t,x) &\equiv \varphi_{f}(t)\delta_{\mu\nu}\bar{\chi}_{f}(t,x)\overleftarrow{\mathcal{D}}\chi_{f}(t,x),\\ \tilde{\mathcal{O}}_{5\mu\nu}^{f}(t,x) &\equiv \varphi_{f}(t)\delta_{\mu\nu}\bar{\chi}_{f}(t,x)\chi_{f}(t,x), \end{split}$$

$$\varphi_f(t) \equiv \frac{-6}{(4\pi)^2 t^2 \left\langle \bar{\chi}_f(t,x) \overleftarrow{\mathcal{D}} \chi_f(t,x) \right\rangle_0}$$

$$\begin{aligned} c_1(t) &= \frac{1}{\bar{g}(1/\sqrt{8t})^2} - \frac{1}{(4\pi)^2} \left[9(\gamma - 2\ln 2) + \frac{19}{4} \right], \\ c_2(t) &= \frac{1}{(4\pi)^2} \frac{33}{16}, \\ c_3(t) &= \frac{1}{4} \left\{ 1 + \frac{\bar{g}(1/\sqrt{8t})^2}{(4\pi)^2} \left[2 + \frac{4}{3}\ln(432) \right] \right\}, \\ c_4(t) &= \frac{1}{(4\pi)^2} \bar{g}(1/\sqrt{8t})^2, \\ c_5^f(t) &= -\bar{m}_f (1/\sqrt{8t}) \left\{ 1 + \frac{\bar{g}(1/\sqrt{8t})^2}{(4\pi)^2} \left[4(\gamma - 2\ln 2) + \frac{14}{3} + \frac{4}{3}\ln(432) \right] \right\} \end{aligned}$$

Contents

- 1. Constructing EMT on the lattice
- 2. Thermodynamics
- 3. Correlation Function
- 4. Stress distribution in $q\overline{q}$ system
- 5. Summary

direct measurement of expectation values $\langle T_{00} \rangle, \langle T_{ii} \rangle$

Fluctuations and Correlations viscosity, specific heat, ... $\eta = \int_0^\infty dt \langle T_{12}; T_{12} \rangle$ $c_V \sim \langle \delta T_{00}^2 \rangle$

QCD EoS (Energy Density, Pressure)

- Rapid increase of ε/T^4 around T=150-200 MeV
- Crossover transition
- Low T: hadron resonance gas model / High T: perturbative QCD

QCD Thermodynamics

Changing lattice spacing $a \, \square \,$ 1/T and V change

$$\begin{cases} \frac{\partial \ln Z}{\partial a} \sim \varepsilon - 3p \\ \frac{\partial \ln Z}{\partial a} = \frac{\partial \beta}{\partial a} \frac{\partial \ln Z}{\partial \beta} \sim \frac{\partial \beta}{\partial a} \langle S \rangle \\ \beta = 2N_c/g^2 \end{cases}$$

$$rac{\partialeta}{\partial a}\;,\;\langle S
angle$$
e-3p

Integral Method

measurements of e-3p for many T
 vacuum subtraction for each T
 information on beta function

Numerical Simulation

- \Box Expectation values of T_{μ}
- SU(3) YM theory
- Wilson gauge action
- Parameters:
 - N_t = 12, 16, 20-24
 - aspect ratio 5.3<N_s/N_t<8
 - 1500~2000 configurations
- **Scale from gradient flow** $\rightarrow aT_c \text{ and } a\Lambda_{MS}$

FlowQCD 1503.06516

T/T_c	β	N_s	N_{τ}	Configurations
0.93	6.287	64	12	2125
	6.495	96	16	1645
	6.800	128	24	2040
1.02	6.349	64	12	2000
	6.559	96	16	1600
	6.800	128	22	2290
1.12	6.418	64	12	1875
	6.631	96	16	1580
	6.800	128	20	2000
1.40	6.582	64	12	2080
	6.800	128	16	900
	7.117	128	24	2000
1.68	6.719	64	12	2000
	6.941	96	16	1680
	7.117	128	20	2000
2.10	6.891	64	12	2250
	7.117	128	16	840
	7.296	128	20	2040
2.31	7.200	96	16	1490
	7.376	128	20	2020
	7.519	128	24	1970
2.69	7.086	64	12	2000
	7.317	96	16	1560
	7.500	128	20	2040

 $\sqrt{8t} < a$: strong discretization effect $\sqrt{8t} > 1/(2T)$: over smeared

 $a < \sqrt{8t} < 1/(2T)$: Linear t dependence

Double Extrapolation

Continuum extrapolation $\langle T_{\mu\nu}(t) \rangle_{\text{cont}} = \langle T_{\mu\nu}(t) \rangle_{\text{lat}} + C(t)a^2$

Note: FlowQCD, 2014: continuum extrapolation only WHOT-QCD, 2016: small t limit only

Double Extrapolation

Continuum extrapolation $\langle T_{\mu\nu}(t) \rangle_{\text{cont}} = \langle T_{\mu\nu}(t) \rangle_{\text{lat}} + C(t)a^2$

Small t extrapolation $\langle T_{\mu\nu} \rangle = \langle T_{\mu\nu}(t) \rangle + C't$

Note: FlowQCD, 2014: continuum extrapolation only WHOT-QCD, 2016: small t limit only

Black line: continuum extrapolated

□ Fitting ranges:

- **□** range-1: $0.01 < tT^2 < 0.015$
- **□** range-2: $0.005 < tT^2 < 0.015$
- **□** range-3: $0.01 < tT^2 < 0.02$

Systematic error from the choice of fitting range ≈ statistical error

T Dependence

FlowQCD, PRD, 2016

Error includes

- statistical error
- \succ choice of t range for t \rightarrow 0 limit
- \blacktriangleright uncertainty in a Λ_{MS}

total error <1.5% for T>1.1T_c

 Excellent agreement with integral method
 High accuracy only with ~2000 confs.

N_f=2+1 QCD Thermodynamics

Taniguchi+ (WHOT-QCD), PR**D96**, 014509 (2017)

- N_f=2+1 QCD, Iwasaki gauge + NP-clover
- m_{PS}/m_V ≈0.63 / almost physical s quark mass
- T=0: CP-PACS+JLQCD (ß=2.05, 28³x56, a≈0.07fm)
- T>0: 32³xN_t, N_t = 4, 6, ..., 14, 16):
- T≈174-697MeV
- $t \rightarrow 0$ extrapolation only (No continuum limit)

Fermion Propagator

$$S(t, x; s, y) = \langle \chi(t, x) \overline{\chi}(s, y) \rangle$$
$$= \sum_{v, w} K(t, x; 0, v) S(v, w) K(s, y; 0, w)^{\dagger}$$

$$\left(\partial_t - D_\mu D_\mu\right) K(t, x) = 0$$

- propagator of flow equation
- Inverse propagator is needed

$t \rightarrow 0$ Extrapolation

Taniguchi+ (WHOT-QCD), PR**D96**, 014509 (2017)

"linear window" for Nt>6
 Checked: fit range, a²/t term

N_f=2+1 Thermodynamics

Taniguchi+ (WHOT-QCD), PR**D96**, 014509 (2017)

 \square Agreement with integral method except for N_t=4, 6

- **D** No stable extrapolation for $N_t=4$, 6
- Suppression of statistical error

Physical mass: Kanaya+ (WHOT-QCD), 1710.10015

Chiral Condensate / Suceptibility

Taniguchi+ (WHOT-QCD), PR**D96**, 014509 (2017)

Subtracted condensate

 $\langle \bar{\psi}\psi\rangle - \langle \bar{\psi}\psi\rangle_{T=0}$

Chiral susceptibility

Chiral condensate decreases for T>Tc.
 Chiral susceptibility has a sharp peak around T=Tc.

Contents

- 1. Constructing EMT on the lattice
- 2. Thermodynamics
- 3. Correlation Function
- 4. Stress distribution in $q\overline{q}$ system
- 5. Summary

Fluctuations and Correlations

viscosity, specific heat, ...

 $\eta = \int_0^\infty dt \langle T_{12}; T_{12} \rangle$ $c_V \sim \langle \delta T_{00}^2 \rangle$

Fluctuations and Correlations viscosity, specific heat, ... $\eta = \int_0^\infty dt \langle T_{12}; T_{12} \rangle$ $c_V \sim \langle \delta T_{00}^2 \rangle$

Why EMT Correlation Func.?

 \Box Kubo Formula: T₁₂ correlator $\leftarrow \rightarrow$ shear viscosity

$$\eta = \int_0^\infty dt \int_0^{1/T} d\tau \int d^3x \langle T_{12}(x, -i\tau) T_{12}(0, t) \rangle$$

 \succ Hydrodynamics describes long range behavior of $T_{\mu\nu}$

□ Energy fluctuation \leftarrow → specific heat $c_V = \frac{\langle \delta E^2 \rangle}{VT^2}$

EMT Correlator: Extremely Noisy...

With naïve EMT operators

$\langle T_{12}(\tau)T_{12}(0)\rangle$

Nakamura, Sakai, PRL,2005 N_t=8 improved action ~10⁶ configurations

... no signal

Nt=16

standard action 5x10⁴ configurations

Conservation Law

$$\bar{T}_{\mu\nu} = \int d^3x T_{\mu\nu}(x)$$

 $\frac{\partial}{\partial \tau} \bar{T}_{00} = 0$ $\frac{\partial}{\partial \tau} \bar{T}_{01} = 0$

 $\begin{aligned} \frac{\partial}{\partial \tau} \langle \bar{T}_{00}(\tau) \bar{T}_{00}(0) \rangle &= 0\\ \frac{\partial}{\partial \tau} \langle \bar{T}_{00}(\tau) \bar{T}_{11}(0) \rangle &= 0\\ \frac{\partial}{\partial \tau} \langle \bar{T}_{01}(\tau) \bar{T}_{01}(0) \rangle &= 0\\ (\tau \neq 0) \end{aligned}$

$\langle \bar{T}_{0\mu}(\tau) \overline{T}_{lphaeta}(0) angle$ au independent constant

Linear Response Relations

$$c_V = \frac{d}{dT} \langle \bar{E} \rangle = \frac{\langle \bar{T}_{00}^2 \rangle}{VT^2}$$
$$s = \frac{d}{dT} P = \frac{\langle \bar{T}_{11} \bar{T}_{00} \rangle}{VT^2}$$
$$\varepsilon + p = \frac{\langle \bar{T}_{01}^2 \rangle}{VT}$$

Specific heat

entropy density

enthalpy density Giusti, Meyer, 2011 Minami, Hidaka, 2012

$$\begin{array}{l} \text{Derivation} \\ \langle \hat{O} \rangle = \frac{1}{Z} \text{Tr} \big[\hat{O} e^{-\beta \hat{H}} \big] & \frac{d}{d\beta} \langle \hat{O} \rangle = - \langle \delta \hat{O} \delta \hat{H} \rangle \end{array}$$

Numerical Simulation

FlowQCD, arXiv:1708.01415

- SU(3) pure gauge
- Wilson gauge action / clover operator
- Ns/Nt=4
- Statistics: 18-20x10⁴

β	T=1.66T _c	T=2.22T _c
48 ³ x12	6.719	6.943
64 ³ x16	6.941	7.170
96 ³ x24	7.265	7.500

on Bluegene/Q @KEK

Euclidean Correlator @T=2.24Tc FlowQCD, arXiv:1708.01415

□ τ -independent plateau in all channels → conservation law □ small τ region: artificial enhancement due to overlap of operators □ linear response relations for 4411, 4141 channels $\delta = \langle \bar{T}_{44}(\tau)\bar{T}_{14}(0) \rangle = \langle \bar{T}_{44}(\tau)\bar{T}_{44}(0) \rangle$

$$\frac{s}{7^3} = \frac{\langle \bar{T}_{44}(\tau)\bar{T}_{11}(0)\rangle}{VT^5} = \frac{\langle \bar{T}_{41}(\tau)\bar{T}_{41}(0)}{VT^5}$$

Mid-Point Correlator @T=2.24Tc $\langle T_{44}(\tau)T_{44}(0) \rangle$ $\langle T_{44}(\tau)T_{11}(0) \rangle$ $\langle T_{44}(\tau)T_{44}(0) \rangle$

- (44;11), (41;41) channels : confirmation of LRR
- (44;44) channel: new measurement of c_v

c_V/T^3								
$T/T_{\rm c}$	$C_{44;44}(\tau_m)$	Ref.[19]	Ref.[11]	ideal gas				
1.68	$17.7(8)(^{+2.1}_{-0.4})$	$22.8(7)^*$	17.7	21.06				
2.24	$17.5(0.8)(^{+0}_{-0.1})$	$17.9(7)^{**}$	18.2	21.06				

2+1 QCD: Taniguchi+ (WHOT-QCD), 1711.02262

Contents

- 1. Constructing EMT on the lattice
- 2. Thermodynamics
- 3. Correlation Function
- 4. Stress distribution in $q\overline{q}$ system
- 5. Summary

Hadron Structure

- flux tube / hadrons
- stress distribution

Fluctuations and Correlations viscosity, specific heat, ... $\eta = \int_0^\infty dt \langle T_{12}; T_{12} \rangle$ $c_V \sim \langle \delta T_{00}^2 \rangle$

Stress

Pressure

force on a surface per unit area

$$\vec{P} = P\vec{n}$$

Stress

Pressure

force on a surface per unit area

$$\vec{P} = P\vec{n}$$

Stress

Generally, F and n are not parallel

Stress Tensor

 $P_i = T_{ij}n_j$

Maxwell Stress

$$T_{ij} = \varepsilon_0 E_i E_j + \frac{1}{\mu_0} B_i B_j - \frac{1}{2} \delta_{ij} \left(\varepsilon_0 E^2 + \frac{1}{\mu_0} B^2 \right)$$

 $\vec{E} = (E, 0, 0)$ $T = \frac{1}{2} \begin{bmatrix} E^2 & 0 & 0\\ 0 & -E^2 & 0\\ 0 & 0 & -E^2 \end{bmatrix}$

Vertical to field: Repulsive

attractive eigenvector (≈Line of electric field)

q-qbar System in YM Theory = Flux Tube Formation

Color electric field is confined into a flux tube

Previous Studies

- action density
- color electric field
- (color electric field)²

This Study: stress

- gauge invariant!
- definite physical meaning!
- establish action thr. medium

Stress Distribution in qq System

attractive eigenvector

R. Yanagihara+ (FlowQCD) to appear soon!

beta=6.819 (a=0.029fm) R/a=16 t→0 limit No continuum limit

First visualization of distortion in space due to color charges

Stress Distribution in qq System

R. Yanagihara+ (FlowQCD) to appear soon!

Stress Distribution in qq System

qq force?

R. Yanagihara+ (FlowQCD) to appear soon!

New insights into physics of confinement

Yanagihara's talk this afternoon

Summary

- EMT operator on the lattice is now available!
 - Correctly renormalized operator
 - Statistical error is suppressed thanks to gradient flow.
- The operator is applied to various analyses:

Fluctuations and Correlations viscosity, specific heat, ... $\eta = \int_0^\infty dt \langle T_{12}; T_{12} \rangle$ $c_V \sim \langle \delta T_{00}^2 \rangle$

Hadron Structure

flux tube / hadrons stress distribution

Many future studies

- transport coefficient
 - EM/stress distribution in hadrons
- Flux tube: T dependence

EMT (Naïve Constructuion)

$$T_{\mu\nu}(x) = Z_1 \left(F_{\mu\rho} F_{\nu\rho} - \frac{1}{4} \delta_{\mu\nu} F_{\rho\sigma} F_{\rho\sigma} \right) + Z_2 \delta_{\mu\nu} F_{\rho\sigma} F_{\rho\sigma}$$
$$+ Z_3 \delta_{\mu\nu} F_{\mu\rho} F_{\nu\rho}$$

Z₁, Z₂, Z₃ have to be determined non-perturbatively.
 Accurate determinations of Z₁, Z₃: Giusti, Pepe, 2014-; BW, 2016

So far, only for pure gauge theorymulti-level algorithm

Gradient Flow Method

Topological Charge

